

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km104-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

				Pin Features
		48-Pin UQFN ⁽¹⁾	Pin	PIC24FXXKMX04 PIC24FVXXKMX04
		A4 A3 C C C S S D C B B B B B B B B B B B B B B B B B B	1	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/ /CLC10/CTED4/CN21/RB9
Γ			2	U1RX/ /CN18/RC6
RB9	1	\$4\$\$ \$ \$\$\$\$\$\$\$\$\$\$	3	U1TX/ /CN17/RC7
RC6	2	35 RA	4	OC2/CN20/RC8
RC7 RC8	3 4	34 RA 33 RA	3 5	IC4/OC2F/CTED7/CN19/RC9
RC9	5	BIC24EXXKMX04 32 n/c	6	IC1/ / /CTED3/CN9/RA7
RA7 RA6	6 7	PIC24FVXXKMX04 31 Vss	7	/OC1A/CTED1/INT2/CN8/RA6 VDDCORE or VCAP
n/c	8	29 RC	2 8	
RB10 RB11	9 10	28 RC 27 RC	1 9	PGED2/SDI1/OC1C/CTED11/CN16/RB10
RB12	11	26 RB	3 10	PGEC2/SCK 1/OCZA/CTED9/CN 13/RB11 /AN12/HLV/DIN/ /CTED2/ /AN12/HLV/DIN/ /CTED2/
RDIJ	12 ç	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 11	CN14/RB12 INT2/CN14/RB12
L		7 7 10 9 0 10 9 0 7 0 7	12	/ /AN11/SDO1/OC1D/CTPLS/CN13/RB13
	11 4 6	A A A A A A A A A A A A A A A A A A A	13	/ /CN35/RA10
		SS/	14	/ /CTED8/CN36/RA11
		<u> </u>	15	/CVREF/ / /AN10/ / /C1OUT/OCFA/CTED5/INT1/
			10	
			10	/ /AN9/ /REF0/SS1/TCKIA/CTED6/CN11/RB15
			17	
			10	
			19	MCLR/VPP/RA5
			20	Π/C C\/pee+//pee+/ +/ΔΝΟ/ / C\/pee+//pee+/ +/ΔΝΟ/ /
				CN2/RA0 CTED1/CN2/RA0
			22	CVREF-/VREF-/AN1/CN3/RA1
			23	PGED1/AN2/CTCMP/ULPWU/C1IND/ / / /CN4/RB0
			24	PGEC1/ / /AN3/C1INC/ / /CTED12/CN5/RB1
			25	/ /AN4/C1INB/ / /TCKIB/CTED13/CN6/RB2
			26	/AN5/C1INA/ / /CN7/RB3
			27	AN6/CN32/RC0
			28	AN7/CN31/RC1
			29	AN8/CN10/RC2
			30	VDD
			31	VSS
			32	
			33	OSCO/CI KO/AN14/CN29/RA3
			35	OCEB/CN33/RA8
			36	SOSCI/AN15/ / /CN1/RB4
			37	SOSCO/SCI KI/AN16/PWRI CI K/ /CN0/RA4
			38	/CN34/RA9
			39	/CN28/RC3
			40	/CN25/RC4
			41	/CN26/RC5
			42	Vss
Lege	end:	Values in indicate pin	43	Vdd
		function differences between	44	n/c
		PIC24F(V)XXKM102 devices	45	PGED3/AN17/ASDA1/OC1E/CLCINA/CN27/RB5
Note	1.	Exposed pad on underside of	46	PGEC3/AN18/ASCL1/OC1F/CLCINB/CN24/RB6
11016	• ••	device is connected to Vss	47	AN19/INT0/CN23/RB7 AN19/ /OC1A/INT0/CN23/RB7
			48	AN20/SCL1/UICTS/C3OUT/OC1B/CTED10/CN22/RB8

1.1.4 EASY MIGRATION

The PIC24FV16KM204 family devices have two variants. The KM20X variant provides the full feature set of the device, while the KM10X offers a reduced peripheral set, allowing for the balance of features and cost (refer to Table 1-1). Both variants allow for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, different die variants, or even moving from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple to the powerful and complex, yet still selecting a Microchip device.

1.2 Other Special Features

- Communications: The PIC24FV16KM204 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an MSSP module which implements both SPI and I²C™ protocols, and supports both Master and Slave modes of operation for each. Devices also include one of two UARTs with built-in IrDA[®] encoders/decoders.
- Analog Features: Select members of the PIC24FV16KM204 family include two 8-bit Digital-to-Analog Converters which offer support in Idle mode, and left and right justified input data, as well as up to two operational amplifiers with selectable power and speed modes.
- Real-Time Clock/Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- 12-Bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep, to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV16KM204 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation. The CTMU can also be connected to the operational amplifiers to provide active guarding, which provides increased robustness in the presence of noise in capacitive touch applications.

1.3 Details on Individual Family Members

Devices in the PIC24FV16KM204 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

Members of the PIC24FV16KM204 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV16KM204), accommodate an operating VDD range of 2.0V to 5.5V and have an on-board voltage regulator that powers the core. Peripherals operate at VDD.

Standard devices, designated by "F" (such as PIC24F16KM204), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

The PIC24FV16KM204 family may be thought of as two different device groups, both offering slightly different sets of features. These differ from each other in multiple ways:

- · The size of the Flash program memory
- The number of external analog channels available
- The number of Digital-to-Analog Converters
- · The number of operational amplifiers
- The number of analog comparators
- The presence of a Real-Time Clock and Calendar (RTCC)
- The number and type of CCP modules (i.e., MCCP vs. SCCP)
- The number of serial communication modules (both MSSPs and UARTs)
- The number of Configurable Logic Cell (CLC) modules

The general differences between the different sub-families are shown in Table 1-1 and Table 1-2.

A list of the pin features available on the PIC24FV16KM204 family devices, sorted by function, is provided in Table 1-5.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	80h	NSTDIS	—		—	_	—	—	_	—		—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	82h	ALTIVT	DISI	_	_	_	_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	84h	NVMIF	_	AD1IF	U1TXIF	U1RXIF	_	_	CCT2IF	CCT1IF	CCP4IF	CCP3IF	_	T1IF	CCP2IF	CCP1IF	INT0IF	0000
IFS1	86h	U2TXIF	U2RXIF	INT2IF	CCT4IF	CCT3IF	_	_	_	_	CCP5IF	_	INT1IF	CNIF	CMIF	BCL1IF	SSP1IF	0000
IFS2	88h	—	—		_		—	CCT5IF	_	_		—	—	—	_	—	—	0000
IFS3	8Ah	—	RTCIF		—		—	—	—			—	—	—	BCL2IF	SSP2IF	—	0000
IFS4	8Ch	DAC2IF	DAC1IF	CTMUIF	_	_	_	_	HLVDIF		_	_	_	_	U2ERIF	U1ERIF	_	0000
IFS5	8Eh	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ULPWUIF	0000
IFS6	90h	—	—		—		—	—	—			—	—	—	—	CLC2IF	CLC1IF	0000
IEC0	94h	NVMIE	—	AD1IE	U1TXIE	U1RXIE	—	—	CCT2IE	CCT1IE	CCP4IE	CCP3IE	—	T1IE	CCP2IE	CCP1IE	INT0IE	0000
IEC1	96h	U2TXIE	U2RXIE	INT2IE	CCT4IE	CCT3IE	—	—	—		CCP5IE	—	INT1IE	CNIE	CMIE	BCL1IE	SSP1IE	0000
IEC2	98h	—	—		—		—	CCT5IE	—			—	—	—	—	—	—	0000
IEC3	9Ah	—	RTCIE		—		—	—	—			—	—	—	BCL2IE	SSP2IE	—	0000
IEC4	9Ch	DAC2IE	DAC1IE	CTMUIE	—		—	—	HLVDIE			—	—	—	U2ERIE	U1ERIE	—	0000
IEC5	9Eh	—	—		—		—	—	—			—	—	—	—	—	ULPWUIE	0000
IEC6	A0h	_	_		-		_	_	—			_	—	-	—	CLC2IE	CLC1IE	0000
IPC0	A4h	—	T1IP2	T1IP1	T1IP0	—	CCP2IP2	CCP2IP1	CCP2IP0	—	CCP1IP2	CCP1IP1	CCP1IP0	—	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	A6h	—	CCT1IP2	CCT1IP1	CCT1IP0	—	CCP4IP2	CCP4IP1	CCP4IP0	—	CCP3IP2	CCP3IP1	CCP3IP0	—	—	—	—	4440
IPC2	A8h	—	U1RXIP2	U1RXIP1	U1RXIP0		—	—	—			—	—	—	CCT2IP2	CCT2IP1	CCT2IP0	4004
IPC3	AAh	_	NVMIP2	NVMIP1	NVMIP0		_	_	—		AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	ACh	—	CNIP2	CNIP1	CNIP0	—	CMIP2	CMIP1	CMIP0	—	BCL1IP2	BCL1IP1	BCL1IP0	—	SSP1IP2	SSP1IP1	SSP1IP0	4444
IPC5	AEh	—	—	—	—	—	CCP5IP2	CCP5IP1	CCP5IP0	—	—	—	—	—	INT1IP2	INT1IP1	INT1IP0	0404
IPC6	B0h	—	CCT3IP2	CCT3IP1	CCT3IP0	—	—	—	—	—	—	—	—	—	—	—	—	4000
IPC7	B2h	—	U2TXIP2	U2TXIP1	U2TXIP0	—	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0	—	CCT4IP2	CCT4IP1	CCT4IP0	4444
IPC10	B8h	—	—	—	—	—	—	—	—	—	CCT5IP2	CCT5IP1	CCT5IP0	—	—	—	—	0040
IPC12	BCh	—	—	—	—	—	BCL2IP2	BCL2IP1	BCL2IP0	—	SSP2IP2	SSP2IP1	SSP2IP0	—	—	—	—	0440
IPC15	C2h	—	—		—		RTCIP2	RTCIP1	RTCIP0			—	—	—	—	—	—	0400
IPC16	C4h	—	—		—		U2ERIP2	U2ERIP1	U2ERIP0		U1ERIP2	U1ERIP1	U1ERIP0	—	—	—	—	0440
IPC18	C8h	—	—	—	—	—	—	—	—	—	_	—	—	—	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	CAh	—	DAC2IP2	DAC2IP1	DAC2IP0	—	DAC1IP2	DAC1IP1	DAC1IP0		CTMUIP2	CTMUIP1	CTMUIP0	_		_		4440
IPC20	CCh	_	_	_	—	—	—	—	_	_	_	—	—	_	ULPWUIP2	ULPWUIP1	ULPWUIP0	0004
IPC24	D4h	—	—	_	—	—	—	—	—	—	CLC2IP2	CLC2IP1	CLC2IP0	—	CLC1IP2	CLC1IP1	CLC1IP0	0044
INTTREG	E0h	CPUIRQ	_	VHOLD	—	ILR3	ILR2	ILR1	ILR0		VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

TABLE 4-8: MCCP1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP1CON1L	140h	CCPON	_	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP1CON1H	142h	OPSSRC	RTRGEN	_	_	OPS3	OPS2	OPS1	OPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP1CON2L	144h	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP1CON2H	146h	OENSYNC	_	OCFEN	OCEEN	OCDEN	OCCEN	OCBEN	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0	0100
CCP1CON3L	148h	_	_	_	_	_	_	_	_	_		DT5	DT4	DT3	DT2	DT1	DT0	0000
CCP1CON3H	14Ah	OETRIG	TRIG OSCNT2 OSCNT1 OSCNT0 - OUTM2 OUTM1 OUTM0 - POLACE POLBDF PSSACE1 PSSACE0 PSSBDF1 PSSBDF0 0000															
CCP1STATL	14Ch	_	CCPTRIG TRSET TRCLR ASEVT SCEVT ICDIS ICOV ICBNE 0000										0000					
CCP1TMRL	150h							MCC	P1 Time Ba	se Register	Low Word							0000
CCP1TMRH	152h							MCCI	P1 Time Ba	se Register	High Word							0000
CCP1PRL	154h							MCCP1	Time Base I	Period Regis	ster Low Wor	ď						FFFF
CCP1PRH	156h							MCCP1	lime Base F	Period Regis	ster High Wo	rd						FFFF
CCP1RAL	158h							0	utput Comp	are 1 Data \	Nord A							0000
CCP1RBL	15Ch		Output Compare 1 Data Word B 0000										0000					
CCP1BUFL	160h		Input Capture 1 Data Buffer Low Word 000										0000					
CCP1BUFH	162h		Input Capture 1 Data Buffer High Word 0000										0000					

Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition, r = reserved.

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI		—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
	—	<u> </u>			INT2EP	INT1EP	INT0EP		
bit 7							bit 0		
Legend:		HSC = Hardw	are Settable/C	learable bit					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	ue at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown								
bit 15	ALTIVT: Enable Alternate Interrupt Vector Table bit								
	1 = Uses Alte 0 = Uses stan	rnate Interrupt	Vector Table (Annuel Annuel Vector Netronal Ne	AIVT) r Table (IVT)					
bit 14	DISI: DISI In	struction Status	s bit	()					
	1 = DISI inst 0 = DISI inst	ruction is active ruction is not a	e ctive						
bit 13-3	Unimplemen	ted: Read as 'o)'						
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect F	Polarity Select b	oit				
	 1 = Interrupt is on the negative edge 0 = Interrupt is on the positive edge 								
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect F	Polarity Select b	oit				
	1 = Interrupt i 0 = Interrupt i	s on the negati s on the positiv	ve edge e edge						
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect F	Polarity Select b	oit				
	1 = Interrupt i 0 = Interrupt i	s on the negati s on the positiv	ve edge e edge						

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

FIGURE 13-4: 32-BIT TIMER MODE

REGISTER 14-5: SSPxCON2: MSSPx CONTROL REGISTER 2 (I²C[™] MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
			_		_		<u> </u>			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾			
bit 7										
Legend:										
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-8	Unimplemen	ted: Read as ')'							
bit 7	GCEN: Gene	eral Call Enable	bit (Slave mod	le only)						
	1 = Enables i	nterrupt when a	general call a	ddress (0000h)) is received in	the SSPxSR				
	0 = General o	call address is c	lisabled							
bit 6	ACKSTAT: A	cknowledge Sta	itus bit (Master	r Transmit mod	e only)					
	1 = Acknowle	edge was not re	ceived from slave	ave						
bit 5		euge was lecely	bit (Master Po	coivo modo onl	_{\\\} (1)					
DIL D	1 - No Ackno		DIL (IVIASIEL RE		y)(
	0 = Acknowle	edge								
bit 4	ACKEN: Ack	nowledge Sequ	ence Enable b	oit (Master mod	e only) ⁽²⁾					
	1 = Initiates	Acknowledge	sequence on	SDAx and SO	CLx pins and	transmits AC	KDT data bit;			
	automati	cally cleared by	hardware							
	0 = Acknowl	edge sequence	is Idle	(0)						
bit 3	RCEN: Rece	ive Enable bit (I	Master Receive	e mode only) ⁽²⁾						
	1 = Enables I	Receive mode f	or I [∠] C							
hit 2		s luie andition Enabla	hit (Maator ma	d_{2}						
DIL Z	1 = Initiates		n SDAy and S		natically cleare	d by bardware				
	1 = Stop cond	dition is Idle	II SDAx and S	CLX pins, autor						
bit 1	RSEN: Repe	ated Start Cond	lition Enable bi	t (Master mode	e only) ⁽²⁾					
	1 = Initiates	Repeated Start	condition on S	DAx and SCLx	pins; automati	cally cleared by	/ hardware			
	0 = Repeate	0 = Repeated Start condition is Idle								
bit 0	SEN: Start C	SEN: Start Condition Enable bit ⁽²⁾								
	Master Mode	Master Mode:								
	1 = Initiates S	Start condition o	n SDAx and S	CLx pins; autor	natically cleare	ed by hardware				
	0 = Start con Slave Mode:	dition is Idle								
	1 = Clock stre	etching is enabl	ed for both sla	ve transmit and	l slave receive	(stretch is enab	oled)			
	0 = Clock stre	etching is disab	led							
Note 1-	The velue that	Il bo trong	hubon the ····	vr initiataa aa A	oknowladza cz		and of a			
NOTE 1:	receive.		a when the USE	a muates an A	cknowledge se	equence at the e	and of a			
2:	If the I ² C module	is active. these	bits may not b	be set (no spoo	ling) and the S	SPxBUF mav n	ot be written			
	(or writes to the S	SSPxBUF are d	isabled).		<u>,</u> , , , , , , , , , , , , , , , , , , ,	,				

REGISTER 15-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed (clearing a previously set OERR bit ($1 \rightarrow 0$ transition) will reset the receiver buffer and the RSR to the empty state)
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data; at least one more characters can be read 0 = Receive buffer is empty

© 2013 Microchip Technology Inc.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 G2D4T G2D4N G2D3T G2D3N G2D2T G2D2N G2D1T G2D1N bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 G1D4T G1D2N G1D4N G1D3T G1D3N G1D2T G1D1T G1D1N bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared x = Bit is unknown '1' = Bit is set bit 15 G2D4T: Gate 2 Data Source 4 True Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 2 0 = The Data Source 4 inverted signal is disabled for Gate 2 bit 14 G2D4N: Gate 2 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 2 0 = The Data Source 4 inverted signal is disabled for Gate 2 bit 13 G2D3T: Gate 2 Data Source 3 True Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 2 0 = The Data Source 3 inverted signal is disabled for Gate 2 bit 12 G2D3N: Gate 2 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 2 0 = The Data Source 3 inverted signal is disabled for Gate 2 bit 11 G2D2T: Gate 2 Data Source 2 True Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2 bit 10 G2D2N: Gate 2 Data Source 2 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2 bit 9 G2D1T: Gate 2 Data Source 1 True Enable bit 1 = The Data Source 1 inverted signal is enabled for Gate 2 0 = The Data Source 1 inverted signal is disabled for Gate 2 bit 8 G2D1N: Gate 2 Data Source 1 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 1 0 = The Data Source 2 inverted signal is disabled for Gate 1 bit 7 G1D4T: Gate 1 Data Source 4 True Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 1 0 = The Data Source 4 inverted signal is disabled for Gate 1 bit 6 G1D4N: Gate 1 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 1 0 = The Data Source 4 inverted signal is disabled for Gate 1 G1D3T: Gate 1 Data Source 3 True Enable bit bit 5 1 = The Data Source 3 inverted signal is enabled for Gate 1 0 = The Data Source 3 inverted signal is disabled for Gate 1 bit 4 G1D3N: Gate 1 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 1 0 = The Data Source 3 inverted signal is disabled for Gate 1

19.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter with Threshold Detect, refer to the "PIC24F Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739).

The PIC24F 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 100 ksps
- Up to 32 Analog Input Channels (internal and external)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed-Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in some PIC24 devices. Both modules are Successive Approximation Register (SAR) converters at their cores, surrounded by a range of hardware features for flexible configuration. This version of the module extends functionality by providing 12-bit resolution, a wider range of automatic sampling options and tighter integration with other analog modules, such as the CTMU, and a configurable results buffer. There is a legacy 10-bit mode on this A/D to allow the option to run with lower resolution in order to obtain higher throughput. This module also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results.

A simplified block diagram for the module is illustrated in Figure 19-1.

R/W-0	R-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADRC	EXTSAM	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0		
bit 15		-			•		bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0		
bit 7							bit 0		
Legend:		r = Reserved	bit						
R = Readable	e bit	W = Writable	oit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 14 bit 13 bit 12-8	 ADRC: A/D Conversion Clock Source bit 1 = RC clock 0 = Clock is derived from the system clock EXTSAM: Extended Sampling Time bit 1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling Reserved: Maintain as '0' SAMC<4:0>: Auto-Sample Time Select bits 11111 = 31 TAD . 								
bit 7-0	00001 = 1 T/ 00000 = 0 T/ ADCS<7:0>: 11111111-0: 00111111 = 0 00000001 = : 00000000 = :	AD AD A/D Conversion 1000000 = Res 64 * TCY = TAD 2 * TCY = TAD TCY = TAD	n Clock Select served	bits					

REGISTER 19-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	2 CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15							bit 8
D/M/ 0	D/M/ O	D/M/ O	D/M/ 0	DAM 0			
	2 CHONA1			CH0SA3			
bit 7	2 CHUNAI	CHUNAU	0110074	CHUGAS	CHUSAZ	CHUSAT	bit 0
Sit 1							5110
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-13	CHONB<2:0> 111 = AN6 ⁽¹⁾ 110 = AN5 ⁽²⁾ 101 = AN4 100 = AN3 011 = AN2 010 = AN1 001 = AN0 000 = AVss	: Sample B Ch	annel 0 Negat	ive Input Select	bits		
	11111 = Unii 11111 = AVE 11101 = AVE 11101 = AVS 11100 = Upp 11011 = Low 11010 = Inte 11000-11007 10001 = No G 10111 = No G 10111 = No G 10111 = Cha 10100 = Cha 10011 = Cha 10001 = Cha 00101 = Cha	mplemented, do pp(3) (3) (3) (3) (3) (3) (4) (4) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	ail (0.785 * VD rail (0.215 * VD Reference (VE nted, do not us onnected, all ir onnected, all in onnected, all in e correspondir input is AN21 input is AN20 input is AN19 input is AN19 input is AN19 input is AN17 ⁽¹⁾ input is AN11 input is AN11 input is AN11 input is AN10	D) D) 3G)(3) Se aputs are floatin puts are floatin puts are floatin g CTMEN22 (<i>A</i> (2) (2)	g (used for CTI g (used for CTI g (used for CTN AD1CTMENH<	MU) MU) /U temperature 6>) bit)	sensor input);
Note 1: 2:	This is implement This is implement	ted on 44-pin de ted on 28-pin a	evices only. nd 44-pin devid	ces only.			

3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER

DS30003030B-page 218

NOTES:

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS (CONTINUED)

- bit 2 Unimplemented: Read as '0'
- bit 1-0 **CCH<1:0>:** Comparator x Channel Select bits
 - 11 = Inverting input of the comparator connects to BGBUF1⁽¹⁾
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CxINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin
- **Note 1:** BGBUF1 voltage is configured by BUFREF1<1:0> (BUFCON0<1:0>).
 - 2: If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

REGISTER 22-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
CMIDL	—			—	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	C3OUT ⁽¹⁾	C2OUT ⁽¹⁾	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	CMIDL: Comparator x Stop in Idle Mode bit
	 1 = Comparator interrupts are disabled in Idle mode; enabled comparators remain operational 0 = Continues operation of all enabled comparators in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).
Note 1:	Comparator 2 and Comparator 3 are only available on PIC24F(V)16KM2XX devices.

25.0 SPECIAL FEATURES

- **Note:** This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watchdog Timer, High-Level Device Integration and Programming Diagnostics, refer to the individual sections of the *"PIC24F Family Reference Manual"* provided below:
 - "Watchdog Timer (WDT)" (DS39697)
 - "Programming and Diagnostics" (DS39716)

PIC24FXXXXX family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

25.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list of Configuration register locations is provided in Table 25-1. A detailed explanation of the various bit functions is provided in Register 25-1 through Register 25-9.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using Table Reads and Table Writes.

TABLE 25-1: CONFIGURATION REGISTERS LOCATIONS

Configuration Register	Address			
FBS	F80000			
FGS	F80004			
FOSCSEL	F80006			
FOSC	F80008			
FWDT	F8000A			
FPOR	F8000C			
FICD	F8000E			

REGISTER 25-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	BSS2	BSS1	BSS0	BWRP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

- bit 3-1 BSS<2:0>: Boot Segment Program Flash Code Protection bits
 - 111 = No boot program Flash segment
 - 011 = Reserved
 - 110 = Standard security, boot program Flash segment starts at 200h, ends at 000AFEh
 - 010 = High-security, boot program Flash segment starts at 200h, ends at 000AFEh
 - 101 = Standard security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 001 = High-security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 100 = Reserved
 - 000 = Reserved

bit 0 BWRP: Boot Segment Program Flash Write Protection bit

- 1 = Boot Segment may be written
- 0 = Boot Segment is write-protected

Note 1: This selection should not be used in PIC24FV08KMXXX devices.

NOTES:

DC CHARACTERISTICS			Standard Op	mperating C	onditions:	1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
	VIL	Input Low Voltage ⁽⁴⁾						
DI10		I/O Pins	Vss	—	0.2 Vdd	V		
DI15		MCLR	Vss	_	0.2 Vdd	V		
DI16		OSCI (XT mode)	Vss	—	0.2 Vdd	V		
DI17		OSCI (HS mode)	Vss	_	0.2 Vdd	V		
DI18		I/O Pins with I ² C™ Buffer	Vss	—	0.3 VDD	V	SMBus disabled	
DI19		I/O Pins with SMBus Buffer	Vss	—	0.8	V	SMBus enabled	
	Viн	Input High Voltage ^(4,5)						
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd		Vdd Vdd	V V		
DI25		MCLR	0.8 VDD	_	Vdd	V		
DI26		OSCI (XT mode)	0.7 Vdd		Vdd	V		
DI27		OSCI (HS mode)	0.7 Vdd	_	Vdd	V		
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd	_	Vdd Vdd	V V		
DI29		I/O Pins with SMBus	2.1		Vdd	V	$2.5V \le V\text{PIN} \le V\text{DD}$	
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS	
DI31	IPU	Maximum Load Current for	—		30	μA	VDD = 2.0V	
		w/Internal Pull-up	—	_	1000	μA	VDD = 3.3V	
	lı∟	Input Leakage Current ^(2,3)						
DI50		I/O Ports	_	0.050	±0.100	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\rm in \ at \ high-impedance} \end{split}$	
DI51		Pins with OAxOUT Functions (RB15 and RB3)	—	0.100	±0.200	μΑ	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in} \text{ at high-impedance} \end{split}$	

TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-4 and Table 1-5 for I/O pin buffer types.

5: VIH requirements are met when the internal pull-ups are enabled.

DC CHA	RACTER	RISTICS	Standard Operatin	l Operatin g tempera	g Conditio ture	ons: 1.8 2.0 -40 -40	V to 3.6V (PIC24F16KM204) V to 5.5V (PIC24FV16KM204) $^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $^{\circ}C \le TA \le +125^{\circ}C$ for Extended
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Мах	Conditions	
		Data EEPROM Memory					
D140	Epd	Cell Endurance	100,000	—	—	E/W	
D141	Vprd	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage
D143A	Tiwd	Self-Timed Write Cycle Time	—	4	—	ms	
D143B	TREF	Number of Total Write/Erase Cycles Before Refresh	_	10M	_	E/W	
D144	TRETDD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D145	Iddpd	Supply Current During Programming	—	7	—	mA	

TABLE 27-12: DC CHARACTERISTICS: DATA EEPROM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 27-13: DC CHARACTERISTICS: COMPARATOR

DC CHARACTERISTICS			Standard O	perating Co	nditions: 1.8\ 2.0\ -40° -40°	/ to 3.6V (F / to 5.5V (F C ≤ TA ≤ +8 C ≤ TA ≤ +?	PIC24F16KM204) PIC24FV16KM204) 85°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
D300	VIOFF	Input Offset Voltage		20	40	mV	
D301	VICM	Input Common-Mode Voltage	0	—	Vdd	V	
D302	CMRR	Common-Mode Rejection Ratio	55	_		dB	

TABLE 27-14: DC CHARACTERISTICS: COMPARATOR VOLTAGE REFERENCE

DC CHARACTERISTICS			Standard	Operating temperatu	Conditions: re	$\begin{array}{l} \textbf{1.8V to 3.6} \\ \textbf{2.0V to 5.5} \\ \textbf{-40^{\circ}C} \leq TA \\ \textbf{-40^{\circ}C} \leq TA \end{array}$	5V (PIC24F16KM204) 5V (PIC24FV16KM204) $A \le +85^{\circ}$ C for Industrial $A \le +125^{\circ}$ C for Extended
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
VRD310	CVRES	Resolution	_		VDD/32	LSb	
VRD311	CVRAA	Absolute Accuracy	—	—	1	LSb	AVDD = 3.3V-5.5V
VRD312	CVRur	Unit Resistor Value (R)	—	2k		Ω	

FIGURE 27-13: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

Param No.	Symbol	Characteristic	Characteristic		Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input		3 Тсү	—	ns	
70A	TssL2WB	SSx to Write to SSPxBUF		3 TCY	—	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	—	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx	20	—	ns		
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clo	ck Edge of Byte 2	1.5 Tcy + 40	—	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx	Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	e	10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge		—	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge		1.5 TCY + 40	—	ns	
	FSCK	SCKx Frequency		_	10	MHz	

TABLE 27-31: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		0.40 BSC	
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A