
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with Data Memory Space Addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables, located from 000004h to 0000FFh, and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. **Section 8.1 "Interrupt Vector Table (IVT)**" discusses the Interrupt Vector Tables in more detail.

4.1.3 DATA EEPROM

In the PIC24FV16KM204 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit-wide memory and 256 words deep. This memory is accessed using Table Read and Write operations similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24FV16KM204 family. Their location in the memory map is displayed in Figure 4-1.

Refer to **Section 25.1** "**Configuration Bits**" for more information on device Configuration Words.

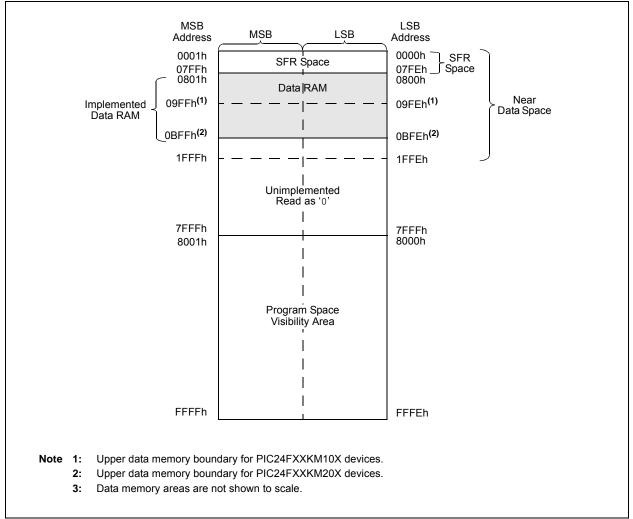
TABLE 4-1: DEVICE CONFIGURATION WORDS FOR PIC24FXXXXX FAMILY DEVICES

Configuration Word	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION msw most significant word least significant word PC Address (Isw Address) Address 16 8 Λ 23 000000h 000001h 00000000 0000000 000002h 000003h 000004h 00000000 000005h 0000000 000006h 000007h Instruction Width Program Memory Phantom' Byte (read as '0')

4.2 **Data Address Space**

The PIC24F core has a separate, 16-bit-wide data memory space, addressable as a single linear range. The Data Space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is displayed in Figure 4-3.


All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This gives a Data Space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data From Program Memory Using Program Space Visibility").

Depending on the particular device, PIC24FV16KM family devices implement either 512 or 1024 words of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.

FIGURE 4-3:

4.2.1 DATA SPACE WIDTH

The data organized memory space is in byte-addressable, 16-bit-wide blocks. Data is aligned in data memory and registers as 16-bit words, but all the Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

DATA SPACE MEMORY MAP FOR PIC24FXXXXX FAMILY DEVICES⁽³⁾

IADLE 4	-J.		RRUPI	CONT	VOLLE	N NLO	SILK											
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
INTCON1	80h	NSTDIS	—	—	—	—	—	—	—	—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	82h	ALTIVT	DISI	_	—	—	_	_	_	_	_	—	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	84h	NVMIF	_	AD1IF	U1TXIF	U1RXIF	_	_	CCT2IF	CCT1IF	CCP4IF	CCP3IF	_	T1IF	CCP2IF	CCP1IF	INT0IF	0000
IFS1	86h	U2TXIF	U2RXIF	INT2IF	CCT4IF	CCT3IF	_	_	_	_	CCP5IF	_	INT1IF	CNIF	CMIF	BCL1IF	SSP1IF	0000
IFS2	88h	_	_	_	_	_	_	CCT5IF	_	_	_	_	_	_	_	_	_	0000
IFS3	8Ah	_	RTCIF	_	_	_	_	_	_	_	_	_	_	_	BCL2IF	SSP2IF	_	0000
IFS4	8Ch	DAC2IF	DAC1IF	CTMUIF	_	_	_	_	HLVDIF	_	_	_	_	_	U2ERIF	U1ERIF	_	0000
IFS5	8Eh	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ULPWUIF	0000
IFS6	90h	_	_	_	_	—	_	_	_	_	_	_	—	_	_	CLC2IF	CLC1IF	0000
IEC0	94h	NVMIE	_	AD1IE	U1TXIE	U1RXIE	_	_	CCT2IE	CCT1IE	CCP4IE	CCP3IE	—	T1IE	CCP2IE	CCP1IE	INT0IE	0000
IEC1	96h	U2TXIE	U2RXIE	INT2IE	CCT4IE	CCT3IE	_	_	_	_	CCP5IE	_	INT1IE	CNIE	CMIE	BCL1IE	SSP1IE	0000
IEC2	98h	_	_	_	_	—	_	CCT5IE	_	_	_	_	—	_	_	—	—	0000
IEC3	9Ah	_	RTCIE	_	_	—	_	_	_	_	_	_	_	_	BCL2IE	SSP2IE	_	0000
IEC4	9Ch	DAC2IE	DAC1IE	CTMUIE	—	_	-	_	HLVDIE	_	-	-	_	_	U2ERIE	U1ERIE	_	0000
IEC5	9Eh	_	_		_	_		_	_	_	-	-	_	_	_	_	ULPWUIE	0000
IEC6	A0h	_	_		—	_		_	_	_	-	-	_	_	-	CLC2IE	CLC1IE	0000
IPC0	A4h	_	T1IP2	T1IP1	T1IP0		CCP2IP2	CCP2IP1	CCP2IP0	_	CCP1IP2	CCP1IP1	CCP1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	A6h	_	CCT1IP2	CCT1IP1	CCT1IP0	_	CCP4IP2	CCP4IP1	CCP4IP0	_	CCP3IP2	CCP3IP1	CCP3IP0	_	_	_	_	4440
IPC2	A8h	_	U1RXIP2	U1RXIP1	U1RXIP0	_	-	_	_	_	_	_	_	_	CCT2IP2	CCT2IP1	CCT2IP0	4004
IPC3	AAh	_	NVMIP2	NVMIP1	NVMIP0	_		_	_	_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	ACh	_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	BCL1IP2	BCL1IP1	BCL1IP0	_	SSP1IP2	SSP1IP1	SSP1IP0	4444
IPC5	AEh	_	_		—	_	CCP5IP2	CCP5IP1	CCP5IP0	_	_	_	_	_	INT1IP2	INT1IP1	INT1IP0	0404
IPC6	B0h	_	CCT3IP2	CCT3IP1	CCT3IP0	—	-	_	_	_			—	_	-	—	—	4000
IPC7	B2h	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	CCT4IP2	CCT4IP1	CCT4IP0	4444
IPC10	B8h	_	_		—	_	-	_	_	_	CCT5IP2	CCT5IP1	CCT5IP0	_	_	_	_	0040
IPC12	BCh	_	_	_	_	—	BCL2IP2	BCL2IP1	BCL2IP0	_	SSP2IP2	SSP2IP1	SSP2IP0	_	-	_	_	0440
IPC15	C2h	_	_	_	_	—	RTCIP2	RTCIP1	RTCIP0	_	-		—	_	-	_	_	0400
IPC16	C4h	_	_	_	_	—	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0	_	_	_	_	0440
IPC18	C8h	_	_	_	_	—	—	—	—	_	—	—	—	_	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	CAh	_	DAC2IP2	DAC2IP1	DAC2IP0	—	DAC1IP2	DAC1IP1	DAC1IP0	_	CTMUIP2	CTMUIP1	CTMUIP0	_	—	—	—	4440
IPC20	CCh	_	_	—	—	—	_	_	—	_	—	—	—	_	ULPWUIP2	ULPWUIP1	ULPWUIP0	0004
IPC24	D4h	_	_	_	_		_	_	_	_	CLC2IP2	CLC2IP1	CLC2IP0	_	CLC1IP2	CLC1IP1	CLC1IP0	0044
INTTREG	E0h	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

TABLE 4-6: TIMER1 REGISTER MAP

			-	-														
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	100h		Timer1 Register xxxx															
PR1	102h		Timer1 Period Register FFFF											FFFF				
T1CON	104h	TON	ON — TSIDL — — TECS1 TECS0 — TGATE TCKPS0 — TSYNC TCS — 0000															
Lanandi																		

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-7: CLC1-2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CLC1CONL	122h	LCEN	—	_	—	INTP	INTN	—	—	LCOE	LCOUT	LCPOL	—	_	MODE2	MODE1	MODE0	0000
CLC1CONH	124h	_	_		_	_	_	_	_	_	_	_	_	G4POL	G3POL	G2POL	G1POL	0000
CLC1SEL	126h	_	DS42	DS41	DS40		DS32	DS31	DS30	—	DS22	DS21	DS20	_	DS12	DS11	DS10	0000
CLC1GLSL	12Ah	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	0000
CLC1GLSH	12Ch	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	0000
CLC2CONL ⁽¹⁾	12Eh	LCEN	_	-	_	INTP	INTN	_	_	LCOE	LCOUT	LCPOL	_	_	MODE2	MODE1	MODE0	0000
CLC2CONH ⁽¹⁾	130h	—	—	_	—	_	_	—	_	_	_	_	—	G4POL	G3POL	G2POL	G1POL	0000
CLC2SEL ⁽¹⁾	132h	—	DS42	DS41	DS40	_	DS32	DS31	DS30	_	DS22	DS21	DS20	—	DS12	DS11	DS10	0000
CLC2GLSL ⁽¹⁾	136h	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	0000
CLC2GLSH ⁽¹⁾	138h	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	0000

Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-9: MCCP2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP2CON1L	164h	CCPON	_	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP2CON1H	166h	OPSSRC	RTRGEN	_	_	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP2CON2L	168h	PWMRSEN	ASDGM		SSDG			_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP2CON2H	16Ah	OENSYNC	-	OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP2CON3L	16Ch	_	_	_	_	_	_	_	_	_		DT5	DT4	DT3	DT2	DT1	DT0	0000
CCP2CON3H	16Eh	OETRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾	_	_	POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0(1)	0000
CCP2STATL	170h	_	-		_			_	_	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP2TMRL	174h							MCC	P2 Time Ba	ase Register	r Low Word							0000
CCP2TMRH	176h							MCC	P2 Time Ba	se Register	High Word							0000
CCP2PRL	178h							MCCP2	Time Base	Period Regi	ister Low Wo	rd						FFFF
CCP2PRH	17Ah							MCCP2	Time Base I	Period Regi	ster High Wo	rd						FFFF
CCP2RAL	17Ch							0	utput Comp	oare 2 Data	Word A							0000
CCP2RBL	180h		Output Compare 2 Data Word B 000										0000					
CCP2BUFL	184h							Input	Capture 2	Data Buffer	Low Word							0000
CCP2BUFH	186h							Input	Capture 2	Data Buffer	High Word							0000

PIC24FV16KM204 FAMILY

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These bits are available only on PIC24F(V)16KM2XX devices.

TABLE 4-11: SCCP4 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP4CON1L ⁽¹⁾	1ACh	CCPON	_	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP4CON1H(1)	1AEh	OPSSRC	RTRGEN	—	_	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP4CON2L ⁽¹⁾	1B0h	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP4CON2H ⁽¹⁾	1B2h	OENSYNC	_	_	_	_	_	_	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP4CON3H ⁽¹⁾	1B6h	OETRIG	RIG OSCNT2 OSCNT1 OSCNT0 — — — — POLACE — PSSACE1 PSSACE0 — — 0000									0000						
CCP4STATL ⁽¹⁾	1B8h	_										0000						
CCP4TMRL ⁽¹⁾	1BCh							SCCP4	1 Time Base	Register Lo	ow Word							0000
CCP4TMRH ⁽¹⁾	1BEh							SCCP4	Time Base	Register Hi	gh Word							0000
CCP4PRL ⁽¹⁾	1C0h							SCCP4 Tir	ne Base Pe	riod Registe	er Low Word							FFFF
CCP4PRH ⁽¹⁾	1C2h							SCCP4 Tir	ne Base Pe	riod Registe	r High Word							FFFF
CCP4RAL ⁽¹⁾	1C4h							Out	put Compar	e 4 Data Wo	ord A							0000
CCP4RBL ⁽¹⁾	1C8h		Output Compare 4 Data Word B 0000										0000					
CCP4BUFL ⁽¹⁾	1CCh		Input Capture 4 Data Buffer Low Word 0000										0000					
CCP4BUFH ⁽¹⁾	1CEh							Input C	apture 4 Da	ita Buffer Hi	gh Word							0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

6.4.1 ERASE DATA EEPROM

The data EEPROM can be fully erased, or can be partially erased, at three different sizes: one word, four words or eight words. The bits, NVMOP<1:0> (NVMCON<1:0>), decide the number of words to be erased. To erase partially from the data EEPROM, the following sequence must be followed:

- 1. Configure NVMCON to erase the required number of words: one, four or eight.
- 2. Load TBLPAG and WREG with the EEPROM address to be erased.
- 3. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 4. Write the key sequence to NVMKEY.
- 5. Set the WR bit to begin the erase cycle.
- 6. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical erase sequence is provided in Example 6-2. This example shows how to do a one-word erase. Similarly, a four-word erase and an eight-word erase can be done. This example uses C library procedures to manage the Table Pointer (builtin_tblpage and builtin_tbloffset) and the Erase Page Pointer (builtin_tblwt1). The memory unlock sequence (builtin_write_NVM) also sets the WR bit to initiate the operation and returns control when complete.

EXAMPLE 6-2: SINGLE-WORD ERASE

```
int __attribute__ ((space(eedata))) eeData = 0x1234;
/*_____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the erase
_____
*/
   unsigned int offset;
   // Set up NVMCON to erase one word of data EEPROM
   NVMCON = 0 \times 4058;
   // Set up a pointer to the EEPROM location to be erased
   TBLPAG = __builtin_tblpage(&eeData); // Initialize EE Data page pointer
   offset = __builtin_tbloffset(&eeData);
                                           // Initizlize lower word of address
   __builtin_tblwtl(offset, 0);
                                           // Write EEPROM data to write latch
   asm volatile ("disi #5");
                                            // Disable Interrupts For 5 Instructions
   __builtin_write_NVM();
                                            // Issue Unlock Sequence & Start Write Cycle
   while(NVMCONbits.WR=1);
                                            // Optional: Poll WR bit to wait for
                                            // write sequence to complete
```

REGISTER 7-1:

RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0, H	S R/W-0, HS	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
TRAPR		SBOREN	RETEN ⁽³⁾	_	_	СМ	PMSLP
bit 15							bit 8
R/W-0, H	S R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit C
Legend:		HS = Hardwar	e Settable bit				
R = Read	able bit	W = Writable t	pit	U = Unimplen	nented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	-	Reset Flag bit					
	•	onflict Reset has					
1.11.4.4		onflict Reset has			E 1		
bit 14		gal Opcode or l			r Flag bit or Uninitialized V	/ register used	aa an Addraaa
		aused a Reset	on, an illegal a			v register used	as an Address
		opcode or Unir	nitialized W Re	set has not oc	curred		
bit 13	SBOREN: So	oftware Enable/D	Disable of BOF	R bit			
	1 = BOR is tu	rned on in softw	are				
		rned off in softw					
bit 12		ention Sleep Mo					
					Regulator (RETR ge Regulator (VF		
bit 11-10	-	ted: Read as '0					
bit 9	-	ation Word Misr		lag bit			
	-	Iration Word Mis		-			
	0 = A Configu	ration Word Mis	match Reset	has not occurre	ed		
bit 8	PMSLP: Prog	gram Memory Po	ower During S	leep bit			
		memory bias vo					
	0 = Program Standby		oltage is pow	vered down du	iring Sleep and	the voltage re	gulator enters
bit 7	•	nal Reset (MCLF	R) Pin hit				
bit i		Clear (pin) Rese		d			
		Clear (pin) Rese					
bit 6	SWR: Softwa	re reset (Instru	uction) Flag bit	t			
		instruction has t					
		instruction has r					
bit 5		oftware Enable/[Disable of WD	l bit ⁽²⁾			
	1 = WDT is ei 0 = WDT is di						
					-		
Note 1:	All of the Reset	•	be set or clear	ed in software.	Setting one of the	nese bits in soft	ware does not
2:	If the FWDTEN		tion bits are '1	1' (upprogram	med) the WDT i	is alwavs enabl	ed renardless
_ .	of the SWDTEN					ie amayo chabi	
-							

3: This is implemented on PIC24FV16KMXXX parts only; not used on PIC24F16KMXXX devices.

9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins

The PIC24FXXXXX family devices consist of two types of secondary oscillator:

- High-Power Secondary Oscillator
- Low-Power Secondary Oscillator

These can be selected by using the SOSCSEL (FOSC<5>) bit.

- Fast Internal RC (FRC) Oscillator:
 - 8 MHz FRC Oscillator
 - 500 kHz Lower Power FRC Oscillator
- Low-Power Internal RC (LPRC) Oscillator with two modes:
 - High-Power/High-Accuracy mode
 - Low-Power/Low-Accuracy mode

The Primary Oscillator and 8 MHz FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clock, Fcy. In this document, the instruction cycle clock is also denoted by Fosc/2. The internal instruction cycle clock, Fosc/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (for more information, see Section 25.1 "Configuration Bits"). The Primary Oscillator Configuration bits, POSCMD<1:0> (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a POR. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations. The EC mode Frequency Range Configuration bits, POSCFREQ<1:0> (FOSC<4:3>), optimize power consumption when running in EC mode. The default configuration is "frequency range is greater than 8 MHz".

The Configuration bits allow users to choose between the various clock modes, shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (FOSC<7:6>) are used jointly to configure device clock switching and the FSCM. Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
8 MHz FRC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
500 kHz FRC Oscillator with Postscaler (LPFRCDIV)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	00	100	1
Primary Oscillator (HS) with PLL Module (HSPLL)	Primary	10	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
8 MHz FRC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
8 MHz FRC Oscillator (FRC)	Internal	11	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: The OSCO pin function is determined by the OSCIOFNC Configuration bit.

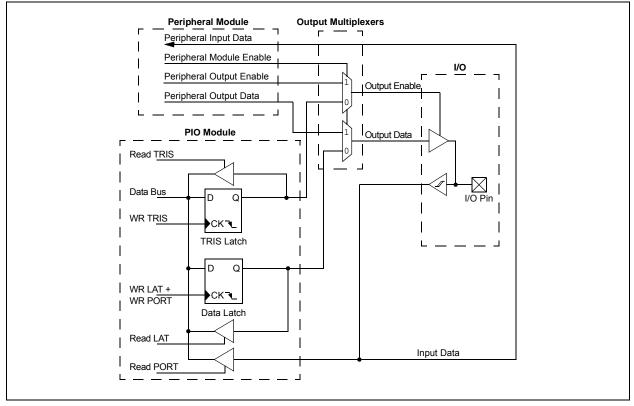
2: This is the default oscillator mode for an unprogrammed (erased) device.

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the I/O ports, refer to the *"PIC24F Family Reference Manual"*, *"I/O Ports with Peripheral Pin Select (PPS)"* (DS39711). Note that the PIC24FV16KM204 family devices do not support Peripheral Pin Select features.

All of the device pins (except VDD and VSS) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports


A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the Data Direction register bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Data Latch register (LATx), read the latch. Writes to the latch, write the latch. Reads from the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

REGISTER 11-2: ANSB: PORTB ANALOG SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	R/W-1	R/W-1
ANSB15	ANSB14	ANSB13	ANSB12	—		ANSB9	ANSB8
bit 15							bit 8

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSB7	ANSB6 ⁽¹⁾	ANSB5 ⁽¹⁾	ANSB4	ANSB3 ⁽¹⁾	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend

Legena:				
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-12 **ANSB<15:12>:** Analog Select Control bits 1 = Digital input buffer is not active (use for analog input)

- 0 = Digital input buffer is active
- bit 11-10 Unimplemented: Read as '0'
- bit 9-0 ANSB<9:0>: Analog Select Control bits⁽¹⁾
 - 1 = Digital input buffer is not active (use for analog input)
 - 0 = Digital input buffer is active
- Note 1: The ANSB<6:5,3> bits are not available on 20-pin devices.

REGISTER 11-3: ANSC: PORTC ANALOG SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—	—	—	—	—	ANSC2 ^(1,2)	ANSC1 ^(1,2)	ANSC0 ^(1,2)
bit 7							bit 0
Legend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 ANSC<2:0>: Analog Select Control bits^(1,2)

- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

REGISTER 13-5: CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS ⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	DT5	DT4	DT3	DT2	DT1	DT0			
bit 7		•		·			bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown					
bit 15-6	Unimplemented: Read as '0'									
bit 5-0	DT<5:0>: CCPx Dead-Time Select bits									
	111111 – I nc	111111 - Insert 62 dood time dolow periods between complementary output signals								

111111 = Insert 63 dead-time delay periods between complementary output signals
 111110 = Insert 62 dead-time delay periods between complementary output signals
 000010 = Insert 2 dead-time delay periods between complementary output signals
 000001 = Insert 1 dead-time delay period between complementary output signals

000000 = Dead-time logic is disabled

Note 1: This register is implemented in MCCPx modules only.

REGISTER 13-7: CCPxSTATL: CCPx STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_	—	_	—	_	—				
bit 15							bit 8			
			5/0.0	5/2.2	5/0.0	5/2.2	5/2.2			
R-0	W1-0	W1-0 TRCLR	R/C-0 ASEVT	R/C-0 SCEVT	R/C-0 ICDIS	R/C-0	R/C-0			
CCPTRIG	TRSET	ICOV	ICBNE							
bit 7							bit 0			
Legend:		C = Clearable	bit							
R = Readabl	e bit	W1 = Write '1'	only	U = Unimplem	nented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-8	Unimplemen	ted: Read as '0	,							
bit 7	CCPTRIG: CCPx Trigger Status bit									
	1 = Timer has been triggered and is running									
h :# 0	 0 = Timer has not been triggered and is held in Reset TRSET: CCPx Trigger Set Request bit 									
bit 6		is location to trig		when TRIGEN	= 1 (location a	wave reade as	: '∩')			
bit 5		Px Trigger Clear				ways icaus as	, , ,			
bit o		is location to ca	•	Trigger when T	RIGEN = 1 (lo	cation alwavs r	eads as '0').			
bit 4		x Auto-Shutdow			- (-	,	····,			
	1 = A shutdo	wn event is in p	rogress; CCP	x outputs are in	the shutdown	state				
	0 = CCPx outputs operate normally									
bit 3	•	le Edge Compa								
		edge compare e edge compare e								
bit 2	•	Capture x Disat		occurred						
Dit Z	•	Input Capture :		es not generate	a capture ever	nt				
		Input Capture								
bit 1	ICOV: Input Capture x Buffer Overflow Status bit									
		t Capture x FIF								
		t Capture x FIF		ot overflowed						
bit 0	•	Capture x Buffe		- - -						
		apture x buffer h apture x buffer i		adie						
			c sinply							

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾		
UARTEN	—	USIDL	IREN ⁽¹⁾	RTSMD	_	UEN1	UEN0		
bit 15							bit 8		
R/C-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL		
bit 7	LI DAOR		UIXIIIV	BRGH	TDSELT	T DOLLO	bit 0		
Legend:		C = Clearable			are Clearable bi				
R = Readabl		W = Writable	oit		mented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown		
bit 15	UARTEN: UA	ARTx Enable bit							
		s enabled; all U		e controlled by l	JARTx. as defir	ned by UEN<1:	0>		
		s disabled; all L							
bit 14	Unimplemen	ted: Read as 'd)'						
bit 13	USIDL: UAR	Tx Stop in Idle N	/lode bit						
		nues module op			ers Idle mode				
		0 = Continues module operation in Idle mode							
bit 12		Encoder and D							
		oder and decoo oder and decoo							
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bi	t					
		in is in Simplex in is in Flow Co							
bit 10	Unimplemen	ted: Read as 'd)'						
bit 9-8	UEN<1:0>: U	IARTx Enable b	its ⁽²⁾						
	10 = UxTX, U 01 = UxTX, U	JxRX and UxBC JxRX, UxCTS a JxRX and UxRT nd UxRX pins are	nd UxRTS pin S pins are en	is are enabled a abled <u>and us</u> ec	an <u>d used</u> I; <u>UxCTS</u> pin is	controlled by p	ort latches		
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	Enable bit				
	cleared in	vill continue to n hardware on t	•		rupt is generate	ed on the fallin	ig edge, bit is		
hit C		-up is enabled	Mada Salaat	hit					
bit 6		ARTx Loopback Loopback mode		DIL					
		k mode is disab							
bit 5	-	o-Baud Enable							
	cleared in	baud rate meas n hardware upo	n completion		er – requires re	ception of a Sy	nc field (55h);		
		e measurement		•					
bit 4		RTx Receive Po	plarity Inversio	n dit					
	1 = UxRX IdI 0 = UxRX IdI								
Note 1: Th	nis feature is is	only available fo	or the 16x BR	G mode (BRGF	I = 0).				
		, donondo on th		-					

REGISTER 15-1: UXMODE: UARTX MODE REGISTER

2: The bit availability depends on the pin availability.

16.2.5 RTCVAL REGISTER MAPPINGS

REGISTER 16-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | • | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 16-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

- bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
- bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

NOTES:

REGISTER 24-1: CTMUCON1L: CTMU CONTROL 1 LOW REGISTER (CONTINUED)

- bit 1-0 IRNG<1:0>: Current Source Range Select bits
 - 11 = 100 × Base Current
 - 10 = 10 × Base Current
 - 01 = Base Current Level (0.55 μA nominal)
 - 00 = 1000 × Base Current

REGISTER 25-8: DEVID: DEVICE ID REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16

R	R	R	R	R	R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15 bit 8							

R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:				
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 23-16	Unimplemented: Read as '0'
bit 15-8	FAMID<7:0>: Device Family Identifier bits
	01000101 = PIC24FV16KM204 family
bit 7-0	DEV<7:0>: Individual Device Identifier bits
	00011111 = PIC24FV16KM204
	00011011 = PIC24FV16KM202
	00010111 = PIC24FV08KM204
	00010011 = PIC24FV08KM202
	00001111 = PIC24FV16KM104
	00001011 = PIC24FV16KM102
	00000011 = PIC24FV08KM102
	00000001 = PIC24FV08KM101
	00011110 = PIC24F16KM204
	00011010 = PIC24F16KM202
	00010110 = PIC24F08KM204
	00010010 = PIC24F08KM202
	00001110 = PIC24F16KM104
	00001010 = PIC24F16KM102
	00000010 = PIC24F08KM102
	00000000 = PIC24F08KM101

REGISTER 25-9: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_	_	_	_
bit 23				bit 16			
							J
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15	bit 15 bi						
U-0	U-0	U-0	U-0	R	R	R	R
—	—	—	—	REV3	REV2	REV1	REV0
bit 7	bit 7 bit 0						
Legend:							
R = Readable bit W = Writal		W = Writable	bit	U = Unimplemented bit, read a		l as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Minor Revision Identifier bits

NOTES: