

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km202t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

							-		-		-		
	F					FV							
			Pin Numb	ber			Pin Number						
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
CN13	16	24	21	11	12	16	24	21	11	12	I	ST	Interrupt-on-Change Inputs
CN14	15	23	20	10	11	15	23	20	10	11	Ι	ST	Interrupt-on-Change Inputs
CN15	_	22	19	9	10	_	22	19	9	10	Ι	ST	Interrupt-on-Change Inputs
CN16	_	21	18	8	9	_	21	18	8	9	Ι	ST	Interrupt-on-Change Inputs
CN17	_	_	_	3	3	—	_	—	3	3	I	ST	Interrupt-on-Change Inputs
CN18	_	_	_	2	2	—	_	—	2	2	I	ST	Interrupt-on-Change Inputs
CN19	_	—	—	5	5	_	—	—	5	5	Ι	ST	Interrupt-on-Change Inputs
CN20	_	—	—	4	4	_	—	—	4	4	Ι	ST	Interrupt-on-Change Inputs
CN21	13	18	15	1	1	13	18	15	1	1	Ι	ST	Interrupt-on-Change Inputs
CN22	12	17	14	44	48	12	17	14	44	48	Ι	ST	Interrupt-on-Change Inputs
CN23	11	16	13	43	47	11	16	13	43	47	Ι	ST	Interrupt-on-Change Inputs
CN24	_	15	12	42	46	_	15	12	42	46	Ι	ST	Interrupt-on-Change Inputs
CN25	_	_	_	37	40	_	_	_	37	40	Ι	ST	Interrupt-on-Change Inputs
CN26	_	_	_	38	41	_	_	_	38	41	Ι	ST	Interrupt-on-Change Inputs
CN27	_	14	11	41	45	_	14	11	41	45	I	ST	Interrupt-on-Change Inputs
CN28	_	_	_	36	39	_	_	_	36	39	Ι	ST	Interrupt-on-Change Inputs
CN29	8	10	7	31	34	8	10	7	31	34	Ι	ST	Interrupt-on-Change Inputs
CN30	7	9	6	30	33	7	9	6	30	33	Ι	ST	Interrupt-on-Change Inputs
CN31	_	—	_	26	28	—	—	—	26	28	Ι	ST	Interrupt-on-Change Inputs
CN32	_	—	_	25	27	—	—	—	25	27	Ι	ST	Interrupt-on-Change Inputs
CN33	_	—	_	32	35	—	—	—	32	35	Ι	ST	Interrupt-on-Change Inputs
CN34	_	—	_	35	38	—	—	—	35	38	Ι	ST	Interrupt-on-Change Inputs
CN35	_	_	_	12	13	_	—		12	13	Ι	ST	Interrupt-on-Change Inputs
CN36	_	_	_	13	14	_	—		13	14	Ι	ST	Interrupt-on-Change Inputs
CTCMP	4	4	1	21	23	4	4	1	21	23	Ι	ANA	CTMU Comparator Input

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 µF nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

DC BIAS VOLTAGE vs. FIGURE 2-4: CAPACITANCE **CHARACTERISTICS** Capacitance Change (%) 0 -10 6V Capacito -20 -30 -40 10V Capacitor -50 -60 -70 6.3V Capacitor -80 -9 10 11 12 13 2 8 15 16 DC Bias Voltage (VDC)

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 3.3V or 2.5V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pins, Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 26.0 "Development Support"**.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with Data Memory Space Addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables, located from 000004h to 0000FFh, and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. **Section 8.1 "Interrupt Vector Table (IVT)**" discusses the Interrupt Vector Tables in more detail.

4.1.3 DATA EEPROM

In the PIC24FV16KM204 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit-wide memory and 256 words deep. This memory is accessed using Table Read and Write operations similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24FV16KM204 family. Their location in the memory map is displayed in Figure 4-1.

Refer to **Section 25.1** "**Configuration Bits**" for more information on device Configuration Words.

TABLE 4-1: DEVICE CONFIGURATION WORDS FOR PIC24FXXXXX FAMILY DEVICES

Configuration Word	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION msw most significant word least significant word PC Address (Isw Address) Address 16 8 Λ 23 000000h 000001h 00000000 0000000 000002h 000003h 000004h 00000000 000005h 0000000 000006h 000007h Instruction Width Program Memory Phantom' Byte (read as '0')

TABLE 4-24: PAD CONFIGURATION REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	2FCh	_	_	_		SDO2DIS ⁽¹⁾	SCK2DIS ⁽¹⁾	SDO1DIS	SCK1DIS	_	_	_	_	_	_	_	_	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These bits are not available on the PIC24F(V)08KM101 device, read as '0'.

REGISTER 8-19: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
_	T1IP2	T1IP1	T1IP0	_	CCP2IP2	CCP2IP1	CCP2IP0	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
	CCP1IP2	CCP1IP1	CCP1IP0	—	INT0IP2	INT0IP1 INT0IP0		
bit 7							bit 0	
Legend:	1.11							
R = Readable		vv = vvritable i	זונ		hented bit, read			
-n = Value at	POR	'1' = Bit is set		0° = Bit is clea	ared	x = Bit is unkr	iown	
bit 15	Unimplemen	ted: Read as '() ²					
bit 14-12		imer1 Interrunt	, Priority hits					
511 14 12	111 = Interrup	it is Priority 7 (h	ighest priority	interrupt)				
	•	(.g. loot p. lonty					
	•							
	•							
	001 = Interrup 000 = Interrup	ot is Priority 1 of source is disa	abled					
bit 11	Unimplemen	ted: Read as '0)'					
bit 10-8	CCP2IP<2:0>	: Capture/Com	pare 2 Event I	nterrupt Priority	/ bits			
	111 = Interrup	t is Priority 7 (h	ighest priority	interrupt)				
	•		5					
	•							
	• 001 - Interrur	t io Driarity 1						
	001 = Interrup 000 = Interrup	ot is Priority 1	abled					
bit 7	Unimplemen	ted: Read as '()'					
bit 6-4	CCP1IP-2:05	· Canture/Com	, nare 1 Event I	nterrunt Priority	/ hits			
	111 = Interrup	t is Priority 7 (h	ighest priority	interrupt)				
	•		.g					
	•							
	•	tio Drievity 1						
	001 = Interrup 000 = Interrup	ot is Priority 1	abled					
hit 3	Unimplemen	ted: Read as '()'					
bit 2-0		External Intern	unt 0 Interrunt	Priority bits				
Dit 2 0	111 = Interrur	ot is Priority 7 (I	nighest priority	interrunt)				
	•		igneet prienty	interrupt)				
	•							
	•	at in Deiceite d						
	001 = Interrup	ot is Priority 1	abled					

REGISTER 14-2: SSPxSTAT: MSSPx STATUS REGISTER (I²C[™] MODE) (CONTINUED)

- BF: Buffer Full Status bit
- In Transmit mode:

bit 0

- 1 = Transmit is in progress, SSPxBUF is full
- 0 = Transmit is complete, SSPxBUF is empty
- In Receive mode:
- 1 = SSPxBUF is full (does not include the \overline{ACK} and Stop bits)
- 0 = SSPxBUF is empty (does not include the \overline{ACK} and Stop bits)
- **Note 1:** This bit is cleared on Reset and when SSPEN is cleared.
 - 2: This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or not ACK bit.
 - 3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

NOTES:

18.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information on
	the High/Low-Voltage Detect, refer to
	the "PIC24F Family Reference Manual",
	"High-Level Integration with
	Programmable High/Low-Voltage
	Detect (HLVD)" (DS39725).

The High/Low-Voltage Detect module (HLVD) is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The HLVD Control register (see Register 18-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

FIGURE 18-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
ADON		ADSIDL	_		MODE12	FORM1	FORM0			
bit 15		11					bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC			
SSRC3	SSRC2	SSRC1	SSRC0	_	ASAM	SAMP	DONE			
bit 7							bit 0			
r										
Legend:		C = Clearable	bit	U = Unimplem	nented bit, reac	l as '0'				
R = Readable	e bit	W = Writable b	pit	HSC = Hardw	are Settable/C	learable bit				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15	ADON: A/D C 1 = A/D Conv 0 = A/D Conv	operating Mode verter is operatin verter is off	bit ng							
bit 14	Unimplement	ted: Read as '0	,							
bit 13	ADSIDL: A/D	Stop in Idle Mo	de bit							
	1 = Discontin 0 = Continues	ues module ope s module opera	eration when o tion in Idle mo	device enters Id ode	le mode					
bit 12-11	Unimplement	ted: Read as '0	,							
bit 10	MODE12: 12-	Bit A/D Operati	on Mode bit							
	1 = 12-bit A/E 0 = 10-bit A/E	D operation D operation								
bit 9-8	FORM<1:0>:	Data Output Fo	rmat bits (see	the following for	ormats)					
	 11 = Fractiona 10 = Absolute 01 = Decimal 00 = Absolute 	al result, signed e fractional resu result, signed, e decimal result	l, left justified lt, unsigned, le right justified , unsigned, rig	eft justified ht justified						
bit 7-4	SSRC<3:0>: 3	Sample Clock S	Source Select	bits						
	1111 = Reser	rved								
	•									
	•									
	1101 = Reser	ved								
	 1101 = Reserved 1100 = CLC2 event ends sampling and starts conversion 1011 = SCCP4 Compare Event (CCP4IF) ends sampling and starts conversion 1010 = MCCP3 Compare Event (CCP3IF) ends sampling and starts conversion 1001 = MCCP2 Compare Event (CCP2IF) ends sampling and starts conversion 1000 = CLC1 event ends sampling and starts conversion 0111 = Internal counter ends sampling and starts conversion (auto-convert) 0110 = TMR1 Sleep mode Trigger event ends sampling and starts conversion 0101 = TMR1 event ends sampling and starts conversion 0100 = CTMU event ends sampling and starts conversion 0101 = TMR1 event ends sampling and starts conversion 0101 = SCCP5 Compare Event (CCP5IF) ends sampling and starts conversion 0010 = MCCP1 Compare Event (CCP1IF) ends sampling and starts conversion 0001 = INT0 event ends sampling and starts conversion 									

REGISTER 19-1: AD1CON1: A/DA/D CONTROL REGISTER 1

Note 1: This version of the TMR1 Trigger allows A/D conversions to be triggered from TMR1 while the device is operating in Sleep mode. The SSRC<3:0> = 0101 option allows conversions to be triggered in Run or Idle modes only.

23.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "PIC24F Family Reference Manual", "Comparator Voltage Reference Module" (DS39709).

23.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 23-1). The comparator voltage reference provides a range of output voltages with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

REGISTER 24-2: CTMUCON1H: CTMU CONTROL 1 HIGH REGISTER (CONTINUED)

- bit 6 EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 is programmed for a positive edge 0 = Edge 2 is programmed for a negative edge bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Edge 2 source is the Comparator 3 output 1110 = Edge 2 source is the Comparator 2 output 1101 = Edge 2 source is the Comparator 1 output 1100 = Unimplemented; do not use 1011 = Edge 2 source is CLC1 1010 = Edge 2 source is the MCCP2 Compare Event (CCP2IF) 1001 = Unimplemented; do not use 1000 = Edge 2 source is CTED13 0111 = Edge 2 source is CTED12 0110 = Edge 2 source is CTED11⁽²⁾ 0101 = Edge 2 source is CTED10 0100 = Edge 2 source is CTED9⁽²⁾ 0011 = Edge 2 source is CTED1 0010 = Edge 2 source is CTED2 0001 = Edge 2 source is the MCCP1 Compare Event (CCP1IF) 0000 = Edge 2 source is Timer1
- bit 1-0 Unimplemented: Read as '0'
- Note 1: Edge sources, CTED7 and CTED8, are not available on 28-pin and 20-pin devices.
 - 2: Edge sources, CTED3, CTED9 and CTED11, are not available on 20-pin devices.

DC CHARACTE	DC CHARACTERISTICS			conditions:	1.8V to 3.6V (PIC24F16KMXXX) 2.0V to 5.5V (PIC24FV16KMXXX) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended			
Parameter No.	Device	Typical	Max	Units		Conditions		
Idle Current (III	DLE)							
DC40	PIC24FV16KMXXX	120	200	μA	2.0V			
		160	430	μA	5.0V	0.5 MIPS,		
	PIC24F16KMXXX	50	100	μA	1.8V	Fosc = 1 MHz ⁽¹⁾		
		90	370	μA	3.3V			
DC42	PIC24FV16KMXXX	165	—	μA	2.0V			
		260	—	μA	5.0V	1 MIPS,		
	PIC24F16KMXXX	95	—	μA	1.8V	Fosc = 2 MHz ⁽¹⁾		
		180	—	μA	3.3V			
DC44	PIC24FV16KMXXX	3.1	6.5	mA	5.0V	16 MIPS,		
	PIC24F16KMXXX	2.9	6.0	mA	3.3V	Fosc = 32 MHz ⁽¹⁾		
DC46	PIC24FV16KMXXX	0.65	—	mA	2.0V			
		1.0	—	mA	5.0V	FRC (4 MIPS),		
	PIC24F16KMXXX	0.55	—	mA	1.8V	Fosc = 8 MHz		
		1.0	—	mA	3.3V			
DC50	PIC24FV16KMXXX	42	200	μA	2.0V			
		65	225	μA	5.0V	LPRC (15.5 KIPS),		
	PIC24F16KMXXX	2.2	18	μA	1.8V	Fosc = 31 kHz		
		4.0	40	μA	3.3V			

TABLE 27-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Legend: Unshaded rows represent PIC24F16KMXXX devices and shaded rows represent PIC24FV16KMXXX devices. **Note 1:** The oscillator is in External Clock mode (FOSCSEL<2:0> = 010, FOSC<1:0> = 00).

TABLE 27-24: CLKO AND I/O TIMING REQUIREMENTS

АС СНА	ARACTI	ERISTICS	Standard Operating	Operating temperatu	Condition re	s: 1.8V to 2.0V to -40°C ≤ -40°C ≤	1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) $-40^{\circ}C \le Ta \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le Ta \le +125^{\circ}C$ for Extended		
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
DO31	TIOR	Port Output Rise Time	_	10	25	ns			
DO32	TIOF	Port Output Fall Time	—	10	25	ns			
DI35	TINP	INTx Pin High or Low Time (output)	20	_	—	ns			
DI40	Trbp	CNx High or Low Time (input)	2	—	_	Тсү			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 27-9: BROWN-OUT RESET CHARACTERISTICS

TABLE 27-25: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

АС СН	ARACTER	ISTICS	Standa Operat	i rd Oper	ating Con	ditions: 1. 2. -4 -4	8V to 3.6V (PIC24F16KM204) 0V to 5.5V (PIC24FV16KM204) $0^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $0^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions		
SY10	TmcL	MCLR Pulse Width (low)	2	_	_	μS			
SY11	TPWRT	Power-up Timer Period	50	64	90	ms			
SY12	TPOR	Power-on Reset Delay	1	5	10	μS			
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	_	100	ns			
SY20	Twdt	Watchdog Timer Time-out	0.85	1.0	1.15	ms	1.32 prescaler		
		Period	3.4	4.0	4.6	ms	1:128 prescaler		
SY25	TBOR	Brown-out Reset Pulse Width	1	-	_	μS			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	-	2.0	2.3	μs			
SY45	TRST	Internal State Reset Time	—	5	—	μS			
SY50	TVREG	On-Chip Voltage Regulator Output Delay	_	10	—	μS	(Note 2)		
SY55	TLOCK	PLL Start-up Time	—	100	—	μS			
SY65	Tost	Oscillator Start-up Time	_	1024	—	Tosc			
SY71	Трм	Program Memory Wake-up Time	—	1	—	μs	Sleep wake-up with PMSLP = 0		
SY72	Tlvr	Low-Voltage Regulator Wake-up Time		250	—	μS			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This applies to PIC24FV16KMXXX devices only.

FIGURE 27-13: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	or SCKx ↑ Input			ns	
70A	TssL2WB	SSx to Write to SSPxBUF		3 TCY	_	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx	20	_	ns		
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clo	ck Edge of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx	Edge	40		ns	
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	e	10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Ec	—	50	ns		
83	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge	1.5 TCY + 40	—	ns		
	FSCK	SCKx Frequency		_	10	MHz	

TABLE 27-31: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.

TABLE 27-32: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\mathrm{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input		3 Тсү		ns	
70A	TssL2WB	SSx to Write to SSPxBUF		3 TCY		ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	I	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40	I	ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the First	Clock Edge of Byte 2	1.5 Tcy + 40		ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCI	≺x Edge	40		ns	
75	TDOR	SDOx Data Output Rise Time			25	ns	
76	TDOF	SDOx Data Output Fall Time		_	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impeda	ince	10	50	ns	
80	TSCH2DOV, TSCL2DOV	SDOx Data Output Valid After SCKx	_	50	ns		
82	TssL2doV	SDOx Data Output Valid After $\overline{\text{SSx}}$ \downarrow	_	50	ns		
83	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge		1.5 Tcy + 40	_	ns	
	FSCK	SCKx Frequency		_	10	MHz	

Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.

TABLE 27-36: I²C[™] BUS DATA REQUIREMENTS (MASTER MODE)

Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions	
100	Тнідн	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—			
			400 kHz mode	2(Tosc)(BRG + 1)	—	—		
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	—	—		
			400 kHz mode	2(Tosc)(BRG + 1)	_	—		
102	TR	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
103	TF	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
90	Tsu:sta	Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	—	—	Only relevant for Repeated	
			400 kHz mode	2(Tosc)(BRG + 1)	_	—	Start condition	
91	Thd:sta	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	_	—	After this period, the first	
			400 kHz mode	2(Tosc)(BRG + 1)	—	—	clock pulse is generated	
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μS		
107	TSU:DAT	⊺ Data Input Setup Time	100 kHz mode	250	_	ns	(Note 1)	
			400 kHz mode	100	_	ns		
92	Tsu:sto	STO Stop Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	_	—		
			400 kHz mode	2(Tosc)(BRG + 1)	—	—		
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns		
			400 kHz mode	—	1000	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free	
			400 kHz mode	1.3	_	μS	before a new transmission can start	
D102	Св	Bus Capacitive Loading		_	400	pF		

Note 1: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but Parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, Parameter 102 + Parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETER	LIMETERS		
Dimens	ion Limits	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC				
Contact Pad Spacing	С		7.20			
Contact Pad Width (X20)	X1			0.45		
Contact Pad Length (X20)	Y1			1.75		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	Е		0.65 BSC		
Optional Center Pad Width	W2			6.60	
Optional Center Pad Length	T2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	

G

0.25

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

Distance Between Pads

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B