

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХЕ

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km202-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	48-Pin UQFN ⁽¹⁾ Pin Pion Features								
48-Pin UQFN(')	FIII	PIC24FXXKMX04	PIC24FVXXKMX04						
RBS VCDD VCDD VCDD VCDD RC3 RC3 RC3 RC3 RC3 RC3 RC3 RC3 RC3 RC3	1	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/	/CLC10/CTED4/CN21/RB9						
$\overline{x} \overline{x} \overline{x} \overline{x} \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} \overline{x} \overline{x} \overline{x} \overline{x} \overline{x} \overline{x}$	2	U1RX/ /CN18/RC6							
RB9 1 8 4 8 4 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8	3	U1TX/ /CN17/RC7							
RB9 1 36 RB4 RC6 2 35 RA8		OC2/CN20/RC8							
RC7 3 34 RA3 RC8 4 33 RA2		IC4/OC2F/CTED7/CN19/RC9							
RC9 5 32 n/c	6	IC1/ / /CTED3/CN9/RA7	1						
RA7 6 PIC24FXXKMX04 31 Vss RA6 7 PIC24FVXXKMX04 30 Vbb		/OC1A/CTED1/INT2/CN8/RA6	VDDCORE OF VCAP						
n/c 8 29 RC2	2 0	n/c	n/c						
RB10 9 28 RC ² RB11 10 27 RC	<u> </u>	PGED2/SDI1/OC1C/CTED11/CN16/RB10							
RB12 11 26 RB3	3 10	PGEC2/SCK1/OC2A/CTED9/CN15/RB11							
RB13 12 25 RB2 25 RB2 25 RB2	2 11	/AN12/HLVDIN/ /CTED2/ CN14/RB12	/AN12/HLVDIN/ /CTED2/ INT2/CN14/RB12						
	12	/ /AN11/SDO1/OC1D/CTPLS							
RA10 RA11 RB14 RB14 Vss/AVsp WCLR/RA5 MCLR/RA5 R10 R10 R10 R10 R10 R10 R10 R10 R10 R10	13	/ /CN35/RA10							
R R SSS/ANDI	14	/ /CTED8/CN36/RA11							
> >	15	/CVREF/ / /AN10/	/ /C1OUT/OCFA/CTED5/INT1/						
		CN12/RB14							
	16		I/TCKIA/CTED6/CN11/RB15						
	17	Vss/AVss							
	18	VDD/AVDD							
	19	MCLR/VPP/RA5							
	20 21	n/c CVREF+/VREF+/ +/AN0/ /	CVREF+/VREF+/ +/AN0/ /						
	21	CN2/RA0	CTED1/CN2/RA0						
	22	CVREF-/VREF-/AN1/CN3/RA1							
	23	PGED1/AN2/CTCMP/ULPWU/C1IND/	/ /CN4/RB0						
	24	PGEC1/ / /AN3/C1INC/	/ /CTED12/CN5/RB1						
	25	/ /AN4/C1INB/ / /T	CKIB/CTED13/CN6/RB2						
	26	/AN5/C1INA/ / /CN7/RB3							
	27	AN6/CN32/RC0							
	28								
	29 30	AN8/CN10/RC2 Vdd							
	30	Vss							
	32	n/c							
	33	OSCI/AN13/CLKI/CN30/RA2							
	34	OSCO/CLKO/AN14/CN29/RA3							
	35	OCFB/CN33/RA8							
	36	SOSCI/AN15/ / /CN1/RB4							
	37	SOSCO/SCLKI/AN16/PWRLCLK/ /CN	0/RA4						
	38	/CN34/RA9							
	39	/CN28/RC3							
	40	/CN25/RC4							
	41	/CN26/RC5							
Legend: Values in indicate pin	42	Vss							
Legend: Values in indicate pin function differences between	43	VDD							
PIC24F(V)XXKM202 and	44	n/c							
PIC24F(V)XXKM102 devices.	45	PGED3/AN17/ASDA1/OC1E/CLCINA/CN27/F							
Note 1: Exposed pad on underside of	46	PGEC3/AN18/ASCL1/OC1F/CLCINB/CN24/F							
device is connected to Vss.	47	AN19/INT0/CN23/RB7	AN19/ /OC1A/INT0/CN23/RB7						
	48	AN20/SCL1/U1CTS/C3OUT/OC1B/CTED10/	CN22/RB8						

NOTES:

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FV08KM101 PIC24F08KM101
- PIC24FV08KM102
- PIC24F08KM102
 PIC24F16KM102
- PIC24FV16KM102
- PIC24FV16KM104 PIC24F16KM104
- PIC24FV08KM202 PIC24F08KM202
- PIC24FV08KM204 PIC24F08KM204
- PIC24FV16KM202
- PIC24F16KM202
- PIC24FV16KM204 PIC24F16KM204

The PIC24FV16KM204 family introduces many new analog features to the extreme low-power Microchip devices. This is a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. This family also offers a new migration option for those high-performance applications which may be outgrowing their 8-bit platforms, but do not require the numerical processing power of a Digital Signal Processor (DSC).

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] Digital Signal Controllers. The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear Addressing of up to 16 Mbytes (program space) and 16 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32-bit by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as C
- Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FV16KM204 family incorporate a range of features that can significantly reduce power consumption during operation. Key features include:

- On-the-Fly Clock Switching, to allow the device clock to be changed under software control to the Timer1 source or the internal, low-power RC Oscillator during operation, allowing users to incorporate power-saving ideas into their software designs.
- Doze Mode Operation, when timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes, to allow the microcontroller to suspend all operations or selectively shut down its core while leaving its peripherals active with a single instruction in software.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

The PIC24FV16KM204 family offers five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock (EC) modes offering the option of a divide-by-2 clock output.
- Two Fast Internal Oscillators (FRCs), one with a nominal 8 MHz output and the other with a nominal 500 kHz output. These outputs can also be divided under software control to provide clock speed as low as 31 kHz or 2 kHz.
- A Phase Locked Loop (PLL) frequency multiplier, available to the external oscillator modes and the 8 MHz FRC Oscillator, which allows clock speeds of up to 32 MHz.
- A separate internal RC Oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F					FV					
		I	Pin Numb	er			I	Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
C1OUT	17	25	22	14	15	17	25	22	14	15	0	—	Comparator 1 Output
C2INA	_	5	2	22	24		5	2	22	24	I	ANA	Comparator 2 Input A (+)
C2INB	_	4	1	21	23		4	1	21	23	I	ANA	Comparator 2 Input B (-)
C2INC	_	7	4	24	26		7	4	24	26	I	ANA	Comparator 2 Input C (+)
C2IND	_	6	3	23	25		6	3	23	25	I	ANA	Comparator 2 Input D (-)
C2OUT	_	20	17	7	7		16	13	43	47	0		Comparator 2 Output
C3INA	_	26	23	15	16		26	23	15	16	I	ANA	Comparator 3 Input A (+)
C3INB	_	25	22	14	15		25	22	14	15	I	ANA	Comparator 3 Input B (-)
C3INC	_	2	27	19	21		2	27	19	21	I	ANA	Comparator 3 Input C (+)
C3IND	_	4	1	21	23		4	1	21	23	I	ANA	Comparator 3 Input D (-)
C3OUT	_	17	14	44	48		17	14	44	48	0	_	Comparator 3 Output
CLC10	13	18	15	1	1	13	18	15	1	1	0		CLC 1 Output
CLC2O	_	19	16	6	6		19	16	6	6	0		CLC 2 Output
CLCINA	9	14	11	41	45	9	14	11	41	45	I	ST	CLC External Input A
CLCINB	10	15	12	42	46	10	15	12	42	46	I	ST	CLC External Input B
CLKI	7	9	6	30	33	7	9	6	30	33	I	ANA	Primary Clock Input
CLKO	8	10	7	31	34	8	10	7	31	34	0		System Clock Output
CN0	10	12	9	34	37	10	12	9	34	37	I	ST	Interrupt-on-Change Inputs
CN1	9	11	8	33	36	9	11	8	33	36	I	ST	Interrupt-on-Change Inputs
CN2	2	2	27	19	21	2	2	27	19	21	I	ST	Interrupt-on-Change Inputs
CN3	3	3	28	20	22	3	3	28	20	22	I	ST	Interrupt-on-Change Inputs
CN4	4	4	1	21	23	4	4	1	21	23	I	ST	Interrupt-on-Change Inputs
CN5	5	5	2	22	24	5	5	2	22	24	I	ST	Interrupt-on-Change Inputs
CN6	6	6	3	23	25	6	6	3	23	25	Ι	ST	Interrupt-on-Change Inputs
CN7	_	7	4	24	26		7	4	24	26	Ι	ST	Interrupt-on-Change Inputs
CN8	14	20	17	7	7				_		Ι	ST	Interrupt-on-Change Inputs
CN9	_	19	16	6	6		19	16	6	6	Ι	ST	Interrupt-on-Change Inputs
CN10	_	_	_	27	29			_	27	29	Ι	ST	Interrupt-on-Change Inputs
CN11	18	26	23	15	16	18	26	23	15	16	I	ST	Interrupt-on-Change Inputs
CN12	17	25	22	14	15	17	25	22	14	15	I	ST	Interrupt-on-Change Inputs

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

NOTES:

TABLE 4-21: PORTA REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ^(4,5)	Bit 10 ^(4,5)	Bit 9 ^(4,5)	Bit 8 ^(4,5)	Bit 7 ⁽⁴⁾	Bit 6 ⁽³⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	2C0h		_	_	_	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	0FDF ⁽¹⁾
PORTA	2C2h	-	—	—		RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	2C4h	-	—	—		LATA11	LATA10	LATA9	LATA8	LATA7	LATA6	_	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	2C6h	_	—	_	_	ODA11	ODA10	ODA9	ODA8	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are only available when MCLRE (FPOR<7>) = 0.

3: These bits are not implemented in FV devices.

4: These bits are not implemented in 20-pin devices.

5: These bits are not implemented in 28-pin devices.

TABLE 4-22: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2	Bit 1	Bit 0	All Resets
TRISB	2C8h	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	_{FFFF} (1)
PORTB	2CAh	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	2CCh	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	2CEh	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

TABLE 4-23: PORTC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ^(2,3)	Bit 8 ^(2,3)	Bit 7 ^(2,3)	Bit 6 ^(2,3)	Bit 5 ^(2,3)	Bit 4 ^(2,3)	Bit 3 ^(2,3)	Bit 2 ^(2,3)	Bit 1 ^(2,3)	Bit 0 ^(2,3)	All Resets
TRISC	2D0h	_	_		_	—	_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF ⁽¹⁾
PORTC	2D2h	—	_	_	-	—	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATTC	2D4h	—	_	_	-	—	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	2D6h	_	_	—	-	—	_	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 4	WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred
bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit 1 = Device has been in Idle mode 0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred (the BOR is also set after a POR) 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred

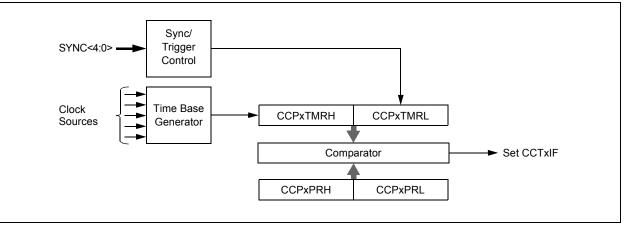
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled regardless of the SWDTEN bit setting.
 - 3: This is implemented on PIC24FV16KMXXX parts only; not used on PIC24F16KMXXX devices.

TABLE 7-1: RESET FLAG BIT OPERATION

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

Note: All Reset flag bits may be set or cleared by the user software.

REGISTER 8-21: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2


U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	U1RXIP2	U1RXIP1	U1RXIP0	_	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_	CCT2IP2	CCT2IP1	CCT2IP0
bit 7				•			bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as 'd	כ'				
bit 15 bit 14-12	•	ted: Read as 'd		Priority bits			

- bit 11-3
 bit 2-0
 CCT2IP<2:0>: Capture/Compare 2 Timer Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)
 - ٠

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

FIGURE 13-4: 32-BIT TIMER MODE

'1' = Bit is set

REGISTER 14-8: SSPxADD: MSSPx SLAVE ADDRESS/BAUD RATE GENERATOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	_	—	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	

'0' = Bit is cleared

x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

-n = Value at POR

 bit 7-0
 ADD<7:0>: Slave Address/Baud Rate Generator Value bits

 SPI Master and I²C™ Master modes:
 Reload value for the Baud Rate Generator. Clock period is (([SPxADD] + 1) * 2)/Fosc.

 I²C Slave modes:
 Represents 7 or 8 bits of the slave address, depending on the addressing mode used:

 7-Bit mode:
 Address is ADD<7:1>; ADD<0> is ignored.

 10-Bit LSb mode:
 ADD<7:0> are the Least Significant bits of the address.

 10-Bit MSb mode:
 ADD<2:1> are the two Most Significant bits of the address; ADD<7:3> are always '11110' as a specification requirement; ADD<0> is ignored.

REGISTER 14-9: SSPxMSK: I²C[™] SLAVE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|---------------------|
| MSK7 | MSK6 | MSK5 | MSK4 | MSK3 | MSK2 | MSK1 | MSK0 ⁽¹⁾ |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-0	MSK<7:0>: Slave Address Mask Select bits ⁽¹⁾
	1 = Masking of corresponding bit of SSPxADD is enabled
	0 = Masking of corresponding bit of SSPxADD is disabled

Note 1: MSK0 is not used as a mask bit in 7-bit addressing.

19.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter with Threshold Detect, refer to the "PIC24F Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739).

The PIC24F 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 100 ksps
- Up to 32 Analog Input Channels (internal and external)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed-Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in some PIC24 devices. Both modules are Successive Approximation Register (SAR) converters at their cores, surrounded by a range of hardware features for flexible configuration. This version of the module extends functionality by providing 12-bit resolution, a wider range of automatic sampling options and tighter integration with other analog modules, such as the CTMU, and a configurable results buffer. There is a legacy 10-bit mode on this A/D to allow the option to run with lower resolution in order to obtain higher throughput. This module also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results.

A simplified block diagram for the module is illustrated in Figure 19-1.

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER (CONTINUED)

- bit 7-5 **CH0NA<2:0>:** Sample A Channel 0 Negative Input Select bits The same definitions as for CHONB<2:0>.
- bit 4-0 **CH0SA<4:0>:** Sample A Channel 0 Positive Input Select bits The same definitions as for CHONA<4:0>.
- Note 1: This is implemented on 44-pin devices only.
 - 2: This is implemented on 28-pin and 44-pin devices only.
 - 3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH23	CHH22	CHH21	CHH20 ⁽²⁾	CHH19 ⁽²⁾	CHH18	CHH17	CHH16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'.

bit 7-0 CHH<23:16>: A/D Compare Hit bits⁽²⁾

If CM<1:0> = 11:

1 = A/D Result Buffer x has been written with data or a match has occurred

0 = A/D Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

2: The CHH<20:19> bits are not implemented in 20-pin devices.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	CSS30	CSS29	CSS28	CSS27	CSS26	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20 ⁽²⁾	CSS19 ⁽²⁾	CSS18	CSS17	CSS16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 14-10CSS<30:26>: A/D Input Scan Selection bits1 = Includes the corresponding channel for input scan0 = Skips the channel for input scanbit 9-8Unimplemented: Read as '0'bit 7-0CSS<23:16>: A/D Input Scan Selection bits⁽²⁾1 = Includes the corresponding channel for input scan0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<20:19> bits are not implemented in 20-pin devices.

REGISTER 19-9: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8 ^(2,3)
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS6 ^(2,3)	CSS5 ⁽²⁾	CSS4	CSS3	CSS2	CSS1	CSS0
						bit 0
	R/W-0	CSS14 CSS13 R/W-0 R/W-0	CSS14 CSS13 CSS12 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 R/W-0 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 CSS10 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 CSS10 CSS9 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSS<15:0>: A/D Input Scan Selection bits^(2,3)

1 = Includes the corresponding ANx input for scan

- 0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<8:5> bits are not implemented in 20-pin devices.
 - 3: The CSS<8:6> bits are not implemented in 28-pin devices.

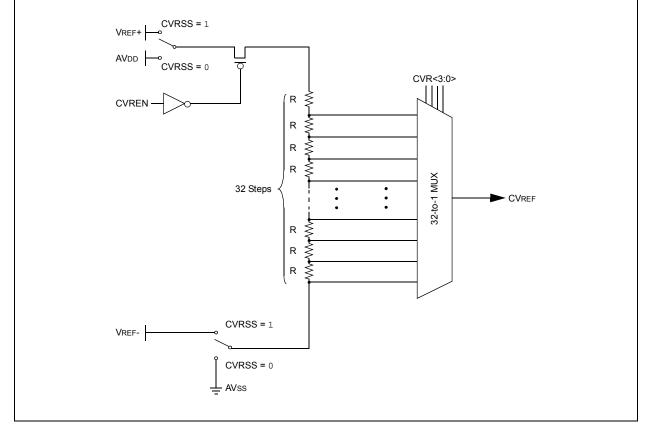
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
DACEN		DACSIDL	DACSLP	DACFM		SRDIS	DACTRIG			
bit 15			27.002			0.12.0	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DACOE	DACTSEL4	DACTSEL3	DACTSEL2	DACTSEL1	DACTSEL0	DACREF1	DACREF0			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
							-			
bit 15	DACEN: DAC	x Enable bit								
	1 = Module is	s enabled								
	0 = Module is	s disabled								
bit 14	Unimplement	ted: Read as 'd)'							
bit 13	DACSIDL: DA	DACSIDL: DACx Stop in Idle Mode bit								
		ues module op s module opera		device enters lo ode	lle mode					
bit 12	DACSLP: DA	ACSLP: DACx Enable Peripheral During Sleep bit								
				ent value of DA ; DACxOUT pi			nd LATx bits			
bit 11	DACFM: DAC	x Data Format	Select bit							
		ft justified (data ht justified (dat								
bit 10	Unimplement	ted: Read as '0)'							
bit 9	SRDIS: Soft F	Reset Disable b	oit							
				only on a POR on any type of		:				
bit 8		ACx Trigger Inp								
				selected (by D as DACxDAT is			ed)			
bit 7	DACOE: DAC	Cx Output Enab	le bit							
	1 = DACx out	put pin is enabl	led and driven	on the DACxO put is available		her peripherals	only			
Note 1.		in configuration			-1.0~)		-			

REGISTER 20-1: DACxCON: DACx CONTROL REGISTER

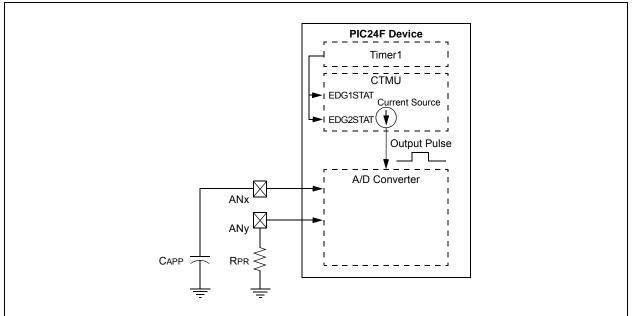
Note 1: BGBUF1 voltage is configured by BUFREF<1:0> (BUFCON0<1:0>).

23.0 COMPARATOR VOLTAGE REFERENCE

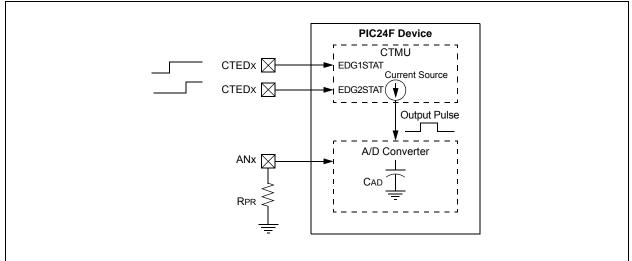
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "PIC24F Family Reference Manual", "Comparator Voltage Reference Module" (DS39709).


23.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 23-1). The comparator voltage reference provides a range of output voltages with 32 distinct levels.


The comparator voltage reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.


FIGURE 24-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

24.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 24-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.

FIGURE 24-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

DC CHARACTERISTICS				l Operatin g tempera	-	2.0V -40°	: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Cond	itions		
	Vol	Output Low Voltage								
DO10		All I/O Pins	_	—	0.4	V	IOL = 8.0 mA	VDD = 4.5V		
			_	_	0.4	V	IOL = 4.0 mA	VDD = 3.6V		
			_	_	0.4	V	IOL = 3.5 mA	VDD = 2.0V		
DO16		OSC2/CLKO	_	_	0.4	V	IOL = 2.0 mA	VDD = 4.5V		
			_	_	0.4	V	IOL = 1.2 mA	VDD = 3.6V		
			_	_	0.4	V	IOL = 0.4 mA	VDD = 2.0V		
	Vон	Output High Voltage								
DO20		All I/O Pins	3.8	_	_	V	Iон = -3.5 mA	VDD = 4.5V		
			3	_	—	V	Iон = -3.0 mA	VDD = 3.6V		
			1.6	—	—	V	Іон = -1.0 mA	VDD = 2.0V		
DO26		OSC2/CLKO	3.8	—	—	V	Іон = -2.0 mA	VDD = 4.5V		
			3	—	—	V	Іон = -1.0 mA	VDD = 3.6V		
			1.6	_	—	V	Iон = -0.5 mA	VDD = 2.0V		

TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-11: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions Operating temperature				ns: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended		
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
		Program Flash Memory							
D130	Eр	Cell Endurance	10,000 (2)	—	—	E/W			
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage		
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms			
D134	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current During Programming	—	10	_	mA			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Self-write and block erase.

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
100	Тнідн	Clock High Time	100 kHz mode	4.0	-	μS	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	-	μS	Must operate at a minimum of 10 MHz	
			MSSPx module	1.5 TCY		_		
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Must operate at a minimum of 10 MHz	
			MSSPx module	1.5 TCY	—	_		
102	TR	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns		
			400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF	
103	TF	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns		
			400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF	
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7		μS	Only relevant for Repeated	
			400 kHz mode	0.6	—	μS	Start condition	
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μS	After this period, the first close	
			400 kHz mode	0.6	—	μS	pulse is generated	
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μS		
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)	
			400 kHz mode	100	—	ns		
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS		
			400 kHz mode	0.6	—	μS		
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)	
			400 kHz mode	—	—	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7			Time the bus must be free before	
			400 kHz mode	1.3	—	μS	a new transmission can start	
D102	Св	Bus Capacitive Loading	—	400	pF			

TABLE 27-34: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

AC CHARACTERISTICS			Standard Operation		$\begin{array}{l} \mbox{nditions: 1.8V to 3.6V (PIC24F16KM204)} \\ \mbox{2.0V to 5.5V (PIC24FV16KM204)} \\ \mbox{-40^{\circ}C} \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ \mbox{-40^{\circ}C} \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$			
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Device S	Supply				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 1.8		Lesser of: VDD + 0.3 or 3.6	V	PIC24FXXKMXXX devices	
			Greater of: VDD – 0.3 or 2.0		Lesser of: VDD + 0.3 or 5.5	V	PIC24FVXXKMXXX devices	
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V		
			Reference	e Input	s			
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V		
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 1.7	V		
AD07	Vref	Absolute Reference Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD08	IVREF	Reference Voltage Input Current	—	1.25	—	mA		
AD09	Zvref	Reference Input Impedance	—	10k	—	Ω		
	•		Analog	Input	•			
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)	
AD11	Vin	Absolute Input Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD12	VINL	Absolute Vın∟ Input Voltage	AVss – 0.3	_	AVDD/2	V		
AD17	RIN	Recommended Impedance of Analog Voltage Source	—		1k	Ω	12-bit	
	-		A/D Acc	uracy				
AD20b	Nr	Resolution	_	12	—	bits		
AD21b	INL	Integral Nonlinearity		±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD22b	DNL	Differential Nonlinearity		±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD23b	Gerr	Gain Error	_	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD24b	EOFF	Offset Error	—	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD25b		Monotonicity ⁽¹⁾	_	_	_	_	Guaranteed	

TABLE 27-37: A/D MODULE SPECIFICATIONS

 $\label{eq:Note_1:} \textbf{Note_1:} \quad \text{The A/D conversion result never decreases with an increase in the input voltage.}$

2: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.

NOTES: