

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km104-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: DEVICE FEATURES FOR THE PIC24F16KM104 FAMILY

Features	PIC24F16KM104	PIC24F16KM102	PIC24F08KM102	PIC24F08KM101
Operating Frequency		DC-3	2 MHz	
Program Memory (bytes)	16K	16K	8K	8K
Program Memory (instructions)	5632	5632	2816	2816
Data Memory (bytes)		10)24	
Data EEPROM Memory (bytes)		5	12	
Interrupt Sources (soft vectors/NMI traps)		25 (21/4)	
Voltage Range		1.8-	-3.6V	
I/O Ports	PORTA<11:0> PORTB<15:0> PORTC<9:0>	PORTA PORTB	<7:0> <15:0>	PORTA<6:0> PORTB<15:12,9:7, 4,2:0>
Total I/O Pins	38	24	1	18
Timers	(One 16-bit timer, t	wo MCCPs/SCC	5 Ps with up to tw	vo 16/32 timers each)
Capture/Compare/PWM modules MCCP SCCP			1	
Serial Communications MSSP UART			1	
Input Change Notification Interrupt	37	23	3	17
12-Bit Analog-to-Digital Module (input channels)	22	19	9	16
Analog Comparators			1	
8-Bit Digital-to-Analog Converters		-		
Operational Amplifiers		-		
Charge Time Measurement Unit (CTMU)		Y	<i>ï</i> es	
Real-Time Clock and Calendar (RTCC)		-		
Configurable Logic Cell (CLC)			1	
Resets (and delays)	POR, BOR, R REPEAT Instruction	ESET Instructior on, Hardware Tra (PWRT, OS	n, <mark>MCLR</mark> , WDT aps, Configura T, PLL Lock)	, Illegal Opcode, tion Word Mismatch
Instruction Set	76 Base Inst	tructions, Multiple	e Addressing N	lode Variations
Packages	44-Pin QFN/TQFP, 48-Pin UQFN	28-F SPDIP/SSOF	Pin P/SOIC/QFN	20-Pin SOIC/SSOP/PDIP

TABLE 4-3:CPU CORE REGISTERS MAP

IADLL	-т-Ј.		0.00															
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0h	WREG0 0000										0000						
WREG1	2h								W	/REG1								0000
WREG2	4h								W	/REG2								0000
WREG3	6h								W	/REG3								0000
WREG4	8h								W	/REG4								0000
WREG5	Ah								W	/REG5								0000
WREG6	Ch								W	/REG6								0000
WREG7	Eh								W	/REG7								0000
WREG8	10h								W	/REG8								0000
WREG9	12h								W	/REG9								0000
WREG10	14h								W	REG10								0000
WREG11	16h								W	REG11								0000
WREG12	18h								W	REG12								0000
WREG13	1Ah								W	REG13								0000
WREG14	1Ch								W	REG14								0000
WREG15	1Eh								W	REG15								0800
SPLIM	20h								SPLI	M Register								xxxx
PCL	2Eh								PCL	Register								0000
PCH	30h	_	—	_	_	_	_	_	_	PCH7	PCH6	PCH5	PCH4	PCH3	PCH2	PCH1	PCH0	0000
TBLPAG	32h	_	—	_	_	_	_	_	_	TBLPAG7	TBLPAG6	TBLPAG5	TBLPAG4	TBLPAG3	TBLPAG2	TBLPAG1	TBLPAG0	0000
PSVPAG	34h	_	—	_	_	_	_	_	_	PSVPAG7	PSVPAG6	PSVPAG5	PSVPAG4	PSVPAG3	PSVPAG2	PSVPAG1	PSVPAG0	0000
RCOUNT	36h								RCOU	NT Register								xxxx
SR	42h	_	—	_	_	_	_	_	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	44h	_	_	_	_	_	_	—	—	_	—	_	_	IPL3	PSV	—	—	0000
DISICNT	52h	_	_	DISICNT13	DISICNT12	DISICNT11	DISICNT10	DISICNT9	DISICNT8	DISICNT7	DISICNT6	DISICNT5	DISICNT4	DISICNT3	DISICNT2	DISICNT1	DISICNT0	xxxx

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as displayed in Example 5-5.

EXAMPLE 5-1:	ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

;	Set up NVMCO	N for row erase operation		
	MOV	#0x4058, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Init pointer	to row to be ERASED		
	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
	TBLWTL	W0, [W0]	;	Set base address of erase block
	DISI	#5	;	Block all interrupts
				for next 5 instructions
	MOV	#0x55, W0		
	MOV	W0, NVMKEY	;	Write the 55 key
	MOV	#0xAA, W1	;	
	MOV	W1, NVMKEY	;	Write the AA key
	BSET	NVMCON, #WR	;	Start the erase sequence
	NOP		;	Insert two NOPs after the erase
	NOP		;	command is asserted

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
                                                               // Variable located in Pgm Memory, declared as a
int __attribute__ ((space(auto_psv))) progAddr = 0x1234;
                                                               // global variable
   unsigned int offset;
//Set up pointer to the first memory location to be written
   TBLPAG = __builtin_tblpage(&progAddr);
                                                               // Initialize PM Page Boundary SFR
   offset = __builtin_tbloffset(&progAddr);
                                                               // Initialize lower word of address
    __builtin_tblwtl(offset, 0x0000);
                                                               // Set base address of erase block
                                                               // with dummy latch write
   NVMCON = 0 \times 4058;
                                                               // Initialize NVMCON
    asm("DISI #5");
                                                               // Block all interrupts for next 5 instructions
     _builtin_write_NVM();
                                                               \ensuremath{{//}} C30 function to perform unlock
                                                               // sequence and set WR
```

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	INT2IP2	INT2IP1	INT2IP0	—	CCT4IP2	CCT4IP1	CCT4IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as '	D'				
bit 14-12	U2TXIP<2:0>	: UART2 Trans	smitter Interrup	ot Priority bits			
	111 = Interrup	ot is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1	abled				
bit 11	Unimplemen	ted: Read as '	ab.ou n'				
bit 10-8	U2RXIP<2:0>	: UART2 Rece	eiver Interrupt F	Priority bits			
	111 = Interrup	ot is Priority 7 (highest priority	(interrupt)			
	•	, , , , , , , , , , , , , , , , , , ,	0 1 3	.,			
	•						
	• 001 = Interrur	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 7	Unimplemen	ted: Read as '	D'				
bit 6-4	INT2IP<2:0>:	External Interr	upt 2 Priority b	oits			
	111 = Interrup	ot is Priority 7(highest priority	v interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 3	Unimplemen	ted: Read as '	o'				
bit 2-0	CCT4IP<2:0>	: Capture/Com	pare 4 Timer I	nterrupt Priorit	y bits		
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				

REGISTER 8-26: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR (Interrupt Service Routine) and initialize the IVT with the correct vector address depends on the programming language (i.e., C or assembly), and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, 0Eh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period. Level 7 interrupt sources are not disabled by the DISI instruction.

13.2 General Purpose Timer

Timer mode is selected when CCSEL = 0 and MOD<3:0> = 0000. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 13-2).

T32 (CCPxCON1L<5>)	Operating Mode
0	Dual Timer Mode (16-bit)
1	Timer Mode (32-bit)

TABLE 13-2: TIMER OPERATION MODE

Dual 16-Bit Timer mode provides a simple timer function with two independent 16-bit timer/counters. The primary timer uses CCPxTMRL and CCPxPRL. Only the primary timer can interact with other modules on the device. It generates the MCCPx Sync out signals for use by other MCCP modules. It can also use the SYNC<4:0> bits signal generated by other modules.

The secondary timer uses CCPxTMRH and CCPxPRH. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an Output Sync/Trigger signal like the primary time base. In Dual Timer mode, the Secondary Timer Period register, CCPxPRH, generates the MCCP Compare Event (CCPxIF) used by many other modules on the device.

The 32-Bit Timer mode uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments by one. This mode provides a simple timer function when it is important to track long time periods. Note that

FIGURE 13-3: DUAL	16-BIT TIMER	MODE
-------------------	---------------------	------

the T32 bit (CCPxCON1L<5>) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

13.2.1 SYNC AND TRIGGER OPERATION

In both 16-bit and 32-bit modes, the timer can also function in either Synchronization ("Sync") or Trigger operation. Both use the SYNC<4:0> bits (CCPxCON1H<4:0>) to determine the input signal source. The difference is how that signal affects the timer.

In Sync operation, the timer Reset or clear occurs when the input selected by SYNC<4:0> is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H<7>) is cleared. SYNC<4:0> can have any value except '11111'.

In Trigger operation, the timer is held in Reset until the input selected by SYNC<4:0> is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a Trigger event as long as the CCPTRIG bit (CCPxSTATL< 7>) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL<5>) must be set to clear the Trigger event, reset the timer and hold it at zero until another Trigger event occurs. On PIC24FV16KM204 family devices, Trigger operation can only be used when the system clock is the time base source (CLKSEL<2:0> = 000).

R/W-0	U-0	R/W-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0
CCPON	—	CCPSIDL	r	TMRSYNC	CLKSEL2 ⁽¹⁾	CLKSEL1 ⁽¹⁾	CLKSEL0 ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0
bit 7	·	•				•	bit 0
Legend:		r = Reserved I	bit				
R = Reada	ble bit	W = Writable I	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	CCPON: CCF 1 = Module is 0 = Module is	Px Module Enables enabled with a signal of the second seco	ole bit an operating m	node specified I	by the MOD<3:	0> control bits	
bit 14	Unimplemen	ted: Read as '0)'				
bit 13	CCPSIDL: CO	CPx Stop in Idle	e Mode Bit				
	1 = Discontin 0 = Continue	iues module opera	eration when a	device enters ic	lle mode		
bit 12	Reserved: M	aintain as '0'					
bit 11	TMRSYNC: T	ime Base Clock	k Synchroniza	tion bit			
	1 = Asynchro (CLKSEL 0 = Synchror (CLKSEL	phous module ti $(-2:0) \neq 000)$ nous module f (-2:0) = 000)	me base clock time base clo	c is selected and	d synchronized d and does	to the internal not require sy	system clocks ynchronization
bit 10-8	CLKSEL<2:0	>: CCPx Time	Base Clock Se	elect bits ⁽¹⁾			
	111 = Externa 110 = Externa 101 = CLC1 100 = Reserv 011 = LPRC 010 = Second 001 = Reserv 000 = System	al TCLKIA input al TCLKIB input (31 kHz source dary Oscillator red n clock (TCY)	t t				
bit 7-6	TMRPS<1:0>	: Time Base Pr	escale Select	bits			
	11 = 1:64 Pre 10 = 1:16 Pre 01 = 1:4 Pres 00 = 1:1 Pres	escaler escaler ecaler ecaler					
bit 5	T32: 32-Bit Ti	me Base Selec	t bit				
	1 = Uses 32- 0 = Uses 16-	bit time base fo bit time base fo	or timer, single or timer, single	edge output co edge output co	mpare or input mpare or input	capture function captur	on on
bit 4	CCSEL: Capi	ture/Compare N	lode Select bi	t			
	1 = Input Cap 0 = Output C	oture peripheral ompare/PWM/1	l Fimer peripher	al (exact function	on is selected b	y the MOD<3:0	0> bits)
Note 1:	Clock options are	limited in some	e operating mo	odes. See Table	e 13-1 for restrie	ctions.	

REGISTER 13-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
OPSSRC	(1) RTRGEN ⁽²⁾	_	_	OPS3 ⁽³⁾	OPS2 ⁽³⁾	OPS1 ⁽³⁾	OPS0 ⁽³⁾			
bit 15							bit 8			
r										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
TRIGEN ⁽	4) ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0			
bit 7							bit 0			
Legend:										
R = Reada	ible bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
bit 15	OPSSRC: Ou 1 = Output po	tput Postscaler ostscaler scales	Source Selec module Trigg	t bit ⁽¹⁾ er output event	s					
hit 14		trigger Enable	hit(2)	enupievenis						
DIL 14	1 = Time bas	e can be retrige	pered when TF	RIGEN bit = 1						
	0 = Time bas	e may not be re	etriggered whe	n TRIGEN bit =	= 1					
bit 13-12	Unimplement	Unimplemented: Read as '0'								
bit 11-8	OPS3<3:0>: (CCPx Interrupt	Output Postsc	ale Select bits ^{(;}	3)					
	1111 = Interro 1110 = Interro	upt every 16th t upt every 15th t	ime base perio ime base perio	od match od match						
	0100 = Intern 0011 = Intern 0010 = Intern 0001 = Intern 0001 = Intern	upt every 5th tir upt every 4th tir upt every 3rd tir upt every 2nd ti upt after each ti	ne base period ne base period ne base period me base period me base period	d match d match or 4th i d match or 3rd d match or 2nd d match or inpu	nput capture e input capture e input capture o ut capture ever	vent vent event it				
bit 7	TRIGEN: CCI	Px Trigger Enat	ole bit ⁽⁴⁾							
	1 = Trigger o 0 = Trigger o	peration of time peration of time	e base is enabl e base is disab	ed led						
bit 6	ONESHOT: O	ne-Shot Mode	Enable bit							
	1 = One-Sho 0 = One-Sho	t Trigger mode t Trigger mode	is enabled; Tri IS disabled	gger duration is	s set by OSCN	Γ<2:0>				
bit 5	ALTSYNC: C	CPx Clock Sele	ect bits							
	1 = An alterna 0 = The mode	ate signal is us ule synchroniza	ed as the mod ation output sig	ule synchroniza Inal is the Time	ation output sig Base Reset/ro	nal llover event				
bit 4-0	SYNC<4:0>:	CCPx Synchro	nization Sourc	e Select bits						
	See Table 13-	6 for the definit	ion of inputs.							
Note 1.	This control bit ha	s no function in	n Input Canture	e modes						
2:	This control bit ha	s no function w	hen TRIGEN	= 0.						
3:	Output postscale	settings from 1:	5 to 1:16 (0100	-1111) will resu	ılt in a FIFO buf	fer overflow for	Input Capture			
	modes	5	`	,						

REGISTER 13-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

4: Clock source options are limited when Trigger operation is enabled; refer to Table 13-1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	
bit 15							bit 8
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE ⁽¹⁾	D/Ā	Р	S	R/W	UA	BF
bit 7		· · ·				-	bit 0
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-8	Unimplemen	ted: Read as '0	,				
bit 7	SMP: Sample	e bit					
	SPI Master m	ode:					
	1 = Input data 0 = Input data	i is sampled at t	he end of data he middle of d	ata output time	`		
	SPI Slave mo	de:			•		
	SMP must be	cleared when S	PI is used in S	Slave mode.			
bit 6	CKE: SPI Clo	ck Select bit ⁽¹⁾					
	1 = Transmit (0 = Transmit (occurs on transi occurs on transi	tion from activ tion from Idle	e to Idle clock to active clock	state state		
bit 5	D/A: Data/Ad	dress bit					
	Used in I ² C™	mode only.					
bit 4	P: Stop bit						
	Used in I ² C m	node only. This b	oit is cleared w	hen the MSSP	x module is di	sabled; SSPEN	bit is cleared.
bit 3	S: Start bit						
	Used in I ² C m	ode only.					
bit 2	R/W: Read/W	rite Information	bit				
	Used in I ² C m	ode only.					
bit 1	UA: Update A	ddress bit					
	Used in I ² C m	node only.					
bit 0	BF: Buffer Fu	ll Status bit					
	1 = Receive is	s complete, SSF	PxBUF is full	motu			
		s not complete,	SOFXDUF IS E	mpty			
Note 1:	Polarity of clock s	tate is set by the	e CKP bit (SS	PxCON1<4>).			

REGISTER 14-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

SSPxCON1: MSSPx CONTROL REGISTER 1 (I²C[™] MODE) REGISTER 14-4: U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 SSPM0⁽²⁾ SSPOV SSPEN⁽¹⁾ CKP SSPM3⁽²⁾ SSPM2(2) SSPM1⁽²⁾ WCOL bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' bit 7 WCOL: Write Collision Detect bit In Master Transmit mode: 1 = A write to the SSPxBUF register was attempted while the I²C conditions were not valid for a transmission to be started (must be cleared in software) 0 = No collisionIn Slave Transmit mode: 1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision In Receive mode (Master or Slave modes): This is a "don't care" bit. bit 6 SSPOV: Master Synchronous Serial Port Receive Overflow Indicator bit In Receive mode: 1 = A byte is received while the SSPxBUF register is still holding the previous byte (must be cleared in software) 0 = No overflow In Transmit mode: This is a "don't care" bit in Transmit mode. SSPEN: Master Synchronous Serial Port Enable bit⁽¹⁾ bit 5 1 = Enables the serial port and configures the SDAx and SCLx pins as the serial port pins 0 = Disables the serial port and configures these pins as I/O port pins bit 4 CKP: SCLx Release Control bit In Slave mode: 1 = Releases clock 0 = Holds clock low (clock stretch), used to ensure data setup time In Master mode: Unused in this mode. SSPM<3:0>: Master Synchronous Serial Port Mode Select bits⁽²⁾ bit 3-0 1111 = I^2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled 1110 = I^2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled $1011 = I^2C$ Firmware Controlled Master mode (Slave Idle) 1000 = I^2C Master mode, Clock = Fosc/(2 * ([SSPxADD] + 1))⁽³⁾ 0111 = I^2C Slave mode, 10-bit address $0110 = I^2C$ Slave mode, 7-bit address Note 1: When enabled, the SDAx and SCLx pins must be configured as inputs.

- 2: Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.
- 3: SSPxADD values of 0, 1 or 2 are not supported when the Baud Rate Generator is used with I²C mode.

D AM A		D MALO	5444.0	DAMA		DAA(0(2)	D 444 o(2)
	0-0		R/W-0	R/W-U	0-0		
bit 15	—	USIDE	IKEN' '	RISIVID	_	UENT	DEINU bit 8
511 15							bit 0
R/C-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit 0
Legend:		C = Clearable	bit	HC = Hardwa	re Clearable bi	t	
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15 UARTEN: UARTx Enable bit 1 = UARTx is enabled; all UARTx pins are controlled by UARTx, as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by port latches, UARTx power consumption is							
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	USIDL: UART	Tx Stop in Idle N	lode bit				
	1 = Discontin	ues module op	eration when t	he device enter	rs Idle mode		
1 1 10	0 = Continue	s module opera	tion in Idle mo	ode			
Dit 12		Encoder and De	ecoder Enable				
	0 = IrDA enco	oder and decod	er are disable	d			
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bi	t			
	$1 = \frac{UxRTS}{UxRTS} p$ 0 = UxRTS p	in is in Simplex in is in Flow Co	mode ntrol mode				
bit 10	Unimplemen	ted: Read as '0	,				
bit 9-8	UEN<1:0>: U	ARTx Enable b	its ⁽²⁾				
	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U 00 = UxTX an latches	JxRX and UxBC JxRX, UxCTS a JxRX and UxRT nd UxRX pins are	LK pins are end UxRTS pin S pins are end enabled and	nabled and use s are enabled a abled <u>and us</u> ed used; UxCTS ar	d; UxCTS pin is and used ; UxCTS pin is ad UxRTS/UxB0	s controlled by controlled by p CLK pins are co	port latches ort latches ntrolled by port
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	nable bit		
	1 = UARTx v cleared ir	vill continue to n hardware on t -un is enabled	sample the U he following ri	lxRX pin; interr sing edge	upt is generate	ed on the fallir	ig edge, bit is
bit 6	LPBACK: UA	RTx Loopback	Mode Select I	oit			
	1 = Enables 0 = Loopbacl	Loopback mode k mode is disab	e led				
bit 5	ABAUD: Auto	o-Baud Enable I	oit				
	1 = Enables cleared ir 0 = Baud rate	baud rate meas n hardware upo e measurement	urement on th n completion is disabled or	e next characte	er – requires re	ception of a Sy	vnc field (55h);
bit 4	URXINV: UAF	RTx Receive Po	larity Inversio	n bit			
	1 = UxRX Idl0 = UxRX Idl	e state is '0' e state is '1'					
Note 1: Th	nis feature is is o	only available fo	or the 16x BR	G mode (BRGH	= 0).		

REGISTER 15-1: UXMODE: UARTX MODE REGISTER

2: The bit availability depends on the pin availability.

16.2 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- · Alarm Value Registers

16.2.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTRx bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 16-1).

By writing the RTCVALH byte, the RTCC Pointer value, the RTCPTR<1:0> bits decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 16-1: RTCVAL REGISTER MAPPING

	RTCC Value Register Window				
RTOFTRET.02	RTCVAL<15:8>	RTCVAL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11	_	YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTRx bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 16-2).

By writing the ALRMVALH byte, the ALRMPTR<1:0> bits (Alarm Pointer value) decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL, until the pointer value is manually changed.

TABLE 16-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window			
<1:0>	ALRMVALH<15:8>	ALRMVALL<7:0>		
00	ALRMMIN	ALRMSEC		
01	ALRMWD	ALRMHR		
10	ALRMMNTH	ALRMDAY		
11	PWCSTAB	PWCSAMP		

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes, the ALRMPTR<1:0> value will be decremented. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note: This only applies to read operations and not write operations.

16.2.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (see Example 16-1 and Example 16-2).

Note:	To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only one instruction cycle time window allowed between the 55h/AA
	sequence and the setting of RTCWREN.
	Therefore, it is recommended that code
	follow the procedure in Example 16-2.

16.2.3 SELECTING RTCC CLOCK SOURCE

There are four reference source clock options that can be selected for the RTCC using the RTCCLK<1:0> bits (RTCPWC<11:10>): 00 = Secondary Oscillator, 01 = LPRC, 10 = 50 Hz External Clock and 11 = 60 Hz External Clock.

EXAMPLE 16-1:	SETTING THE RTCWREN BIT	IN ASSEMBLY

push	w7	; Store W7 and W8 values on the stack.
push	w8	
disi	#5	; Disable interrupts until sequence is complete.
mov	#0x55, w7	; Write 0x55 unlock value to NVMKEY.
mov	w7, NVMKEY	
mov	#0xAA, w8	; Write OxAA unlock value to NVMKEY.
mov	w8, NVMKEY	
bset	RCFGCAL, #13	; Set the RTCWREN bit.
pop	w8	; Restore the original W register values from the stack.
pop	w7	

EXAMPLE 16-2: SETTING THE RTCWREN BIT IN 'C'

//This builtin function executes implements the unlock sequence and sets
//the RTCWREN bit.
__builtin_write_RTCWEN();

REGISTER 16-11: RTCCSWT: RTCC CONTROL/SAMPLE WINDOW TIMER REGISTER⁽¹⁾

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 15 | | • | | | | | bit 8 |

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSAMP7 | PWCSAMP6 | PWCSAMP5 | PWCSAMP4 | PWCSAMP3 | PWCSAMP2 | PWCSAMP1 | PWCSAMP0 |
| bit 7 | | | | | | | bit 0 |

Legend:						
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POF	R '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15-8 PV	CSTAB<7:0>: PWM Stability Windo	ow Timer bits				

bit 10-0						
	11111111 = Stability window is 255 TPWCCLK clock periods					
	•					
	00000000 = Stability window is 0 TPWCCLK clock periods The sample window starts when the alarm event triggers. The stability window timer starts counting from every alarm event when PWCEN = 1.					
bit 7-0	PWCSAMP<7:0>: PWM Sample Window Timer bits					
	 11111111 = Sample window is always enabled, even when PWCEN = 0 11111110 = Sample window is 254 TPWCCLK clock periods 					
	•					
	00000000 = Sample window is 0 TPWCCLK clock periods The sample window timer starts counting at the end of the stability window when PWCEN = 1. If PWCSTAB<7:0> = 00000000, the sample window timer starts counting from every alarm event when PWCEN = 1.					
	PWCEN = 1.					

REGISTER 17-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
_	DS42	DS41	DS40	_	DS32	DS31	DS30
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
_	DS22	DS21	DS20	_	DS12	DS11	DS10
bit 7							bit 0
							1
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
h:4 4 5	11	(ada David vi da	.,				
DIT 15	Unimplemen	ted: Read as 'C		. 1			
bit 14-12	DS4<2:0>: Da	ata Selection M	UX 4 Signal S	election bits			
	111 = MCCP3	3 Compare Eve	nt Flag (CCP3	SIF)			
	101 = Digital	I Compare Eve	ent Flag (CCP1	IF)			
	100 = CTMU	Trigger interrup	ot				
	For CLC1:						
	011 = SPI1 S	DIx					
	010 = Compa	rator 3 output					
	001 = CLC2 (000 = CLC2)	output BIVO nin					
	UUU = CLCIN	e i/O biti					
	011 = SPI2 S	DIx					
	010 = Compa	rator 3 output					
	001 = CLC1 o	output					
	000 = CLCIN	B I/O pin					
bit 11	Unimplemen	ted: Read as '0)'				
bit 10-8	DS3<2:0>: Da	ata Selection M	UX 3 Signal S	election bits			
	111 = MCCP3	3 Compare Eve	nt Flag (CCP3	BIF)			
	101 = NICCP	∠ Compare Eve logic low	пі гіаў (ССР2	.ir)			
	For CL C1:						
	100 = UART1	RX					
	011 = SPI1 S	DOx					
	010 = Compa	rator 2 output					
	001 = CLC1 c	output					
	100 = UART2	RX					
	011 = SPI2 S	DOx					
	010 = Compa	rator 2 output					
	001 = CLC2 c	output					
	000 = CLCIN	A I/O pin					
bit 7	Unimplemen	ted: Read as '0)'				

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable t	Dit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
1.11.45							
DIT 15		I MU Enable bit					
	0 = Module is	s disabled					
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	CTMUSIDL:	CTMU Stop in Id	dle Mode bit				
	1 = Discontir	nues module op	eration when o	device enters le	dle mode		
	0 = Continue	es module opera	tion in Idle mo	ode			
bit 12	TGEN: Time	Generation Ena	ble bit				
	1 = Enables0 = Disables	edge delay gen edge delay ger	eration eration				
bit 11	EDGEN: Edg	e Enable bit					
	1 = Edges ar 0 = Edges ar	re not blocked re blocked					
bit 10	EDGSEQEN:	: Edge Sequenc	e Enable bit				
	1 = Edge 1 e 0 = No edge	event must occu sequence is ne	r before Edge eded	2 event can oo	ccur		
bit 9	IDISSEN: An	alog Current So	urce Control b	oit			
2.1.0	1 = Analog c	urrent source of	utput is ground	ded			
hit Q			trol bit	bunded			
DIL O		utput is enabled					
	0 = Trigger o	output is disable	d				
bit 7-2	ITRIM<5:0>:	Current Source	Trim bits				
	011111 = M a	aximum positive	change from	nominal currer	nt		
	011110						
	•						
	•						
	000001 = Mi	nimum positive	change from r	nominal current	t		
	111111 = Mi	nimum negative	change from	nominal currer	> nt		
	•	initiani negative	change nom	nominal carter	it.		
	•						
	•						
	100001 = Ma	aximum negative	e change from	nominal curre	ent		
		0	5	-			

REGISTER 24-1: CTMUCON1L: CTMU CONTROL 1 LOW REGISTER

27.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FV16KM204 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24FV16KM204 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss (PIC24FXXKMXXX)	-0.3V to +4.5V
Voltage on VDD with respect to Vss (PIC24FVXXKMXXX)	0.3V to +6.5V
Voltage on any combined analog and digital pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on MCLR/VPP pin with respect to Vss	-0.3V to +9.0V
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin ⁽¹⁾	250 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽¹⁾	200 mA

Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 27-1).

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 27-33: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions	
90	Tsu:sta	Start Condition Setup Time	100 kHz mode	4700		ns	Only relevant for Repeated	
			400 kHz mode	600			Start condition	
91	THD:STA	Start Condition Hold Time	100 kHz mode	4000	—	ns	After this period, the first clock pulse is generated	
			400 kHz mode	600	—			
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4700	—	ns		
			400 kHz mode	600	—			
93	THD:STO	Stop Condition Hold Time	100 kHz mode	4000	—	ns		
			400 kHz mode	600	_			

FIGURE 27-16: I²C[™] BUS DATA TIMING

FIGURE 27-17: MSSPx I²C[™] BUS START/STOP BITS TIMING WAVEFORMS

TABLE 27-35: I ² C™ BUS START/STOP BITS REQUIREMENTS (MASTER MOD	E)
---	----

Param. No.	Symbol	Characte	ristic Min		Max	Units	Conditions
90	Tsu:sta	Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)		ns	Only relevant for Repeated Start condition
			400 kHz mode	2(Tosc)(BRG + 1)			
91 TH	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	After this period, the first clock pulse is generated
			400 kHz mode	2(Tosc)(BRG + 1)	_		
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ns	
			400 kHz mode	2(Tosc)(BRG + 1)	—		
93	THD:STO	Stop Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)		ns	
			400 kHz mode	2(Tosc)(BRG + 1)			

24FV16KM

204/MV® 1342M7W

XXXXXXXX

XXXXXXXX YYWWNNN

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	s			
Dimension	Limits	MIN	IIN NOM			
Contact Pitch	Е		0.65 BSC			
Optional Center Pad Width	W2			6.60		
Optional Center Pad Length	T2			6.60		
Contact Pad Spacing	C1		8.00			
Contact Pad Spacing	C2		8.00			
Contact Pad Width (X44)	X1			0.35		
Contact Pad Length (X44)	Y1			0.85		

G

0.25

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

Distance Between Pads

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B