

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km202t-i-so

Email: info@E-XFL.COM

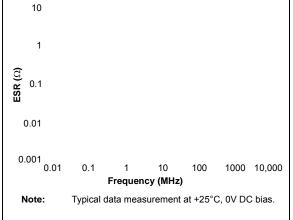
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F					FV					
		I	Pin Numb	er				Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
CN13	16	24	21	11	12	16	24	21	11	12	I	ST	Interrupt-on-Change Inputs
CN14	15	23	20	10	11	15	23	20	10	11	I	ST	Interrupt-on-Change Inputs
CN15	—	22	19	9	10	—	22	19	9	10	I	ST	Interrupt-on-Change Inputs
CN16	_	21	18	8	9	_	21	18	8	9	I	ST	Interrupt-on-Change Inputs
CN17	—	—		3	3	—		—	3	3	I	ST	Interrupt-on-Change Inputs
CN18	—	—		2	2	—		—	2	2	I	ST	Interrupt-on-Change Inputs
CN19	—	—		5	5	—		—	5	5	I	ST	Interrupt-on-Change Inputs
CN20	—	—		4	4	—		—	4	4	I	ST	Interrupt-on-Change Inputs
CN21	13	18	15	1	1	13	18	15	1	1	I	ST	Interrupt-on-Change Inputs
CN22	12	17	14	44	48	12	17	14	44	48	I	ST	Interrupt-on-Change Inputs
CN23	11	16	13	43	47	11	16	13	43	47	I	ST	Interrupt-on-Change Inputs
CN24	—	15	12	42	46	—	15	12	42	46	I	ST	Interrupt-on-Change Inputs
CN25	_	_		37	40	_		_	37	40	I	ST	Interrupt-on-Change Inputs
CN26	_	_		38	41	_		_	38	41	I	ST	Interrupt-on-Change Inputs
CN27	_	14	11	41	45	_	14	11	41	45	I	ST	Interrupt-on-Change Inputs
CN28	—	—		36	39	—		—	36	39	I	ST	Interrupt-on-Change Inputs
CN29	8	10	7	31	34	8	10	7	31	34	I	ST	Interrupt-on-Change Inputs
CN30	7	9	6	30	33	7	9	6	30	33	I	ST	Interrupt-on-Change Inputs
CN31	—	—		26	28	—		—	26	28	I	ST	Interrupt-on-Change Inputs
CN32	—	—		25	27	—		—	25	27	I	ST	Interrupt-on-Change Inputs
CN33	—	—		32	35	—		—	32	35	I	ST	Interrupt-on-Change Inputs
CN34	_	_	_	35	38	_		_	35	38	I	ST	Interrupt-on-Change Inputs
CN35	_	_	_	12	13	_		_	12	13	I	ST	Interrupt-on-Change Inputs
CN36	_	_	_	13	14	_		_	13	14	I	ST	Interrupt-on-Change Inputs
CTCMP	4	4	1	21	23	4	4	1	21	23	I	ANA	CTMU Comparator Input

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

2.4 Voltage Regulator Pin (VCAP)


Note:	This section		appli	applies			to
	PIC24FV16KM		devices	with	an	on-	chip
	voltage	regulato	or.				

Some of the PIC24FV16KM devices have an internal voltage regulator. These devices have the voltage regulator output brought out on the VCAP pin. On the PIC24F K devices with regulators, a low-ESR (< 5 Ω) capacitor is required on the VCAP pin to stabilize the voltage regulator output. The VCAP pin must not be connected to VDD and must use a capacitor of 10 μ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 27.0** "**Electrical Characteristics**" for additional information. Refer to **Section 27.0 "Electrical Characteristics"** for information on VDD and VDDCORE.

FIGURE 2-3: FREQUENCY vs. ESR PERFORMANCE FOR SUGGESTED VCAP

TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS

Make	Part #	Nominal Capacitance Base Tolerance		Rated Voltage	Temp. Range
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to +125°C
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to +85°C
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to +125°C
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to +85°C
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to +125°C
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to +85°C

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Flash programming, refer to the "PIC24F Family Reference Manual", "Program Memory" (DS39715).

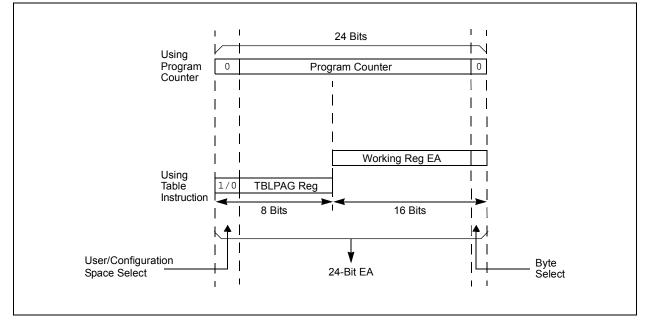
The PIC24FV16KM204 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 1.8V.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FXXXXX device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear/Program Mode Entry Voltage (MCLR/VPP). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or custom firmware to be programmed. Run-Time Self-Programming (RTSP) is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 32 instructions (96 bytes) at a time, and erase program memory in blocks of 32, 64 and 128 instructions (96,192 and 384 bytes) at a time.

The NVMOP<1:0> (NVMCON<1:0>) bits decide the erase block size.


5.1 Table Instructions and Flash Programming

Regardless of the method used, Flash memory programming is done with the Table Read and Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as depicted in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY ⁽⁴⁾	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ERASE	NVMOP5 ⁽¹⁾	NVMOP4 ⁽¹⁾	NVMOP3 ⁽¹⁾	NVMOP2 ⁽¹⁾	NVMOP1 ⁽¹⁾	NVMOP0 ⁽¹⁾
bit 7							bit 0

Legend:	SO = Settable Only bit	HC = Hardware Clearable bit			
-n = Value at POR	'1' = Bit is set	R = Readable bit	W = Writable bit		
'0' = Bit is cleared	x = Bit is unknown	U = Unimplemented bit, rea	d as '0'		

bit 15	WR: Write Control bit
	1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is
	cleared by hardware once the operation is complete
	0 = Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit
	1 = Enables Flash program/erase operations
	0 = Inhibits Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit
	1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically
	on any set attempt of the WR bit)
	0 = The program or erase operation completed normally
bit 12	PGMONLY: Program Only Enable bit ⁽⁴⁾
bit 11-7	Unimplemented: Read as '0'
bit 6	ERASE: Erase/Program Enable bit
	 1 = Performs the erase operation specified by the NVMOP<5:0> bits on the next WR command 0 = Performs the program operation specified by the NVMOP<5:0> bits on the next WR command
bit 5-0	NVMOP<5:0>: Programming Operation Command Byte bits ⁽¹⁾
	Erase Operations (when ERASE bit is '1'):
	1010xx = Erase entire boot block (including code-protected boot block) ⁽²⁾
	1001xx = Erase entire memory (including boot block, configuration block, general block) ⁽²⁾
	011010 = Erase 4 rows of Flash memory ⁽³⁾
	011001 = Erase 2 rows of Flash memory ⁽³⁾
	011000 = Erase 1 row of Flash memory ⁽³⁾
	0101xx = Erase entire configuration block (except code protection bits)
	0100xx = Erase entire data EEPROM ⁽⁴⁾
	0011xx = Erase entire general memory block programming operations
	0001xx = Write 1 row of Flash memory (when ERASE bit is '0') ⁽³⁾
Note 1:	All other combinations of NVMOP<5:0> are no operation.
2:	Available in ICSP™ mode only. Refer to the device programming specification.
2.	The address in the Table Deinter decides which rows will be created

- 3: The address in the Table Pointer decides which rows will be erased.
- 4: This bit is used only while accessing data EEPROM.

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

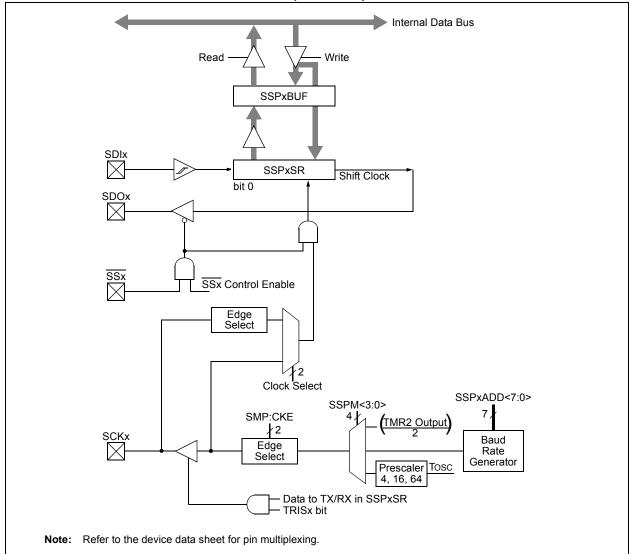
R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

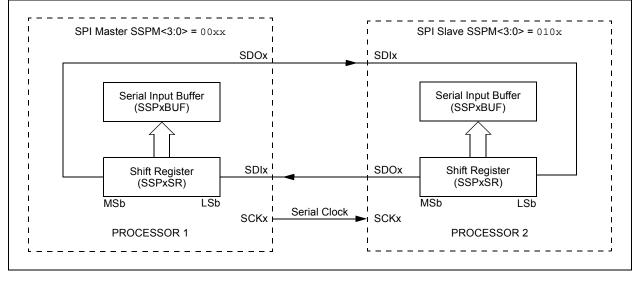
Legend:		HS = Hardware Settable bi	t	
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	1 = Interru	Interrupt Nesting Disable bit Ipt nesting is disabled		
bit 14-5		ipt nesting is enabled nented: Read as '0'		
bit 4	MATHERI 1 = Overfl	R: Arithmetic Error Trap Status t ow trap has occurred ow trap has not occurred	bit	
bit 3	1 = Addre	R: Address Error Trap Status bit ss error trap has occurred ss error trap has not occurred		
bit 2	1 = Stack	Stack Error Trap Status bit error trap has occurred error trap has not occurred		
bit 1	1 = Oscilla	Oscillator Failure Trap Status t ator failure trap has occurred ator failure trap has not occurred		
bit 0	Unimplen	nented: Read as '0'		

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—	CCT1IP2	CCT1IP1	CCT1IP0	—	CCP4IP2	CCP4IP1	CCP4IP0			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
	CCP3IP2	CCP3IP1	CCP3IP0							
bit 7	0010112						bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15	-	ted: Read as '								
bit 14-12	CCT1IP<2:0>	: Capture/Com	pare 1 Timer I	nterrupt Priority	/ bits					
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
	001 = Interrupt is Priority 1									
	•	pt source is dis								
bit 11	-	ted: Read as '								
bit 10-8	CCP4IP<2:0>: Capture/Compare 4 Event Interrupt Priority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
	001 = Interrupt is Priority 1									
	-	pt source is dis								
bit 7	-	ted: Read as '								
bit 6-4	CCP3IP<2:0>: Capture/Compare 3 Event Interrupt Priority bits									
	 111 = Interrupt is Priority 7 (highest priority interrupt) 									
	•									
	•									
	001 = Interru	pt is Priority 1 pt source is dis	ablad							
bit 3-0	•	ted: Read as '								
DIL 3-0	Unimplemen	ieu: Reau as	J							

REGISTER 8-20: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1


			-									
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
_	_	_	_	_	BCL2IP2	BCL2IP1	BCL2IP0					
oit 15		BCL2IP2BCL2IP1R/W-0R/W-0U-0U-0U-02SSP2IP1SSP2IP0W = Writable bitU = Unimplemented bit, read as '0''1' = Bit is set'0' = Bit is clearedx = Bit is unknowmented: Read as '0'2:0>: MSSP2 I ² CTM Bus Collision Interrupt Priority bitserrupt is Priority 7 (highest priority interrupt)	bit 8									
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
—	SSP2IP2	SSP2IP1	SSP2IP0		—	—	—					
bit 7							bit 0					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15-11	Unimplemented: Read as '0'											
bit 10-8	BCL2IP<2:0>: MSSP2 I ² C [™] Bus Collision Interrupt Priority bits											
	111 = Interru	pt is Priority 7(highest priority	/ interrupt)								
	•											
	•											
	001 = Interrupt is Priority 1											
	000 = Interru	pt source is dis	abled									
bit 7	Unimplemen	nted: Read as '	o'									
bit 6-4	SSP2IP<2:0>	SPI/I SPI/I	² C Event Inter	rupt Priority bit	ts							
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)								
	•											
	•											
	001 = Interru	pt is Priority 1										
	000 = Interru	pt source is dis	abled									
bit 3-0	Unimplemen	ted: Read as '	כ'									

REGISTER 8-28: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12


U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_					U2ERIP2	U2ERIP1	U2ERIP0
oit 15			•			•	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	U1ERIP2	U1ERIP1	U1ERIP0	—	—	—	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 10-8 bit 7 bit 6-4	<pre>111 = Interru </pre>	>: UART2 Error pt is Priority 7 (pt is Priority 1 pt source is dis nted: Read as ' >: UART1 Error pt is Priority 7 (highest priority abled o'	interrupt)			
bit 3-0	• • 001 = Interru 000 = Interru	pt is Priority 1 pt is Priority 1 pt source is dis nted: Read as '	abled	interrupt)			

REGISTER 8-30: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_		_	_	—	_						
bit 15	·		·				bit					
R/W-0		R-0	R-0	R-0	R-0	R-0	R-0					
SMP	CKE	D/A	P ⁽¹⁾	S ⁽¹⁾	R/W	UA	BF					
bit 7							bit					
Legend:												
R = Read	able bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'						
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	iown					
bit 15-8	Unimplemen	ted: Read as	0'									
bit 7	SMP: Slew R	ate Control bit										
	In Master or S											
				ard Speed mode		I 1 MHz)						
bit 6	CKE: SMBus				(0 KHZ)							
DIL O	In Master or S											
		SMBus-specific	c inputs									
	0 = Disables	0 = Disables SMBus-specific inputs										
bit 5	D/A: Data/Ad	D/A: Data/Address bit										
	<u>In Master mo</u> Reserved.	<u>de:</u>										
	In Slave mod		(
				transmitted wa transmitted wa								
bit 4	P: Stop bit ⁽¹⁾				5 4441055							
bit 4		1 = Indicates that a Stop bit has been detected last										
		vas not detecte										
bit 3	S: Start bit ⁽¹⁾											
		that a Start bit vas not detecte		ected last								
bit 2	R/W: Read/W	Vrite Informatio	n bit									
	In Slave mod	<u>e:</u> (2)										
	1 = Read											
	0 = Write In Master mo	do.(3)										
		is in progress										
		is not in progre	ess									
bit 1	UA: Update /	Address bit (10	-Bit Slave mod	le only)								
		that the user r does not need		e the address ir	the SSPxADE) register						
Note 1:	This bit is cleared	d on Reset and	when SSPEN	is cleared.								
2:	This bit holds the address match to				ss match. This	bit is only valid	from the					
3:	ORing this bit wit	h SEN, RSEN,	PEN. RCEN	or ACKEN will in	ndicate if the M	SSPx is in Activ	ve mode					

REGISTER 14-2: SSPxSTAT: MSSPx STATUS REGISTER (I²C[™] MODE)

15.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated 16-bit Baud Rate Generator (BRG). The UxBRG register controls the period of a free-running, 16-bit timer. Equation 15-1 provides the formula for computation of the baud rate with BRGH = 0.

EQUATION 15-1: UARTX BAUD RATE WITH BRGH = $0^{(1)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ $UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$ Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 15-1 provides the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 15-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 15-2: UARTx BAUD RATE WITH BRGH = $1^{(1)}$

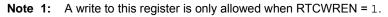
	Ba	ud Rate =	$\frac{FCY}{4 \bullet (UxBRG + 1)}$	
	Ux	BRG =	FCY 4 • Baud Rate	- 1
Note	1:		n Fcy = Fosc/2; D are disabled.	oze mode

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 15-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate	=	FCY/(16 (UxBRG + 1))
Solving for UxBRG va	lue	:
UxBRG UxBRG	=	((FCY/Desired Baud Rate)/16) – 1 ((4000000/9600)/16) – 1
UxBRG		25
Calculated Baud Rate		4000000/(16 (25 + 1)) 9615
Error		(Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate (9615 – 9600)/9600
	=	0.16%
Note 1: Based on	Fc	Y = FOSC/2; Doze mode and PLL are disabled.


REGISTER 16-11: RTCCSWT: RTCC CONTROL/SAMPLE WINDOW TIMER REGISTER⁽¹⁾

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 15 | • | | | | | | bit 8 |

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSAMP7 | PWCSAMP6 | PWCSAMP5 | PWCSAMP4 | PWCSAMP3 | PWCSAMP2 | PWCSAMP1 | PWCSAMP0 |
| bit 7 | | | | | | | bit 0 |

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

01010-8	PWCSTAB<7:0>: PWW Stability Window Timer bits
	11111111 = Stability window is 255 TPWCCLK clock periods
	00000000 = Stability window is 0 TPWCCLK clock periods
	The sample window starts when the alarm event triggers. The stability window timer starts counting from every alarm event when PWCEN = 1.
bit 7-0	PWCSAMP<7:0>: PWM Sample Window Timer bits
	11111111 = Sample window is always enabled, even when PWCEN = 0
	11111110 = Sample window is 254 TPWCCLK clock periods
	00000000 = Sample window is 0 TPWCCLK clock periods
	The sample window timer starts counting at the end of the stability window when PWCEN = 1. If $PWCSTAB<7:0> = 00000000$, the sample window timer starts counting from every alarm event when $PWCEN = 1$.

16.3 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value, loaded into the lower half of RCFGCAL, is multiplied by four and will be either added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- 3. a) If the oscillator is faster than ideal (negative result from Step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from Step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

EQUATION 16-1:

(Ideal Frequency [†] – Measured Frequency) *	
60 = Clocks per Minute	
† Ideal Frequency = 32,768 Hz	

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse, except when SECONDS = 00, 15, 30 or 45. This is due to the auto-adjust of the RTCC at 15 second intervals.

Note: It is up to the user to include, in the error value, the initial error of the crystal: drift due to temperature and drift due to crystal aging.

16.4 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options are available

16.4.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 16-2, the interval selection of the alarm is configured through the AMASKx bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPTx bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled, and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

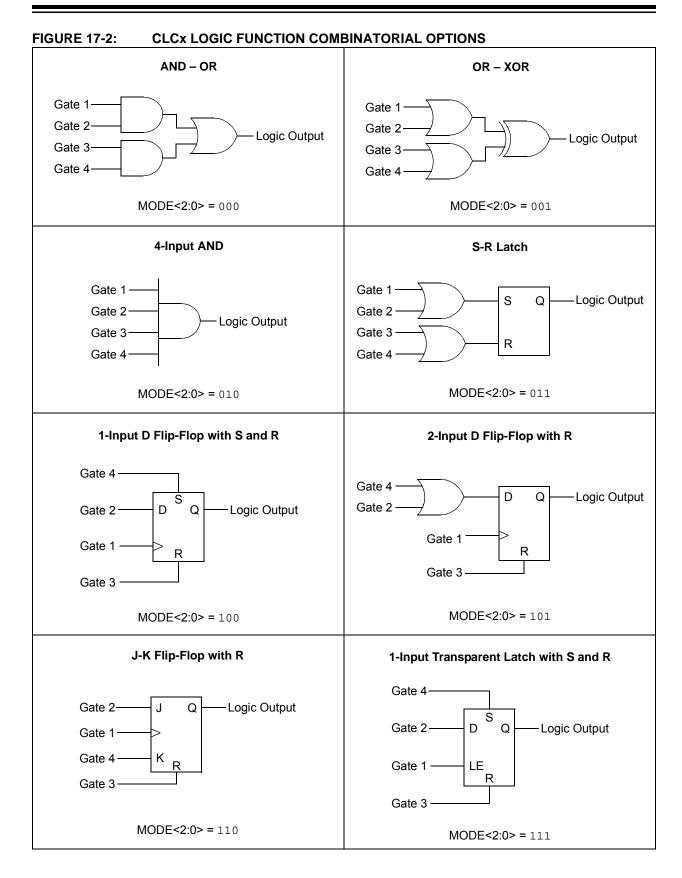
After each alarm is issued, the value of the ARPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

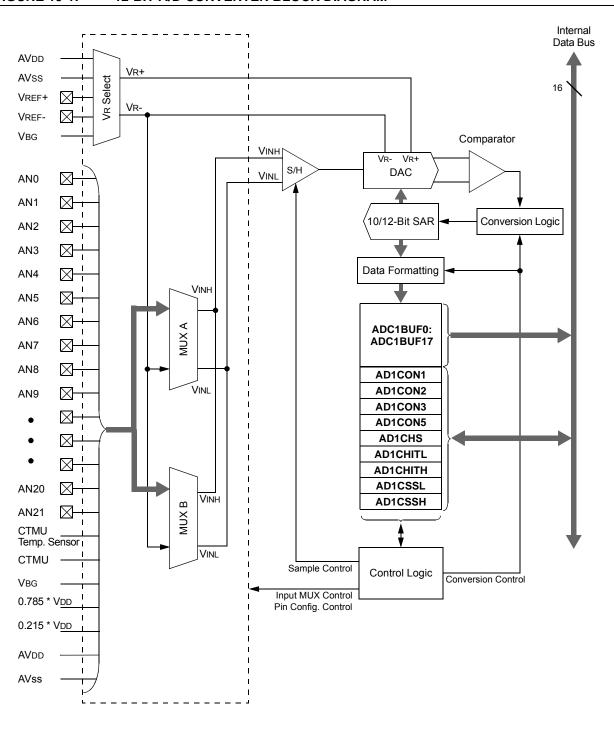
Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

16.4.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a Trigger clock to other peripherals.

Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.


FIGURE 16-2:	ALARM MASK SE	ITINGS					
Alarm Mas (AMASK	k Setting <<3:0>)	Day of the Week	Month	Day	Hours	Minutes	Seconds
0000 - Every 0001 - Every							
0010 - Every	10 seconds						s
0011 - Every	minute						SS
0100 - Every	10 minutes					m	SS
0101 - Every	hour					m m :	S S
0110 - Every	day				h h :	m m :	S S
0111 - Every	week	d			h h :	m m :	S S
1000 - Every	month			b	h h :	m m :	S S
1001 - Every	year ⁽¹⁾		m m / 0	b	h h :	m m :	s s
Note 1: A	nnually, except when cor	ifigured foi	r February 29.				


16.5 Power Control

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake from the current low-power mode (Sleep, Deep Sleep, etc.).

To enable this feature, the RTCC must be enabled (RTCEN = 1), the PWCEN register bit must be set and the RTCC pin must be driving the PWC control signal (RTCOE = 1 and RTCCLK<1:0> = 11).

The polarity of the PWC control signal may be chosen using the PWCPOL register bit. Active-low or active-high may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin. This setting is able to drive the GND pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

FIGURE 19-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM

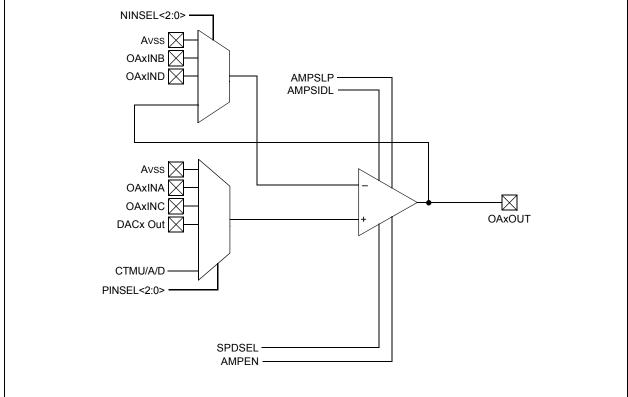
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0						
bit 15							bit						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
CH0NA2	CH0NA1	CHONAO	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0						
bit 7							bit						
Legend:													
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown						
L: 45 40		· Comple D Ch	annal O Nagati	ve less to Celest	h:to								
bit 15-13	CH0NB<2:0>: Sample B Channel 0 Negative Input Select bits												
	111 = ANG(1) 110 = ANG(2)												
	$110 = AN5^{(2)}$												
	101 = AN4												
	100 = AN3												
	011 = AN2 010 = AN1												
	010 = AN1 001 = AN0												
	000 = AVss												
bit 12-8	CH0SB<4:0>: S/H Amplifier Positive Input Select for MUX B Multiplexer Setting bits												
	11111 = Unimplemented, do not use												
	11110 = $AVDD^{(3)}$												
	11101 = AVss ⁽³⁾												
	11100 = Upper guardband rail (0.785 * VDD)												
	11011 = Lower guardband rail (0.215 * VDD)												
		rnal Band Gap											
		1 = Unimpleme											
				puts are floating									
				puts are floatin									
	10110 = No channels are connected, all inputs are floating (used for CTMU temperature sensor input)												
	does not require the corresponding CTMEN22 (AD1CTMENH<6>) bit)												
	10101 = Channel 0 positive input is AN21 10100 = Channel 0 positive input is AN20												
	10100 = Channel 0 positive input is AN20 10011 = Channel 0 positive input is AN19												
	10011 = Channel 0 positive input is AN19 10010 = Channel 0 positive input is AN18 ⁽²⁾												
	10001 = Channel 0 positive input is AN17 ⁽²⁾ 10001 = Channel 0 positive input is AN17 ⁽²⁾												
	•												
	•												
	01001 = Channel 0 positive input is AN9												
	01000 = Channel 0 positive input is AN8 ⁽¹⁾												
	00111 = Channel 0 positive input is AN7 ⁽¹⁾												
	00110 = Channel 0 positive input is AN6 ⁽¹⁾ 00101 = Channel 0 positive input is AN5 ⁽²⁾												
				,									
		annel 0 positive											
		annel 0 positive annel 0 positive											
		annel 0 positive											
		annel 0 positive											
Note 1: T	his is implement		•										
	his is implement	-	-	es only									
Z . 1				So only.									

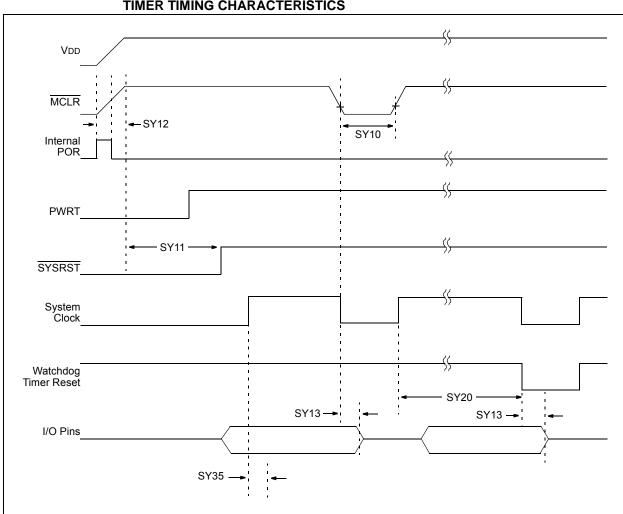
3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER

DS30003030B-page 218

21.0 DUAL OPERATIONAL AMPLIFIER MODULE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, *"Operational Amplifier (Op Amp)"* (DS30505). Device-specific information in this data sheet supersedes the information in the *"PIC24F Family Reference Manual"*.


PIC24FV16KM204 family devices include two operational amplifiers to complement the microcontroller's other analog features. They may be used to provide analog signal conditioning, either as stand-alone devices or in addition to other analog peripherals. The two op amps are functionally identical; the block diagram for a single amplifier is shown in Figure 21-1. Each op amp has these features:

- · Internal unity-gain buffer option
- Multiple input options each on the inverting and non-inverting amplifier inputs
- · Rail-to-rail input and output capabilities
- User-selectable option for regular or low-power operation
- User-selectable operation in Idle and Sleep modes

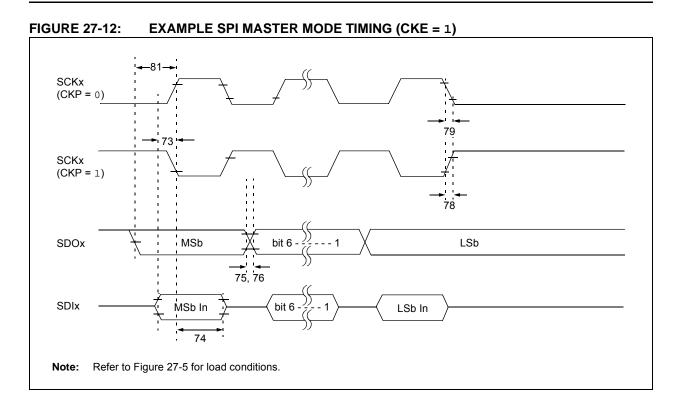

When using the op amps, it is recommended to set the ANSx and TRISx bits of both the input and output pins to configure them as analog pins. See **Section 11.2 "Configuring Analog Port Pins"** for more information.

FIGURE 27-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 27-30: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	35	—	ns	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	—	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	—	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	—	ns	
	Fsck	SCKx Frequency	_	10	MHz	