

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km104-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-24: PAD CONFIGURATION REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	2FCh	_	—	_	_	SDO2DIS ⁽¹⁾	SCK2DIS ⁽¹⁾	SDO1DIS	SCK1DIS	_	_	_	_	_	_	_	_	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These bits are not available on the PIC24F(V)08KM101 device, read as '0'.

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator Configuration".

TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC<2:0> Configuration bits
BOR	(FOSCSEL<2:0>)
MCLR	COSC<2:0> Control bits
WDTO	(OSCCON<14:12>)
SWR	

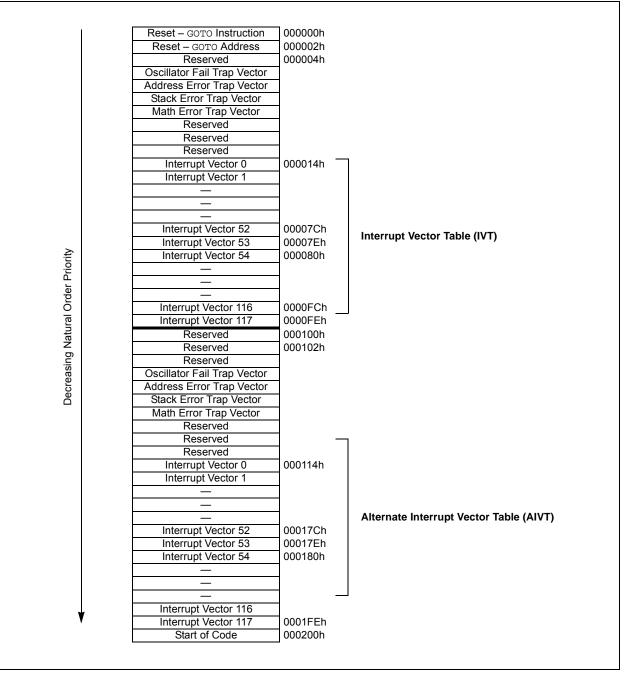
7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT		1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	Тьоск	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Tost	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	TOST + TLOCK	1, 2, 4, 5
BOR	EC	TPWRT	—	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	Тьоск	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Тоѕт	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	_	_	None


TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if the Power-up Timer is enabled; otherwise, it is zero.
- **3:** TFRC and TLPRC = RC Oscillator start-up times.
- **4:** TLOCK = PLL Lock time.
- **5:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.
- 6: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 27.0 "Electrical Characteristics".

FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLE

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	DAC2IP2	DAC2IP1	DAC2IP0		DAC1IP2	DAC1IP1	DAC1IP0					
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
_	CTMUIP2	CTMUIP1	CTMUIP0	_		_	_					
bit 7							bit (
Legend:												
Legena. R = Readab	le hit	W = Writable	hit	II = Unimple	mented bit, read	las 'O'						
-n = Value a			on									
	at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown											
bit 15	Unimplemen	ted: Read as ')'									
bit 14-12	DAC2IP<2:0>: Digital-to-Analog Converter 2 Event Interrupt Priority bits											
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•		ingricor priority	(interrupt)								
	•											
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled									
bit 11	Unimplemen	ted: Read as ')'									
bit 10-8	DAC1IP<2:0>: Digital-to-Analog Converter 1 Event Interrupt Priority bits											
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 - Interru	nt is Priority 1										
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled											
bit 7	-	ted: Read as '										
bit 6-4	-	>: CTMU Interr		s								
		pt is Priority 7 (
	•											
	•											
	•											
	001 = Interru	pt is Priority 1 pt source is dis	ahlad									
hit 2 0												
bit 3-0	ommplemen	ted: Read as '	J									

REGISTER 8-32: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
	—	—		—		_						
bit 15							bit 8					
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0					
SMP	CKE ⁽¹⁾	D/Ā	Р	S	R/W	UA	BF					
bit 7							bit (
Legend:												
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit. rea	d as '0'						
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown					
bit 15-8	Unimplemen	ted: Read as '0)'									
bit 7	SMP: Sample	e bit										
	SPI Master m											
	1 = Input data is sampled at the end of data output time 0 = Input data is sampled at the middle of data output time											
	 Input data is sampled at the middle of data output time SPI Slave mode: 											
		de: cleared when \$	SPI is used in	Slave mode								
bit 6		ck Select bit ⁽¹⁾										
	1 = Transmit o	occurs on trans	ition from acti	ve to Idle clock s	state							
	0 = Transmit	occurs on trans	ition from Idle	to active clock s	state							
bit 5	D/A: Data/Ad											
	Used in I ² C™	mode only.										
bit 4	P: Stop bit											
		node only. This	bit is cleared v	when the MSSP:	x module is di	sabled; SSPEN	l bit is cleared					
bit 3	S: Start bit											
	Used in I ² C m	•										
bit 2		rite Information	bit									
	Used in I ² C m											
bit 1	UA: Update A											
	Used in I ² C m	,										
bit 0	BF: Buffer Fu											
		s complete, SS s not complete,		emntv								
		-										
	plarity of clock s	tata ia aat by th										

REGISTER 14-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾
UARTEN	—	USIDL	IREN ⁽¹⁾	RTSMD	_	UEN1	UEN0
bit 15							bit 8
R/C-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7	LIDAON		UIXIIIV	BRGH	TDSELT	T DOLLO	bit 0
Legend:		C = Clearable			are Clearable bi		
R = Readabl		W = Writable	oit		mented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	UARTEN: UA	ARTx Enable bit					
		s enabled; all U		e controlled by l	JARTx. as defir	ned by UEN<1:	0>
		s disabled; all L					
bit 14	Unimplemen	ted: Read as 'd)'				
bit 13	USIDL: UAR	Tx Stop in Idle N	/lode bit				
		nues module op			ers Idle mode		
		s module opera					
bit 12		Encoder and D					
		oder and decoo oder and decoo					
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bi	t			
		in is in Simplex in is in Flow Co					
bit 10	Unimplemen	ted: Read as 'd)'				
bit 9-8	UEN<1:0>: U	IARTx Enable b	its ⁽²⁾				
	10 = UxTX, U 01 = UxTX, U	JxRX and UxBC JxRX, UxCTS a JxRX and UxRT nd UxRX pins are	nd UxRTS pin S pins are en	is are enabled a abled <u>and us</u> ec	an <u>d used</u> I; <u>UxCTS</u> pin is	controlled by p	ort latches
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	Enable bit		
	cleared in	vill continue to n hardware on t	•		rupt is generate	ed on the fallin	ig edge, bit is
hit C		-up is enabled	Mada Salaat	hit			
bit 6		ARTx Loopback Loopback mode		DIL			
		k mode is disab					
bit 5	-	o-Baud Enable					
	cleared in	baud rate meas n hardware upo	n completion		er – requires re	ception of a Sy	nc field (55h);
		e measurement		•			
bit 4		RTx Receive Po	plarity Inversio	n dit			
	1 = UxRX IdI 0 = UxRX IdI						
Note 1: Th	nis feature is is	only available fo	or the 16x BR	G mode (BRGF	I = 0).		
		, donondo on th		-			

REGISTER 15-1: UXMODE: UARTX MODE REGISTER

2: The bit availability depends on the pin availability.

REGISTER 15-3: UXTXREG: UARTX TRANSMIT REGISTER

U-x	U-x	U-x	U-x	U-x	U-x	U-x	W-x
—	—	—	—	—	_	—	UTX8
bit 15							bit 8

W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-9 Unimplemented: Read as '0'

bit 8 **UTX8:** Data of the Transmitted Character bit (in 9-bit mode)

bit 7-0 UTX<7:0>: Data of the Transmitted Character bits

REGISTER 15-4: UxRXREG: UARTx RECEIVE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
—	—	—	—	—	—	_	URX8
bit 15							bit 8

| R-0, HSC |
|----------|----------|----------|----------|----------|----------|----------|----------|
| URX7 | URX6 | URX5 | URX4 | URX3 | URX2 | URX1 | URX0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-9 Unimplemented: Read as '0'

bit 8 URX8: Data of the Received Character bit (in 9-bit mode)

bit 7-0 URX<7:0>: Data of the Received Character bits

16.2.6 ALRMVAL REGISTER MAPPINGS

REGISTER 16-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8
11.0		D/1/		D/14/			
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
<u> </u>		DAYTEN1	DAYTEN0	R/W-X DAYONE3	R/W-X DAYONE2	DAYONE1	R/W-x DAYONE0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 bit 12	Unimplemented: Read as '0' MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 16-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

17.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Source Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

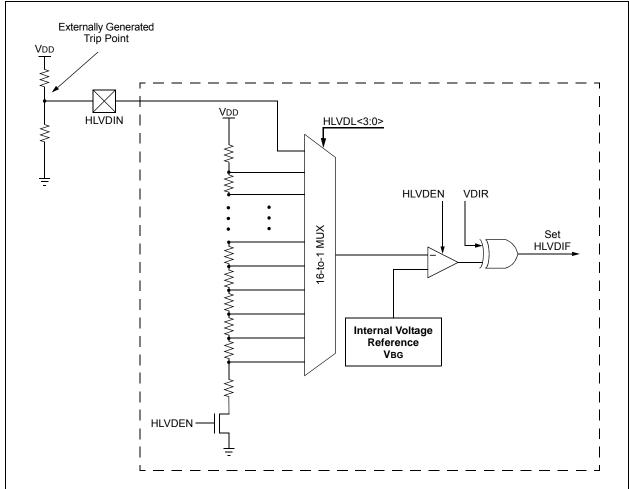
The CLCx Gate Logic Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

REGISTER 17-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

bit 14-12 U bit 11 I bit 10 I bit 9-8 U bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit		U-0 — R/W-0 MODE1	U-0 bit 8 R/W-0 MODE0 bit 0						
bit 15 R-0 LCOE bit 7 Legend: R = Readable b -n = Value at PC bit 15 bit 14-12 bit 14-12 bit 11 bit 10 bit 9-8 bit 7	LCOUT bit OR LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	LCPOL W = Writable I '1' = Bit is set Enable bit enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	bit xing input sign s logic zero c o' nterrupt Enabl ed when a risi	U-0 — U = Unimpler '0' = Bit is cle nals putputs	R/W-0 MODE2 nented bit, read	MODE1	R/W-0 MODE0 bit 0						
R-0 LCOE bit 7 Legend: R = Readable b -n = Value at PO bit 15 bit 14-12 bit 14-12 bit 11 bit 10 bit 10 bit 9-8 bit 7	LCOUT bit OR LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	LCPOL W = Writable I '1' = Bit is set Enable bit enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	bit xing input sign s logic zero c o' nterrupt Enabl ed when a risi	U = Unimpler '0' = Bit is cle nals putputs	MODE2	MODE1	R/W-0 MODE0 bit 0						
LCOE bit 7 Legend: R = Readable b -n = Value at PC bit 15 L bit 15 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCOUT bit OR LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	LCPOL W = Writable I '1' = Bit is set Enable bit enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	bit xing input sign s logic zero c o' nterrupt Enabl ed when a risi	U = Unimpler '0' = Bit is cle nals putputs	MODE2	MODE1	MODE0 bit 0						
LCOE bit 7 Legend: R = Readable b -n = Value at PC bit 15 L bit 15 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCOUT bit OR LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	LCPOL W = Writable I '1' = Bit is set Enable bit enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	bit xing input sign s logic zero c o' nterrupt Enabl ed when a risi	U = Unimpler '0' = Bit is cle nals putputs	MODE2	MODE1	MODE0 bit 0						
bit 7 Legend: R = Readable b -n = Value at PC bit 15 bit 14-12 bit 14-12 bit 10 bit 10 bit 9-8 bit 7	bit OR LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	W = Writable I '1' = Bit is set Enable bit enabled and mit disabled and hance ted: Read as '0 Positive Edge In will be generated will not be generated	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit	nented bit, read	d as '0'	bit 0						
Legend: R = Readable b -n = Value at PC bit 15 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	'1' = Bit is set Enable bit enabled and mit disabled and ha nted: Read as '0 Positive Edge Ir will be generate will not be gene	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit	ared								
R = Readable b -n = Value at PC bit 15 L bit 14-12 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	'1' = Bit is set Enable bit enabled and mit disabled and ha nted: Read as '0 Positive Edge Ir will be generate will not be gene	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit	ared		ıown						
R = Readable b -n = Value at PC bit 15 L bit 14-12 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	'1' = Bit is set Enable bit enabled and mit disabled and ha nted: Read as '0 Positive Edge Ir will be generate will not be gene	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit	ared		ıown						
-n = Value at P(bit 15 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	'1' = Bit is set Enable bit enabled and mit disabled and ha nted: Read as '0 Positive Edge Ir will be generate will not be gene	xing input sign is logic zero c)' iterrupt Enabl ed when a risi	'0' = Bit is cle nals putputs le bit	ared		nown						
bit 15 L bit 14-12 L bit 11 L bit 10 L bit 9-8 L bit 7 L	LCEN: CLCx 1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	Enable bit enabled and mi disabled and ha ated: Read as '0 Positive Edge Ir will be generate will not be gene	ns logic zero c)' nterrupt Enabl ed when a risi	nals outputs e bit		x = Bit is unkr	nown						
bit 14-12 U bit 11 I bit 10 I bit 9-8 U bit 7 L	1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	ns logic zero c)' nterrupt Enabl ed when a risi	outputs e bit	on LCOUT								
bit 14-12 U bit 11 I bit 10 I bit 9-8 U bit 7 L	1 = CLCx is 0 = CLCx is Unimplement INTP: CLCx I 1 = Interrupt 0 = Interrupt	enabled and mi disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	ns logic zero c)' nterrupt Enabl ed when a risi	outputs e bit	on LCOUT								
bit 14-12 U bit 11 I bit 10 I bit 9-8 U bit 7 L	0 = CLCx is 0 Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	disabled and ha ited: Read as '0 Positive Edge Ir will be generate will not be gene	ns logic zero c)' nterrupt Enabl ed when a risi	outputs e bit	on LCOUT								
bit 14-12 U bit 11 I bit 10 I bit 10 I bit 9-8 U bit 7 I	Unimplemen INTP: CLCx I 1 = Interrupt 0 = Interrupt	nted: Read as '0 Positive Edge Ir will be generate will not be gene)' hterrupt Enabl ed when a risi	e bit	on LCOUT								
bit 11	INTP: CLCx I 1 = Interrupt 0 = Interrupt	Positive Edge Ir will be generate will not be gene	nterrupt Enabl ed when a risi		on LCOUT								
bit 10 I bit 9-8 I bit 7 I	1 = Interrupt 0 = Interrupt	will be generate will not be gene	ed when a risi		on LCOUT								
bit 10 I bit 9-8 U bit 7 I	0 = Interrupt	will not be gene		ing eage occurs	ULCOOL		INTP: CLCx Positive Edge Interrupt Enable bit 1 = Interrupt will be generated when a rising edge occurs on LCOUT						
bit 9-8	INTN: CLCx		 0 = Interrupt will not be generated 										
bit 9-8	INTN: CLCx Negative Edge Interrupt Enable bit												
bit 9-8 U bit 7 L	1 = Interrupt will be generated when a falling edge occurs on LCOUT												
bit 7 L	0 = Interrupt will not be generated												
	Unimplemented: Read as '0'												
	LCOE: CLCx Port Enable bit												
	1 = CLCx port pin output is enabled												
	0 = CLCx port pin output is disabled												
	LCOUT: CLCx Data Output Status bit												
	1 = CLCx output high 0 = CLCx output low												
bit 5 L	LCPOL: CLC	x Output Polari	ty Control bit										
		out of the module											
	0 = The outr	ut of the medul		ed									
bit 4-3 L	0 = The output of the module is not inverted Unimplemented: Read as '0'												

REGISTER 17-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

- bit 6-4 DS2<2:0>: Data Selection MUX 2 Signal Selection bits
 - 111 = MCCP2 Compare Event Flag (CCP2IF)
 - 110 = MCCP1 Compare Event Flag (CCP1IF)
 - 101 = Digital logic low
 - 100 = A/D end of conversion event
 - For CLC1:
 - 011 = UART1 TX
 - 010 = Comparator 1 output
 - 001 = CLC2 output
 - 000 = CLCINB I/O pin
 - For CLC2:
 - 011 = UART2 TX
 - 010 = Comparator 1 output
 - 001 = CLC1 output
 - 000 = CLCINB I/O pin
- bit 3 Unimplemented: Read as '0'
- bit 2-0 DS1<2:0>: Data Selection MUX 1 Signal Selection bits
 - 111 = SCCP5 Compare Event Flag (CCP5IF)
 - 110 = SCCP4 Compare Event Flag (CCP4IF)
 - 101 = Digital logic low
 - 100 = 8 MHz FRC clock source
 - 011 = LPRC clock source
 - 010 = SOSC clock source
 - 001 = System clock (TCY)
 - 000 = CLCINA I/O pin


18.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference
	source. For more information on the High/Low-Voltage Detect, refer to the "PIC24F Family Reference Manual", "High-Level Integration with
	Programmable High/Low-Voltage Detect (HLVD)" (DS39725).

The High/Low-Voltage Detect module (HLVD) is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The HLVD Control register (see Register 18-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

FIGURE 18-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

19.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter with Threshold Detect, refer to the "PIC24F Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739).

The PIC24F 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 100 ksps
- Up to 32 Analog Input Channels (internal and external)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed-Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in some PIC24 devices. Both modules are Successive Approximation Register (SAR) converters at their cores, surrounded by a range of hardware features for flexible configuration. This version of the module extends functionality by providing 12-bit resolution, a wider range of automatic sampling options and tighter integration with other analog modules, such as the CTMU, and a configurable results buffer. There is a legacy 10-bit mode on this A/D to allow the option to run with lower resolution in order to obtain higher throughput. This module also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results.

A simplified block diagram for the module is illustrated in Figure 19-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - a) Configure the port pins as analog inputs and/or select band gap reference inputs (ANSx registers).
 - b) Select the voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - e) Configure the MODE12 bit to select A/D resolution (AD1CON1<10>).
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - g) Select the interrupt rate (AD1CON2<6:2>).
 - h) Turn on the A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

To perform an A/D sample and conversion using Threshold Detect scanning:

- 1. Configure the A/D module:
 - a) Configure the port pins as analog inputs (ANSx registers).
 - b) Select the voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - e) Configure the MODE12 bit to select A/D resolution (AD1CON1<10>).
 - f) Select how the conversion results are presented in the buffer (AD1CON1<9:8>).
 - g) Select the interrupt rate (AD1CON2<6:2>).

- 2. Configure the threshold compare channels:
 - a) Enable auto-scan; set the ASEN bit (AD1CON5<15>).
 - b) Select the Compare mode, "Greater Than, Less Than or Windowed"; set the CMx bits (AD1CON5<1:0>).
 - c) Select the threshold compare channels to be scanned (AD1CSSH, AD1CSSL).
 - d) If the CTMU is required as a current source for a threshold compare channel, enable the corresponding CTMU channel (AD1CTMENH, AD1CTMENL).
 - e) Write the threshold values into the corresponding ADC1BUFx registers.
 - f) Turn on the A/D module (AD1CON1<15>).
- Note: If performing an A/D sample and conversion, using Threshold Detect in Sleep Mode, the RC A/D clock source must be selected before entering into Sleep mode.
- 3. Configure the A/D interrupt (OPTIONAL):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

REGISTER 19-10: AD1CTMENH: CTMU ENABLE REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMEN23	CTMEN22	CTMEN21	CTMEN20 ⁽²⁾	CTMEN19 ⁽²⁾	CTMEN18	CTMEN17	CTMEN16
bit 7 bit (

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'.

bit 7-0 CTMEN<23:16>: CTMU Enabled During Conversion bits⁽²⁾ 1 = CTMU is enabled and connected to the selected channel during conversion 0 = CTMU is not connected to this channel

- **Note 1:** Unimplemented channels are read as '0'.
 - **2:** The CTMEN<20:19> bits are not implemented in 20-pin devices.

REGISTER 19-11: AD1CTMENL: CTMU ENABLE REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMEN15	CTMEN14	CTMEN13	CTMEN12	CTMEN11	CTMEN10	CTMEN9	CTMEN8 ^(2,3)
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMEN7 ^(2,3)	CTMEN6 ^(2,3)	CTMEN5 ⁽²⁾	CTMEN4	CTMEN3	CTMEN2	CTMEN1	CTMEN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CTMEN<15:0>: CTMU Enabled During Conversion bits^(2,3)

1 = CTMU is enabled and connected to the selected channel during conversion

0 = CTMU is not connected to this channel

- Note 1: Unimplemented channels are read as '0'.
 - 2: The CTMEN<8:5> bits are not implemented in 20-pin devices.
 - **3:** The CTMEN<8:6> bits are not implemented in 28-pin devices.

REGISTER 24-2: CTMUCON1H: CTMU CONTROL 1 HIGH REGISTER (CONTINUED)

- bit 6 EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 is programmed for a positive edge 0 = Edge 2 is programmed for a negative edge bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Edge 2 source is the Comparator 3 output 1110 = Edge 2 source is the Comparator 2 output 1101 = Edge 2 source is the Comparator 1 output 1100 = Unimplemented; do not use 1011 = Edge 2 source is CLC1 1010 = Edge 2 source is the MCCP2 Compare Event (CCP2IF) 1001 = Unimplemented; do not use 1000 = Edge 2 source is CTED13 0111 = Edge 2 source is CTED12 0110 = Edge 2 source is CTED11⁽²⁾ 0101 = Edge 2 source is CTED10 0100 = Edge 2 source is CTED9⁽²⁾ 0011 = Edge 2 source is CTED1 0010 = Edge 2 source is CTED2 0001 = Edge 2 source is the MCCP1 Compare Event (CCP1IF) 0000 = Edge 2 source is Timer1
- bit 1-0 Unimplemented: Read as '0'
- Note 1: Edge sources, CTED7 and CTED8, are not available on 28-pin and 20-pin devices.
 - 2: Edge sources, CTED3, CTED9 and CTED11, are not available on 20-pin devices.

REGISTER 25-2: FGS: GENERAL SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/C-1	R/C-1
_	—	—	—	—		GCP	GWRP
bit 7							bit 0

Legend:			
R = Readable bit	C = Clearable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

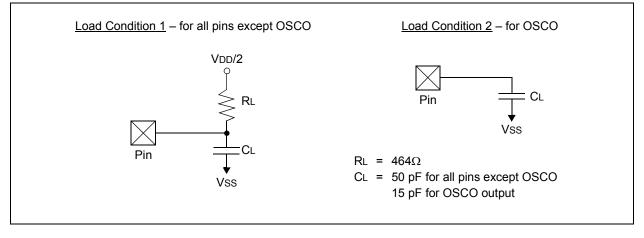
bit 7-2	Unimplemented: Read as '0'
bit 1	GCP: General Segment Code Flash Code Protection bit
	 = No protection 0 = Standard security is enabled
bit 0	GWRP: General Segment Code Flash Write Protection bit
	 1 = General Segment may be written 0 = General Segment is write-protected

REGISTER 25-3: FOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

R/P-1	R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1
IESO	LPRCSEL	SOSCSRC		_	FNOSC2	FNOSC1	FNOSC0
bit 7							bit 0

Legend:				
R = Read	able bit	P = Programmable bit	U = Unimplemented bit	, read as '0'
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknowr
bit 7	1 = Interr	ernal External Switchover bit al External Switchover mode is al External Switchover mode is		
bit 6	LPRCSE	L: Internal LPRC Oscillator Pov	wer Select bit	
	ما الأسام	Device w/Literly Alexander and a state		

- 1 = High-Power/High-Accuracy mode0 = Low-Power/Low-Accuracy mode
- bit 5 **SOSCSRC:** Secondary Oscillator Clock Source Configuration bit
 - 1 = SOSC analog crystal function is available on the SOSCI/SOSCO pins
 - 0 = SOSC crystal is disabled; digital SCLKI function is selected on the SOSCO pin
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 FNOSC<2:0>: Oscillator Selection bits
 - 000 = Fast RC Oscillator (FRC)
 - 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCDIV+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)
 - 011 = Primary Oscillator with PLL module (HS+PLL, EC+PLL)
 - 100 = Secondary Oscillator (SOSC)
 - 101 = Low-Power RC Oscillator (LPRC)
 - 110 = 500 kHz Low-Power FRC Oscillator with Divide-by-N (LPFRCDIV)
 - 111 = 8 MHz FRC Oscillator with Divide-by-N (FRCDIV)


27.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FV16KM204 family AC characteristics and timing parameters.

TABLE 27-18: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions	: 1.8V to 3.6V
AC CHARACTERISTICS	Operating temperature	-40°C \leq TA \leq +85°C for Industrial
AC CHARACTERISTICS		-40°C \leq TA \leq +125°C for Extended
	Operating voltage VDD range as de	escribed in Section 27.1 "DC Characteristics".

FIGURE 27-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 27-19: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_	—	15	pF	In XT and HS modes when External Clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In l ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHARACTERISTICS			Operating temperatu		: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Sym	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max		Units	Conditions	
OS50	Fplli	PLL Input Frequency Range	4	—	8	MHz	ECPLL, HSPLL modes, -40°C \leq TA \leq +85°C
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz	$-40^{\circ}C \le TA \le +85^{\circ}C$
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	1	2	ms	
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over 100 ms period

TABLE 27-21: PLL CLOCK TIMING SPECIFICATIONS

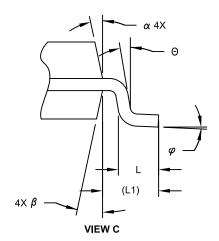
Note 1: These parameters are characterized but not tested in manufacturing.

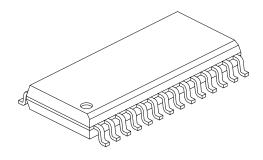
2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-22: INTERNAL RC OSCILLATOR ACCURACY

AC CHA	ARACTERISTICS		r d Opera ng temp	•	nditions	: 1.8V to 3.6V (PIC24F1 2.0V to 5.5V (PIC24FV -40°C \leq TA \leq +85°C fc -40°C \leq TA \leq +125°C	/16KM204) or Industrial		
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
F20	FRC @ 8 MHz ⁽¹⁾	-2		+2	%	+25°C	$\begin{array}{l} 3.0V \leq V \text{DD} \leq 3.6V, \mbox{ F device} \\ 3.2V \leq V \text{DD} \leq 5.5V, \mbox{ FV device} \end{array}$		
		-5	_	+5	%	$\label{eq:constraint} \begin{array}{c} -40^{\circ}C \leq T_A \leq +125^{\circ}C \\ 2.0V \leq VDD \leq 3.6V, \ F \ devic \\ 2.0V \leq VDD \leq 5.5V, \ FV \ dev \\ \end{array}$			
F21	LPRC @ 31 kHz ⁽²⁾	-15		+15	%	$-40^{\circ}C \le TA \le +125^{\circ}C$ $1.8V \le VDD \le 3.6V, F device$ $2.0V \le VDD \le 5.5V, FV devi$			

Note 1: The frequency is calibrated at +25°C and 3.3V. The OSCTUN bits can be used to compensate for temperature drift.


2: The change of LPRC frequency as VDD changes.

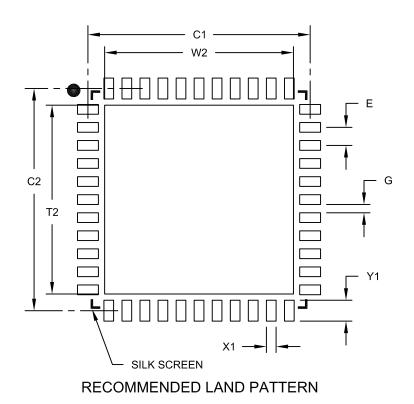

TABLE 27-23: INTERNAL RC OSCILLATOR SPECIFICATIONS

AC CHARACTERISTICS			$ \begin{array}{c} \mbox{Standard Operating Conditions: } 1.8V \ to \ 3.6V \ (PIC24F16KM204) \\ 2.0V \ to \ 5.5V \ (PIC24FV16KM204) \\ \mbox{Operating temperature} & -40^\circ C \le TA \le +85^\circ C \ for \ Industrial \\ -40^\circ C \le TA \le +125^\circ C \ for \ Extended \\ \end{array} $					
Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions	
	TFRC	FRC Start-up Time	—	5	_	μS		
	TLPRC	LPRC Start-up Time	—	70	—	μS		

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	Limits	MIN	NOM	MAX	
Number of Pins	N	28			
Pitch	е	1.27 BSC			
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	Е		0.65 BSC		
Optional Center Pad Width	W2			6.60	
Optional Center Pad Length	T2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	

G

0.25

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

Distance Between Pads

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B