

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km102t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral Features

- High-Current Sink/Source, 18 mA/18 mA All Ports
- Independent Ultra Low-Power, 32 kHz Timer Oscillator
- Up to Two Master Synchronous Serial Ports (MSSPs) with SPI and I²C™ modes:

In SPI mode:

- User-configurable SCKx and SDOx pin outputs
- Daisy-chaining of SPI slave devices

In I²C mode:

- Serial clock synchronization (clock stretching)
- Bus collision detection and will arbitrate accordingly
- Support for 16-bit read/write interface
- Up to Two Enhanced Addressable UARTs:
 - LIN/J2602 bus support (auto-wake-up, Auto-Baud Detect, Break character support)
 - High and low speed (SCI)
 - IrDA[®] mode (hardware encoder/decoder function)
- Two External Interrupt Pins
- Hardware Real-Time Clock and Calendar (RTCC)
- Configurable Reference Clock Output (REFO)
- Two Configurable Logic Cells (CLC)
- Up to Two Single Output Capture/Compare/PWM (SCCP) modules and up to Three Multiple Output Capture/Compare/PWM (MCCP) modules

Special Microcontroller Features

- Wide Operating Voltage Range Options:
 - 1.8V to 3.6V (PIC24F devices)
 - 2.0V to 5.0V (PIC24FV devices)
- Selectable Power Management modes:
 - Idle: CPU shuts down, allowing for significant power reduction
 - Sleep: CPU and peripherals shut down for substantial power reduction and fast wake-up
 - Retention Sleep mode: PIC24FV devices can enter Sleep mode, employing the Retention Regulator, further reducing power consumption
 - Doze: CPU can run at a lower frequency than peripherals, a user-programmable feature
 - Alternate Clock modes allow on-the-fly switching to a lower clock speed for selective power reduction
- · Fail-Safe Clock Monitor:
 - Detects clock failure and switches to on-chip, low-power RC Oscillator
- Ultra Low-Power Wake-up Pin Provides an External Trigger for Wake from Sleep
- 10,000 Erase/Write Cycle Endurance Flash Program Memory, Typical
- 100,000 Erase/Write Cycle Endurance Data EEPROM, Typical
- Flash and Data EEPROM Data Retention: 20 Years Minimum
- Self-Programmable under Software Control
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its Own On-Chip RC Oscillator for Reliable Operation
- On-Chip Regulator for 5V Operation
- Selectable Windowed WDT Feature
- Selectable Oscillator Options including:
 4x Phase Locked Loop (PLL)
- 8 MHz (FRC) Internal RC Oscillator:
 - HS/EC, High-Speed Crystal/Resonator Oscillator or External Clock
- In-Circuit Serial Programming™ (ICSP™) and In-Circuit Emulation (ICE) via Two Pins
- In-Circuit Debugging
- Programmable High/Low-Voltage Detect (HLVD) module
- Programmable Brown-out Reset (BOR):
 - Software enable feature
 - Configurable shutdown in Sleep
 - Auto-configures power mode and sensitivity based on device operating speed
 - LPBOR available for re-arming of the POR

1.1.4 EASY MIGRATION

The PIC24FV16KM204 family devices have two variants. The KM20X variant provides the full feature set of the device, while the KM10X offers a reduced peripheral set, allowing for the balance of features and cost (refer to Table 1-1). Both variants allow for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, different die variants, or even moving from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple to the powerful and complex, yet still selecting a Microchip device.

1.2 Other Special Features

- Communications: The PIC24FV16KM204 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an MSSP module which implements both SPI and I²C™ protocols, and supports both Master and Slave modes of operation for each. Devices also include one of two UARTs with built-in IrDA[®] encoders/decoders.
- Analog Features: Select members of the PIC24FV16KM204 family include two 8-bit Digital-to-Analog Converters which offer support in Idle mode, and left and right justified input data, as well as up to two operational amplifiers with selectable power and speed modes.
- Real-Time Clock/Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- 12-Bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep, to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV16KM204 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation. The CTMU can also be connected to the operational amplifiers to provide active guarding, which provides increased robustness in the presence of noise in capacitive touch applications.

1.3 Details on Individual Family Members

Devices in the PIC24FV16KM204 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

Members of the PIC24FV16KM204 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV16KM204), accommodate an operating VDD range of 2.0V to 5.5V and have an on-board voltage regulator that powers the core. Peripherals operate at VDD.

Standard devices, designated by "F" (such as PIC24F16KM204), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

The PIC24FV16KM204 family may be thought of as two different device groups, both offering slightly different sets of features. These differ from each other in multiple ways:

- · The size of the Flash program memory
- The number of external analog channels available
- The number of Digital-to-Analog Converters
- · The number of operational amplifiers
- The number of analog comparators
- The presence of a Real-Time Clock and Calendar (RTCC)
- The number and type of CCP modules (i.e., MCCP vs. SCCP)
- The number of serial communication modules (both MSSPs and UARTs)
- The number of Configurable Logic Cell (CLC) modules

The general differences between the different sub-families are shown in Table 1-1 and Table 1-2.

A list of the pin features available on the PIC24FV16KM204 family devices, sorted by function, is provided in Table 1-5.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

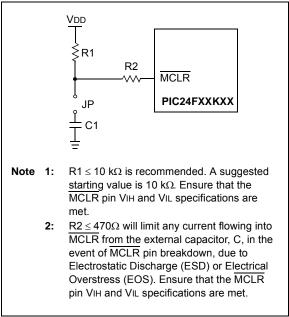
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \ \mu\text{F}$ to $0.001 \ \mu\text{F}$. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., $0.1 \ \mu\text{F}$ in parallel with $0.001 \ \mu\text{F}$).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

TABLE 4-15: UART1 REGISTER MAP

		•																
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	220h	UARTEN	—	USIDL	IREN	RTSMD	-	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	222h	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	224h	_	_	_	_	_	_	_				UART1 Tra	ansmit Regi	ster				xxxx
U1RXREG	226h	—	_	_		_	_	—				UART1 Re	ceive Regis	ster				0000
U1BRG	228h	Baud Rate Generator Prescaler									0000							

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-16: UART2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE ⁽¹⁾	230h	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA ⁽¹⁾	232h	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG ⁽¹⁾	234h	_	_	_	_	_	_	_				UART2 Tra	nsmit Regis	ster				xxxx
U2RXREG ⁽¹⁾	236h	_	_	_	_	_	_	_	UART2 Receive Register					0000				
U2BRG ⁽¹⁾	238h		Baud Rate Generator Prescaler									0000						

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as displayed in Example 5-5.

EXAMPLE 5-1:	ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

; Set up NVMCON fo	or row erase operation	
MOV #0x	x4058, WO ;	
MOV W0,	, NVMCON ;	Initialize NVMCON
; Init pointer to	row to be ERASED	
MOV #tk	<pre>blpage(PROG_ADDR), W0 ;</pre>	
MOV W0,	, TBLPAG ;	Initialize PM Page Boundary SFR
MOV #tk	<pre>bloffset(PROG_ADDR), W0 ;</pre>	Initialize in-page EA[15:0] pointer
TBLWTL W0,	, [WO] ;	Set base address of erase block
DISI #5	;	Block all interrupts
		for next 5 instructions
MOV #0×	x55, WO	
MOV W0,	, NVMKEY ;	Write the 55 key
MOV #0×	xAA, W1 ;	
MOV W1,	, NVMKEY ;	Write the AA key
BSET NVM	MCON, #WR ;	Start the erase sequence
NOP	;	Insert two NOPs after the erase
NOP	;	command is asserted

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
                                                               // Variable located in Pgm Memory, declared as a
int __attribute__ ((space(auto_psv))) progAddr = 0x1234;
                                                               // global variable
   unsigned int offset;
//Set up pointer to the first memory location to be written
   TBLPAG = __builtin_tblpage(&progAddr);
                                                               // Initialize PM Page Boundary SFR
   offset = __builtin_tbloffset(&progAddr);
                                                               // Initialize lower word of address
    __builtin_tblwtl(offset, 0x0000);
                                                               // Set base address of erase block
                                                               // with dummy latch write
   NVMCON = 0 \times 4058;
                                                               // Initialize NVMCON
    asm("DISI #5");
                                                               // Block all interrupts for next 5 instructions
     _builtin_write_NVM();
                                                               \ensuremath{{//}} C30 function to perform unlock
                                                               // sequence and set WR
```

6.4.3 READING THE DATA EEPROM

To read a word from data EEPROM, the Table Read instruction is used. Since the EEPROM array is only 16 bits wide, only the TBLRDL instruction is needed. The read operation is performed by loading TBLPAG and WREG with the address of the EEPROM location, followed by a TBLRDL instruction.

A typical read sequence, using the Table Pointer management (builtin_tblpage and builtin_tbloffset) and Table Read (builtin_tblrd1) procedures from the C30 compiler library, is provided in Example 6-5.

Program Space Visibility (PSV) can also be used to read locations in the data EEPROM.

EXAMPLE 6-5: READING THE DATA EEPROM USING THE TBLRD COMMAND

<pre>intattribute ((space(eedata))) eeData = 0x1234;</pre>	
int data;	// Data read from EEPROM
/*	
The variable eeData must be a Global variable declared	d outside of any method
the code following this comment can be written inside	the method that will execute the read
*/	
unsigned int offset;	
// Set up a pointer to the EEPROM location to be e	erased
<pre>TBLPAG =builtin_tblpage(&eeData);</pre>	// Initialize EE Data page pointer
offset =builtin_tbloffset(&eeData);	// Initizlize lower word of address
<pre>data =builtin_tblrdl(offset);</pre>	// Write EEPROM data to write latch

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—	CCP5IP2	CCP5IP1	CCP5IP0
bit 15						-	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—		—	INT1IP2	INT1IP1	INT1IP0
bit 7							bit 0
Legend:							
R = Readat	ole hit	W = Writable b	hit	II = Unimpler	nented bit, read	1 as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	own
bit 15-11	Unimplemer	nted: Read as '0	'				
bit 10-8	CCP5IP<2:0	>: Capture/Com	pare 5 Event	Interrupt Priorit	y bits		
	111 = Interru	ipt is Priority 7 (ł	nighest priority	y interrupt)			
	•						
	•						
		pt is Priority 1					
		pt source is disa					
bit 7-3	Unimplemer	nted: Read as '0	'				
bit 2-0		: External Interru					
	111 = Interru	ipt is Priority 7 (h	nighest priority	y interrupt)			
	•						
	•						
		pt is Priority 1	- la la al				
	000 = interru	pt source is disa	adied				

REGISTER 8-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	U2TXIP2	U2TXIP1	U2TXIP0		U2RXIP2	U2RXIP1	U2RXIP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	INT2IP2	INT2IP1	INT2IP0	_	CCT4IP2	CCT4IP1	CCT4IP0
bit 7							bit
Legend: R = Readat	ole hit	W = Writable	hit	II = Unimple	mented bit, read	1 as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as 'o)'				
bit 14-12		: UART2 Trans					
	111 = Interru	pt is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1 pt source is dis	abled				
bit 11		ted: Read as '					
bit 10-8	-	: UART2 Rece		Priority bits			
		pt is Priority 7 (
	•	· · · ·	• • •				
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as 'o					
)'				
bit 6-4		External Interr	upt 2 Priority b				
	111 = Interru		upt 2 Priority b				
		External Interr	upt 2 Priority b				
	111 = Interru • •	External Interr pt is Priority 7(upt 2 Priority b				
	111 = Interru • • 001 = Interru	External Interr pt is Priority 7(pt is Priority 1	upt 2 Priority t highest priority				
bit 6-4	111 = Interru • • 001 = Interru 000 = Interru	External Interr pt is Priority 7(pt is Priority 1 pt source is dis	upt 2 Priority b highest priority abled				
bit 6-4 bit 3	111 = Interru • • 001 = Interru 000 = Interru Unimplemen	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(upt 2 Priority b highest priority abled)	v interrupt)	av hits		
	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(-: Capture/Com	upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	y bits		
bit 6-4 bit 3	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	y bits		
bit 6-4 bit 3	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(-: Capture/Com	upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	y bits		
bit 6-4 bit 3	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' •: Capture/Com pt is Priority 7 (upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	ty bits		

REGISTER 8-26: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

REGISTER 8-27: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CCT5IP2	CCT5IP1	CCT5IP0		_	—	—
bit 7							bit 0

Legend:								
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-7	bit 15-7 Unimplemented: Read as '0'							
bit 6-4	CCT5IP<	2:0>: Capture/Compare 5 Ti	imer Interrupt Priority bits					
	111 = Inte	errupt is Priority 7 (highest p	riority interrupt)					
	•							
	•							
	•							
	001 = Inte	errupt is Priority 1						

- 000 = Interrupt source is disabled
- bit 3-0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_					U2ERIP2	U2ERIP1	U2ERIP0
oit 15			•				bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	U1ERIP2	U1ERIP1	U1ERIP0	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 10-8 bit 7 bit 6-4	<pre>111 = Interru </pre>	>: UART2 Error pt is Priority 7 (pt is Priority 1 pt source is dis nted: Read as ' >: UART1 Error pt is Priority 7 (highest priority abled o'	interrupt)			
bit 3-0	• • 001 = Interru 000 = Interru	pt is Priority 1 pt is Priority 1 pt source is dis nted: Read as '	abled	interrupt)			

REGISTER 8-30: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

REGISTER 8-31: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15	·	•			•		bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	—	—	HLVDIP2	HLVDIP1	HLVDIP0
bit 7							bit 0
Logondi							

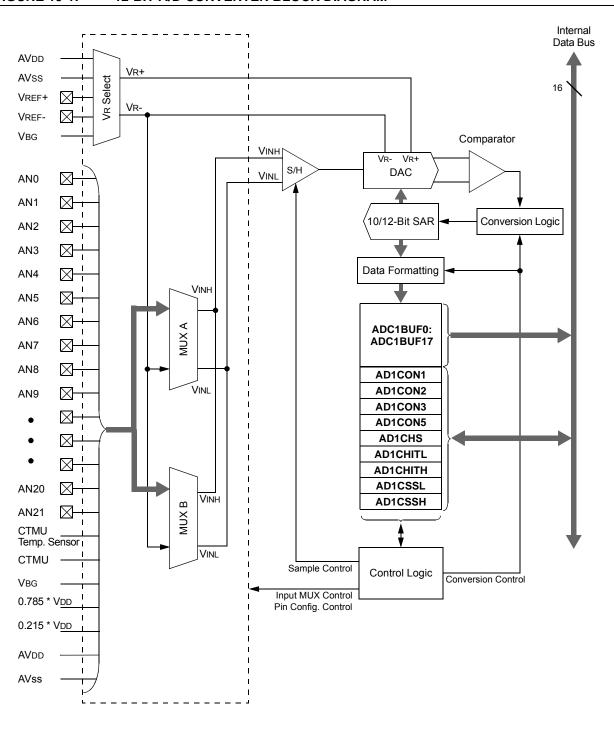
Legend:	
---------	--

bit 2-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

HLVDIP<2:0>: High/Low-Voltage Detect Interrupt Priority bits

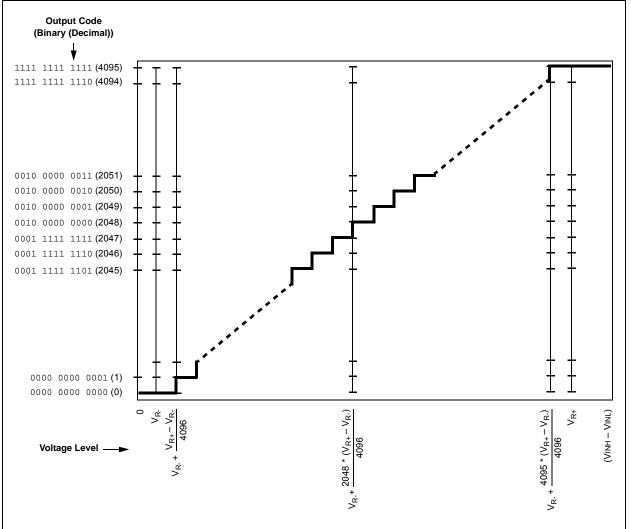

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- •

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—		—		_				
bit 15							bit 8			
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
SMP	CKE ⁽¹⁾ D/Ā P S R/W UA BI									
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit. rea	d as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 15-8	Unimplemen	ted: Read as '0)'							
bit 7	SMP: Sample	e bit								
	SPI Master m									
		is sampled at								
	•	•	the middle of o	data output time						
	SMP must be	de: cleared when \$	SPI is used in	Slave mode						
bit 6		ck Select bit ⁽¹⁾								
	1 = Transmit o	occurs on trans	ition from acti	ve to Idle clock s	state					
	0 = Transmit	occurs on trans	ition from Idle	to active clock s	state					
bit 5	D/A: Data/Ad									
	Used in I ² C™	mode only.								
bit 4	P: Stop bit									
		node only. This	bit is cleared v	when the MSSP:	x module is di	sabled; SSPEN	l bit is cleared			
bit 3	S: Start bit									
	Used in I ² C m	•								
bit 2		rite Information	bit							
	Used in I ² C m									
bit 1	UA: Update A									
	Used in I ² C m	,								
bit 0	BF: Buffer Fu									
		s complete, SS s not complete,		emntv						
		-								
	plarity of clock s	tata ia aat by th		DUCONIA (A)						

REGISTER 14-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)


FIGURE 19-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM

19.3 Transfer Function

The transfer functions of the A/D Converter in 12-bit resolution are shown in Figure 19-3. The difference of the input voltages (VINH – VINL) is compared to the reference ((VR+) – (VR-)).

- The first code transition occurs when the input voltage is ((VR+) (VR-))/4096 or 1.0 LSb.
- The '0000 0000 0001' code is centered at VR- + (1.5 * ((VR+) (VR-))/4096).

- The '0010 0000 0000' code is centered at VREFL + (2048.5 * ((VR+) – (VR-))/4096).
- An input voltage less than VR- + (((VR-) – (VR-))/4096) converts as '0000 0000 0000'.
- An input voltage greater than (VR-) + (4095 ((VR+) – (VR-))/4096) converts as '1111 1111 1111'.

FIGURE 19-3: 12-BIT A/D TRANSFER FUNCTION

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
AMPEN		AMPSIDL	AMPSLP							
bit 15			•				bit 8			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SPDSEL	—	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
							-			
bit 15	AMPEN: Op	Amp x Control	Module Enable	e bit						
	1 = Module									
	0 = Module									
bit 14	-	nted: Read as '								
bit 13		Dp Amp x Periph								
		nues module op es module opera			le mode					
bit 12		p Amp x Periph			it					
		es module opera		-						
		nues module op			pinouo					
bit 11-8	Unimpleme	nted: Read as '	כי							
bit 7	SPDSEL: Op	p Amp x Power/	Speed Select b	bit						
	• •	ower and band	•	• •						
bit 6	-	ower and bandw	-	sponse (me)						
bit 5-3	-	nted: Read as '		oot hito						
DIL D-D		I>: Negative Op wed: do not use		eci biis						
	111 = Reserved; do not use 110 = Reserved; do not use									
	101 = Op amp negative input is connected to the op amp output (voltage follower)									
	100 = Reserved; do not use									
		rved; do not use np negative inpu		to the OAVING	nin					
		np negative inpl								
		np negative inpu								
bit 2-0	PINSEL<2:0	>: Positive Op /	Amp Input Sele	ect bits						
	111 = Op amp positive input is connected to the output of the A/D input multiplexer									
		rved; do not use		to the DAC1 of	tout for OA1 /					
	101 = Op amp positive input is connected to the DAC1 output for OA1 (DAC2 output for OA2) 100 = Reserved; do not use									
		rved; do not use								
		np positive inpu								
	•	np positive inpu			pin					
	000 = Op an	np positive inpu	i is connected	IU AVSS						
Note 1: The	nis register is a	vailable only on	PIC24F(V)16	KM2XX devices						

REGISTER 21-1: AMPxCON: OP AMP x CONTROL REGISTER⁽¹⁾

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS (CONTINUED)

- bit 2 Unimplemented: Read as '0'
- bit 1-0 **CCH<1:0>:** Comparator x Channel Select bits
 - 11 = Inverting input of the comparator connects to BGBUF1⁽¹⁾
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CxINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin
- **Note 1:** BGBUF1 voltage is configured by BUFREF1<1:0> (BUFCON0<1:0>).
 - 2: If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

REGISTER 22-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

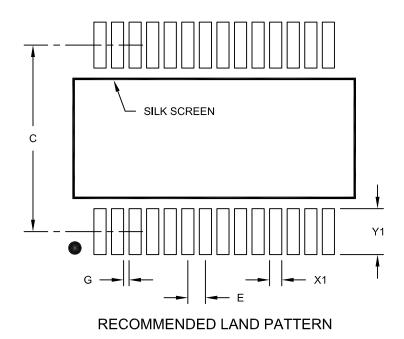
R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
CMIDL	—	—	—	—	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	C3OUT ⁽¹⁾	C2OUT ⁽¹⁾	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 15	CMIDL: Comparator x Stop in Idle Mode bit
	 1 = Comparator interrupts are disabled in Idle mode; enabled comparators remain operational 0 = Continues operation of all enabled comparators in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).
Note 1:	Comparator 2 and Comparator 3 are only available on PIC24F(V)16KM2XX devices.

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1				
FWDTEN1	WINDIS	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0				
bit 7							bit (
Legend:											
R = Readab	ole bit	P = Programn	nable bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7,5	FWDTEN<1:0	>: Watchdog Ti	mer Enable bi	ts							
		enabled in hardw									
		controlled with the second sec		Ų	s disabled in Sl	leen: SWDTEN	hit is disable				
	 01 = WDT is enabled only while the device is active, WDT is disabled in Sleep; SWDTEN bit is disable 00 = WDT is disabled in hardware; SWDTEN bit is disabled 										
bit 6	WINDIS: Windowed Watchdog Timer Disable bit										
	1 = Standard WDT is selected; windowed WDT is disabled										
	0 = Windowe hardware	d WDT is enable and software (ed; note that e	xecuting a CLR	WDT instruction						
bit 4	device Reset FWPSA: WDT Prescaler bit										
	1 = WDT prescaler ratio of 1:128										
	0 = WDT prescaler ratio of 1:32										
bit 3-0	WDTPS<3:0>: Watchdog Timer Postscale Select bits										
	1111 = 1:32,768										
	1110 = 1:16,384										
	1101 = 1:8,19 1100 = 1:4,09										
	1011 = 1:2,04										
	1011 = 1.2,048 1010 = 1.1,024										
	1010 = 1.1,024 1001 = 1.512										
	1000 = 1:256										
	0111 = 1:128										
	0110 = 1:64										
	0101 = 1:32 0100 = 1:16										
	0100 = 1.16 0011 = 1:8										
	0010 = 1.0 0010 = 1.4										
	0001 = 1:2										
	0000 = 1:1										


REGISTER 25-5: FWDT: WATCHDOG TIMER CONFIGURATION REGISTER

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
MCLRE ⁽²⁾	BORV1 ⁽³⁾	BORV0 ⁽³⁾	I2C1SEL ⁽¹⁾	PWRTEN	RETCFG ⁽¹⁾	BOREN1	BOREN0			
bit 7						•	bit (
Legend:										
R = Reada	ble bit	P = Programr	nable bit	U = Unimplen	nented bit, read	as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 7	MCLRE: MCL	R Pin Enable b	_{it} (2)							
			5 input pin is di	sabled						
			MCLR is disab							
bit 6-5	BORV<1:0>: [Brown-out Rese	et Enable bits ⁽³⁾)						
	11 = Brown-ou	it Reset is set t	o the lowest vo	ltage						
			o the middle vo	0						
			o the highest ve							
		-		a – Low-Power	BOR (LPBOR)	is selected				
bit 4	I2C1SEL: Alternate I2C1 Pin Mapping bit ⁽¹⁾ 1 = Default location for SCL1/SDA1 pins									
	1 = Default loc 0 = Alternate lo									
bit 3	PWRTEN: Power-up Timer Enable bit									
	1 = PWRT is e	nabled								
	0 = PWRT is d	isabled								
bit 2	RETCFG: Ret	ention Regulate	or Configuratior	n bit ⁽¹⁾						
	1 = Low-voltag 0 = Low-voltag			ontrolled by the	RETEN bit (RC	ON<12>) durin	g Sleep			
bit 1-0	BOREN<1:0>:	Brown-out Re	set Enable bits							
	11 = Brown-ou	it Reset is enal	oled in hardwar	e; SBOREN bit	is disabled					
			•		and disabled in S	leep; SBOREN	l bit is disable			
			rolled with the							
	00 = Brown-ol	It Reset is disa	bled in hardwar	re; SBOREN DI	t is disabled					
Note 1:	This setting only devices.	applies to the	"FV" devices. T	his bit is reserv	ved and should I	be maintained a	as '1' on "F"			
2:	The MCLRE fus	e can only be c	hanged when ι	using the VPP-b	ased ICSP™ m	ode entry. This	prevents a			
	user from accide					-				
	Refer to Section									

REGISTER 25-6: FPOR: RESET CONFIGURATION REGISTER

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimensio	Dimension Limits			MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

NOTES: