

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km104-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

20-Pin PDIP/SSOP/SOIC	RA5 1 20 VDD RA0 2 19 Vss RA1 3 18 RB15 RB0 4 17 RB14 RB1 5 16 RB13 RB2 6 15 RB12 RA2 7 74 14 RA3 8 13 RB9 RB4 9 12 RB8 RA4 10 11 RB7
-----------------------	---

	Pir	Features
PIN	PIC24F08KM101	PIC24FVKM08KM101
1	MCLR/Vpp/RA5	
2	PGEC2/CVREF+/VREF+/AN0/CN2/RA0	
3	PGED2/CVREF-/VREF-/AN1/CN3/RA1	
4	PGED1/AN2/CTCMP/ULPWU/C1IND/OC2A/CN4/RB0	
5	PGEC1/AN3/C1INC/CTED12/CN5/RB1	
6	AN4/U1RX/TCKIB/CTED13/CN6/RB2	
7	OSCI/CLKI/AN13/C1INB/CN30/RA2	
8	OSCO/CLKO/AN14/C1INA/CN29/RA3	
9	PGED3/SOSCI/AN15/CLCINA/CN1/RB4	
10	PGEC3/SOSCO/SCLKI/AN16/PWRLCLK/CLCINB/CN0/RA4	
11	AN19/U1TX/CTED1/INT0/CN23/RB7	AN19/U1TX/IC1/OC1A/CTED1/INT0/CN23/RB7
12	AN20/SCL1/U1CTS/OC1B/CTED10/CN22/RB8	
13	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/CLC10/CTED4/CN2	1/RB9
14	IC1/OC1A/INT2/CN8/RA6	VCAP OR VDDCORE
15	AN12/HLVDIN/SCK1/OC1C/CTED2/CN14/RB12	AN12/HLVDIN/SCK1/OC1C/CTED2/INT2/CN14/RB12
16	AN11/SDO1/OCFB/OC1D/CTPLS/CN13/RB13	
17	CVREF/AN10/SDI1/C1OUT/OCFA/CTED5/INT1/CN12/RB14	
18	AN9/REFO/SS1/TCKIA/CTED6/CN11/RB15	
19	Vss/AVss	
20	Vdd/AVdd	

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION

			F					FV						
			Pin Numb	er				Pin Numb	er					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description	
AN0	2	2	27	19	21	2	2	27	19	21	Ι	ANA	A/D Analog Inputs	
AN1	3	3	28	20	22	3	3	28	20	22	Ι	ANA	A/D Analog Inputs	
AN2	4	4	1	21	23	4	4	1	21	23	I	ANA	A/D Analog Inputs	
AN3	5	5	2	22	24	5	5	2	22	24	I	ANA	A/D Analog Inputs	
AN4	6	6	3	23	25	6	6	3	23	25	I	ANA	A/D Analog Inputs	
AN5	_	7	4	24	26	—	7	4	24	26	I	ANA	A/D Analog Inputs	
AN6	_	_	_	25	27	_		_	25	27	I	ANA	A/D Analog Inputs	
AN7	_	—	_	26	28	—		_	26	28	I	ANA	A/D Analog Inputs	
AN8	—	_	—	27	29	_	_	—	27	29	I	ANA	A/D Analog Inputs	
AN9	18	26	23	15	16	18	26	23	15	16	I	ANA	A/D Analog Inputs	
AN10	17	25	22	14	15	17	25	22	14	15	I	ANA	A/D Analog Inputs	
AN11	16	24	21	11	12	16	24	21	11	12	I	ANA	A/D Analog Inputs	
AN12	15	23	20	10	11	15	23	20	10	11	I	ANA	A/D Analog Inputs	
AN13	7	9	6	30	33	7	9	6	30	33	I	ANA	A/D Analog Inputs	
AN14	8	10	7	31	34	8	10	7	31	34	I	ANA	A/D Analog Inputs	
AN15	9	11	8	33	36	9	11	8	33	36	I	ANA	A/D Analog Inputs	
AN16	10	12	9	34	37	10	12	9	34	37	I	ANA	A/D Analog Inputs	
AN17	_	14	11	41	45	—	14	11	41	45	I	ANA	A/D Analog Inputs	
AN18	_	15	12	42	46	—	15	12	42	46	I	ANA	A/D Analog Inputs	
AN19	11	16	13	43	47	11	16	13	43	47	I	ANA	A/D Analog Inputs	
AN20	12	17	14	44	48	12	17	14	44	48	I	ANA	A/D Analog Inputs	
AN21	13	18	15	1	1	13	18	15	1	1	I	ANA	A/D Analog Inputs	
ASCL1	_	15	12	42	46	_	15	12	42	46	I/O	I ² C™	Alternate I2C1 Clock Input/Output	
ASDA1	_	14	11	41	45	—	14	11	41	45	I/O	l ² C	Alternate I2C1 Data Input/Output	
AVDD	20	28	25	17	18	20	28	25	17	18	Р	_	A/D Supply Pins	
AVss	19	27	24	16	17	19	27	24	16	17	Р	—	A/D Supply Pins	
C1INA	8	7	4	24	26	8	7	4	24	26	Ι	ANA	Comparator 1 Input A (+)	
C1INB	7	6	3	23	25	7	6	3	23	25	Ι	ANA	Comparator 1 Input B (-)	
C1INC	5	5	2	22	24	5	5	2	22	24	1	ANA	Comparator 1 Input C (+)	
C1IND	4	4	1	21	23	4	4	1	21	23	1	ANA	Comparator 1 Input D (-)	

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

DS30003030B-page 20

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

									,				
			F					FV					
			Pin Numb	er			I	Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	1/0	Buffer	Description
CTED1	11	20	17	7	7	11	2	27	19	21	I	ST	CTMU Trigger Edge Inputs
CTED2	15	23	20	10	11	15	23	20	10	11	I	ST	CTMU Trigger Edge Inputs
CTED3	_	19	16	6	6	_	19	16	6	6	I	ST	CTMU Trigger Edge Inputs
CTED4	13	18	15	1	1	13	18	15	1	1	I	ST	CTMU Trigger Edge Inputs
CTED5	17	25	22	14	15	17	25	22	14	15	I	ST	CTMU Trigger Edge Inputs
CTED6	18	26	23	15	16	18	26	23	15	16	I	ST	CTMU Trigger Edge Inputs
CTED7	—	—	_	5	5	—		—	5	5	I	ST	CTMU Trigger Edge Inputs
CTED8	—	—	_	13	14	—		_	13	14	I	ST	CTMU Trigger Edge Inputs
CTED9	_	22	19	9	10	_	22	19	9	10	I	ST	CTMU Trigger Edge Inputs
CTED10	12	17	14	44	48	12	17	14	44	48	I	ST	CTMU Trigger Edge Inputs
CTED11	_	21	18	8	9	_	21	18	8	9	I	ST	CTMU Trigger Edge Inputs
CTED12	5	5	2	22	24	5	5	2	22	24	Ι	ST	CTMU Trigger Edge Inputs
CTED13	6	6	3	23	25	6	6	3	23	25	Ι	ST	CTMU Trigger Edge Inputs
CTPLS	16	24	21	11	12	16	24	21	11	12	0	_	CTMU Pulse Output
CVREF	17	25	22	14	15	17	25	22	14	15	0	ANA	Comparator Voltage Reference Output
CVREF+	2	2	27	19	21	2	2	27	19	21	I	ANA	Comparator Voltage Reference Positive Input
CVREF-	3	3	28	20	22	3	3	28	20	22	I	ANA	Comparator Voltage Reference Negative Input
DAC1OUT	_	23	20	10	11	_	23	20	10	11	0	ANA	DAC1 Output
DAC1REF+	—	2	27	19	21	—	2	27	19	21	I	ANA	DAC1 Positive Voltage Reference Input
DAC2OUT	—	25	22	14	15	—	25	22	14	15	0	ANA	DAC2 Output
DAC2REF+	—	26	23	15	16	—	26	23	15	16	I	ANA	DAC2 Positive Voltage Reference Input
HLVDIN	15	23	20	10	11	15	23	20	10	11	I	ANA	External High/Low-Voltage Detect Input
IC1	14	19	16	6	6	11	19	16	6	6	I	ST	MCCP1 Input Capture Input
IC2	13	18	15	1	1	13	18	15	1	1	I	ST	MCCP2 Input Capture Input
IC3	—	23	20	13	14	—	23	20	13	14	I	ST	MCCP3 Input Capture Input
IC4	—	14	11	5	5	—	14	11	5	5	I	ST	SCCP4 Input Capture Input
IC5	—	15	12	12	13	—	15	12	12	13	I	ST	SCCP5 Input Capture Input
INT0	11	16	13	43	47	11	16	13	43	47	Ι	ST	External Interrupt 0 Input
INT1	17	25	22	14	15	17	25	22	14	15	1	ST	External Interrupt 1 Input
INT2	14	20	17	7	7	15	23	20	10	11	I	ST	External Interrupt 2 Input

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

NOTES:

TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address								
Access Type	Space	<23>	<22:16>	Program Space Address 16> <15> <14:1> PC<22:1> xxxx xxxx xxxx xxxx > Data EA<15:0> xxxx xxxx xxxx xxxx > Data EA<15:0> xxxx xxxx xxxx xxxx > Data EA<15:0> xxxx xxxx xxxx xxxx /PAG<7:0>(2) Data EA<14:0>(2) xxx xxxx xxxx xxxx	<0>					
Instruction Access	User	0		PC<22:1> 0						
(Code Execution)			0xx xxxx x	xxxx xxx0						
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>						
(Byte/Word Read/Write)		02	xxx xxxx	xxxx xxxx xxxx xxxx						
	Configuration	TB	LPAG<7:0>	Data EA<15:0>						
		1:	xxx xxxx	xxxx xxxx xxxx xxxx						
Program Space Visibility	User	0	PSVPAG<7:	0>(2) Data EA<14:0>(1)						
(Block Remap/Read)		0	XXXX XXX	κx	x xxx xxxx xxxx xxxx					

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on the PIC24F16KM family.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

6.4.3 READING THE DATA EEPROM

To read a word from data EEPROM, the Table Read instruction is used. Since the EEPROM array is only 16 bits wide, only the TBLRDL instruction is needed. The read operation is performed by loading TBLPAG and WREG with the address of the EEPROM location, followed by a TBLRDL instruction.

A typical read sequence, using the Table Pointer management (builtin_tblpage and builtin_tbloffset) and Table Read (builtin_tblrd1) procedures from the C30 compiler library, is provided in Example 6-5.

Program Space Visibility (PSV) can also be used to read locations in the data EEPROM.

EXAMPLE 6-5: READING THE DATA EEPROM USING THE TBLRD COMMAND

<pre>intattribute ((space(eedata))) eeData = 0x1234;</pre>	
int data;	// Data read from EEPROM
/*	
The variable eeData must be a Global variable declared	d outside of any method
the code following this comment can be written inside	the method that will execute the read
*/	
unsigned int offset;	
// Set up a pointer to the EEPROM location to be e	erased
<pre>TBLPAG =builtin_tblpage(&eeData);</pre>	// Initialize EE Data page pointer
offset =builtin_tbloffset(&eeData);	// Initizlize lower word of address
<pre>data =builtin_tblrdl(offset);</pre>	// Write EEPROM data to write latch

7.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer (OST) has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

7.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSCx bits in the Flash Configuration Word (FOSCSEL<2:0>); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

7.4 Brown-out Reset (BOR)

The PIC24FXXXXX family devices implement a BOR circuit, which provides the user several configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits (FPOR<6:5,1:0>). There are a total of four BOR configurations, which are provided in Table 7-3.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below the set threshold point will reset the device. The chip will remain in BOR until VDD rises above the threshold.

If the Power-up Timer is enabled, it will be invoked after VDD rises above the threshold. Then, it will keep the chip in Reset for an additional time delay, TPWRT, if VDD drops below the threshold while the Power-up Timer is running. The chip goes back into a BOR and the Power-up Timer will be initialized. Once VDD rises above the threshold, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the Brown-out Reset does not automatically enable the PWRT.

7.4.1 LOW-POWER BOR (LPBOR)

The Low-Power BOR is an alternate setting for the BOR, designed to consume minimal power. In LPBOR mode, BORV<1:0> (FPOR<6:5>) = 00. The BOR trip point is approximately 2.0V. Due to the low current consumption, the accuracy of the LPBOR mode can vary.

Unlike the other BOR modes, LPBOR mode will not cause a device Reset when VDD drops below the trip point. Instead, it re-arms the POR circuit to ensure that the device will reset properly in the event that VDD continues to drop below the minimum operating voltage.

The device will continue to execute code when VDD is below the level of the LPBOR trip point. A device that requires falling edge BOR protection to prevent code from improperly executing should use one of the other BOR voltage settings.

REGISTER 8-16: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
DAC2IE	DAC1IE	CTMUIE	_	_		_	HLVDIE
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
	—	—	—	—	U2ERIE	U1ERIE	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	DAC2IE: Digi	ital-to-Analog C	onverter 2 Inte	errupt Enable bi	it		
	1 = Interrupt i	request is enabl	ed				
	0 = Interrupt i	request is not er	nabled				
bit 14	DAC1IE: Digi	ital-to-Analog C	onverter 1 Inte	errupt Enable bi	it		
	1 = Interrupt i	request is enabl	ed				
h:+ 40							
Dit 13		NU Interrupt En	able bit				
	$\perp = \text{Interrupt}$	request is enabl	eo habled				
bit 12-9	Unimplemen	ited: Read as '()'				
bit 8		h/l ow-Voltage C) etect Interrun	t Enable bit			
bit 0	1 = Interrunt i	request is enabl	ed				
	0 = Interrupt i	request is not er	nabled				
bit 7-3	Unimplemen	ted: Read as '0)'				
bit 2	U2ERIE: UAF	RT2 Error Interr	upt Enable bit				
	1 = Interrupt i	request is enabl	ed				
	0 = Interrupt i	request is not er	nabled				
bit 1	U1ERIE: UAF	RT1 Error Interro	upt Enable bit				
	1 = Interrupt	request is enabl	ed				
	0 = Interrupt i	request is not ei	nabled				
bit 0	Unimplemen	ted: Read as '0)'				

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	NVMIP2	NVMIP1	NVMIP0	—	—	—	_
bit 15							bit 8
	D 444 4	D 444 0	D #44.0		D 444 4	D 444 0	D 444 0
0-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U11XIP1	
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	NVMIP<2:0>:	NVM Interrup	t Priority bits				
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11-7	Unimplemen	ted: Read as '	0'				
bit 6-4	AD1IP<2:0>:	A/D Conversion	on Complete In	terrupt Priority	bits		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	U1TXIP<2:0>	UART1 Trans	smitter Interrup	ot Priority bits			
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	• 001 - Informu	nt is Driarity 1					
	001 - interrup	puis Fliulity I of source is dis	abled				

REGISTER 8-22: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	_			_	U2ERIP2	U2ERIP1	U2ERIP0
bit 15	·				•		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	U1ERIP2	U1ERIP1	U1ERIP0	_			—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-11	Unimplemen	ted: Read as '	o'				
bit 10-8	U2ERIP<2:0>	: UART2 Error	Interrupt Prior	ity bits			
	111 = Interru	pt is Priority 7(highest priority	r interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	כ'				
bit 6-4	U1ERIP<2:0>	: UART1 Error	Interrupt Prior	ity bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	pt is Priority 1	ablad				
h:+ 0 0		pt source is dis					
DIT 3-0	Unimplemen	tea: Read as ').				

REGISTER 8-30: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the I/O ports, refer to the *"PIC24F Family Reference Manual"*, *"I/O Ports with* **Peripheral Pin Select (PPS)"** (DS39711). Note that the PIC24FV16KM204 family devices do not support Peripheral Pin Select features.

All of the device pins (except VDD and VSS) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the Data Direction register bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Data Latch register (LATx), read the latch. Writes to the latch, write the latch. Reads from the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

16.3 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value, loaded into the lower half of RCFGCAL, is multiplied by four and will be either added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- 3. a) If the oscillator is faster than ideal (negative result from Step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from Step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

EQUATION 16-1:

(Ideal Frequency [†] – Measured Frequency) *								
60 = Clocks per Minute								
† Ideal Frequency = 32,768 Hz								

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse, except when SECONDS = 00, 15, 30 or 45. This is due to the auto-adjust of the RTCC at 15 second intervals.

Note: It is up to the user to include, in the error value, the initial error of the crystal: drift due to temperature and drift due to crystal aging.

16.4 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options are available

16.4.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 16-2, the interval selection of the alarm is configured through the AMASKx bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPTx bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled, and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

16.4.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a Trigger clock to other peripherals.

Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

FIGURE 19-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
ADON	_	ADSIDL	_	_	MODE12	FORM1	FORM0		
bit 15							bit 8		
L									
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC		
SSRC3	SSRC2	SSRC1	SSRC0		ASAM	SAMP	DONE		
bit 7						•	bit 0		
Legend:		C = Clearable	bit	U = Unimplem	nented bit, read	l as '0'			
R = Readable	e bit	W = Writable b	bit	HSC = Hardw	are Settable/C	learable bit			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	ADON: A/D O 1 = A/D Conv 0 = A/D Conv	perating Mode verter is operation verter is off	bit ng						
bit 14	Unimplement	ted: Read as 'o	,						
bit 13	ADSIDL: A/D	Stop in Idle Mo	de bit						
	1 = Discontin 0 = Continues	ues module op s module opera	eration when o tion in Idle mo	device enters Id	le mode				
bit 12-11	Unimplement	ted: Read as '0	,						
bit 10	MODE12: 12-	Bit A/D Operati	on Mode bit						
	1 = 12-bit A/E 0 = 10-bit A/E) operation) operation							
bit 9-8	FORM<1:0>:	Data Output Fo	ormat bits (see	the following for	ormats)				
	 11 = Fractiona 10 = Absolute 01 = Decimal 00 = Absolute 	al result, signed fractional resu result, signed, decimal result	I, left justified It, unsigned, le right justified , unsigned, rig	eft justified ht justified					
bit 7-4	SSRC<3:0>: 3	Sample Clock S	Source Select	bits					
	1111 = Reser	ved							
	•								
	•								
	 1101 = Reserved 1100 = CLC2 event ends sampling and starts conversion 1011 = SCCP4 Compare Event (CCP4IF) ends sampling and starts conversion 1010 = MCCP3 Compare Event (CCP3IF) ends sampling and starts conversion 1001 = MCCP2 Compare Event (CCP2IF) ends sampling and starts conversion 1000 = CLC1 event ends sampling and starts conversion 0111 = Internal counter ends sampling and starts conversion (auto-convert) 0110 = TMR1 Sleep mode Trigger event ends sampling and starts conversion 0101 = TMR1 event ends sampling and starts conversion 0100 = CTMU event ends sampling and starts conversion 0111 = SCCP5 Compare Event (CCP5IF) ends sampling and starts conversion 0011 = MCCP1 Compare Event (CCP1IF) ends sampling and starts conversion 0010 = INT0 event ends sampling and starts conversion 								

REGISTER 19-1: AD1CON1: A/DA/D CONTROL REGISTER 1

Note 1: This version of the TMR1 Trigger allows A/D conversions to be triggered from TMR1 while the device is operating in Sleep mode. The SSRC<3:0> = 0101 option allows conversions to be triggered in Run or Idle modes only.

REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	_	_		_		—	_		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-8	Unimplemented: Read as '0'								
bit 7	CVREN: Comparator Voltage Reference Enable bit								
	1 = CVREF circuit is powered on								
		rcuit is powered	d down						
bit 6	CVROE: Comparator VREF Output Enable bit								
	1 = CVREF voltage level is output on the CVREF pin								
bit 5	CVRSS: Comparator VREE Source Selection bit								
	1 = Comparator reference source. CVRSRC = VREF+ – VREF-								
	0 = Comparator reference source, CVRsRc = AVDD – AVss								
bit 4-0	CVR<4:0>: Comparator VREF Value Selection $0 \le CVR<4:0> \le 31$ bits								
	When CVRSS = 1:								
	$CVREF = (VREF-) + (CVR<4:0>/32) \cdot (VREF+ - VREF-)$								
	When CVRSS	S = 0:	N22) . (A)/DD						
	$\nabla V REF = (AV 55) + (CV R 4.0 - 132) + (AV DD = AV 55)$								

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
300	TRESP	Response Time ^{*(1)}	_	150	400	ns	
301	Тмс2оv	Comparator Mode Change to Output Valid [*]	—	—	10	μS	

TABLE 27-26: COMPARATOR TIMING REQUIREMENTS

Parameters are characterized but not tested.

*

Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 27-27: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time ⁽¹⁾			10	μS	

Note 1: Settling time is measured while CVRSS = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

FIGURE 27-10: CAPTURE/COMPARE/PWM TIMINGS (MCCPx, SCCPx MODULES)

TABLE 27-28: CAPTURE/COMPARE/PWM REQUIREMENTS (MCCPx, SCCPx MODULES)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
50	TCLKL	CCPx Time Base Clock Source Low Time	TCY/2		ns	
51	ТсікН	CCPx Time Base Clock Source High Time	TCY/2		ns	
52	TCLK	CCPx Time Base Clock Source Period	Тсү		ns	
53	TccL	CCPx Capture or Gating Input Low Time	TCLK	—	ns	
54	ТссН	CCPx Capture or Gating Input High Time	TCLK	_	ns	
55	TCCP	CCPx Capture or Gating Input Period	2 * Tclk/N	—	ns	N = Prescale Value (1, 4 or 16)

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820