

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

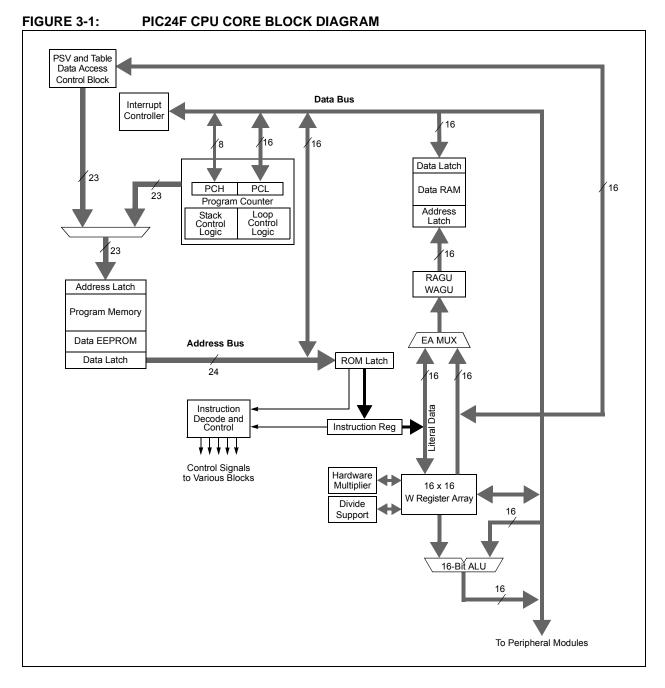
E·XFl

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km204t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams


20-Pin PDIP/SSOP/SOIC	RA5 1 20 VDD RA0 2 19 VSs RA1 3 18 RB15 RB0 4 17 RB14 RB1 5 RB12 RA2 6 9 16 RA3 8 20 15 RB4 9 12 RB8 RA4 10 11 RB7
-----------------------	--

Dia	Pin Features PIC24F08KM101 PIC24FVKM08KM101						
Pin							
1	MCLR/Vpp/RA5						
2	PGEC2/CVREF+/VREF+/AN0/CN2/RA0						
3	PGED2/CVREF-/VREF-/AN1/CN3/RA1						
4	PGED1/AN2/CTCMP/ULPWU/C1IND/OC2A/CN4/RB0						
5	PGEC1/AN3/C1INC/CTED12/CN5/RB1						
6	AN4/U1RX/TCKIB/CTED13/CN6/RB2						
7	OSCI/CLKI/AN13/C1INB/CN30/RA2						
8	OSCO/CLKO/AN14/C1INA/CN29/RA3						
9	PGED3/SOSCI/AN15/CLCINA/CN1/RB4						
10	PGEC3/SOSCO/SCLKI/AN16/PWRLCLK/CLCINB/CN0/	PGEC3/SOSCO/SCLKI/AN16/PWRLCLK/CLCINB/CN0/RA4					
11	AN19/U1TX/CTED1/INT0/CN23/RB7	AN19/U1TX/CTED1/INT0/CN23/RB7 AN19/U1TX/IC1/OC1A/CTED1/INT0/CN23/RB7					
12	AN20/SCL1/U1CTS/OC1B/CTED10/CN22/RB8						
13	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/CLC10/CTED4	/CN21/RB9					
14	IC1/OC1A/INT2/CN8/RA6	VCAP OR VDDCORE					
15	AN12/HLVDIN/SCK1/OC1C/CTED2/CN14/RB12 AN12/HLVDIN/SCK1/OC1C/CTED2/INT2/CN14/RB12						
16	AN11/SDO1/OCFB/OC1D/CTPLS/CN13/RB13						
17	CVREF/AN10/SDI1/C10UT/OCFA/CTED5/INT1/CN12/RB14						
18	AN9/REFO/SS1/TCKIA/CTED6/CN11/RB15						
19	Vss/AVss						
20	Vdd/AVdd						

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F			FV								
		I	Pin Numb	ber			I	Pin Numb	er					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O Buffer		Description	
SCL1	12	17	14	44	48	12	17	14	44	48	I/O	I2C	MSSP1 I ² C Clock	
SDA1	13	18	15	1	1	13	18	15	1	1	I/O	I2C	MSSP1 I ² C Data	
SCL2	_	7	4	24	26	_	7	4	24	26	I/O	I2C	MSSP2 I ² C Clock	
SDA2	_	6	3	23	25	_	6	3	23	25	I/O	I2C	MSSP2 I ² C Data	
SCLKI	10	12	9	34	37	10	12	9	34	37	Ι	ST	Secondary Clock Digital Input	
SOSCI	9	11	8	33	36	9	11	8	33	36	Ι	ANA	Secondary Oscillator Input	
SOSCO	10	12	9	34	37	10	12	9	34	37	Ι	ANA	Secondary Oscillator Output	
T1CK	13	18	15	1	1	13	18	15	1	1	Ι	ST	Timer1 Digital Input Cock	
TCKIA	18	26	23	15	16	18	26	23	15	16	Ι	ST	MCCP/SCCP Time Base Clock Input A	
TCKIB	6	6	3	23	25	6	6	3	23	25	Ι	ST	MCCP/SCCP Time Base Clock Input B	
U1CTS	12	17	14	44	48	12	17	14	44	48	Ι	ST	UART1 Clear-To-Send Input	
U1RTS	13	18	15	1	1	13	18	15	1	1	0	_	UART1 Request-To-Send Output	
U1BCLK	13	18	15	1	1	13	18	15	1	1	0	—	UART1 16x Baud Rate Clock Output	
U1RX	6	6	3	2	2	6	6	3	2	2	Ι	ST	UART1 Receive	
U1TX	11	16	13	3	3	11	16	13	3	3	0	_	UART1 Transmit	
U2CTS	_	12	9	34	37	_	12	9	34	37	I	ST	UART2 Clear-To-Send Input	
U2RTS	_	11	8	33	36	_	11	8	33	36	0	_	UART2 Request-To-Send Output	
U2BCLK	13	18	15	1	1	13	18	15	1	1	0	—	UART2 16x Baud Rate Clock Output	
U2RX	_	5	2	22	24	—	5	2	22	24	Ι	ST	UART2 Receive	
U2TX	_	4	1	21	23	—	4	1	21	23	0	_	UART2 Transmit	
ULPWU	4	4	1	21	23	4	4	1	21	23	Ι	ANA	Ultra Low-Power Wake-up Input	
VCAP	_	_		—	_	14	20	17	7	7	Р	—	Regulator External Filter Capacitor Connectio	
Vdd	20	28	25	17,28,28	18,30,30	20	28	25	17,28,28	18,30,30	Р	—	Device Positive Supply Voltage	
VDDCORE	_	_	_	—	_	14	20	17	7	7	Р	—	Microcontroller Core Supply Voltage	
Vpp	1	1	26	18	19	1	1	26	18	19	Р	—	High-Voltage Programming Pin	
VREF+	2	2	27	19	21	2	2	27	19	21	I	ANA	A/D Reference Voltage Positive Input	
VREF-	3	3	28	20	22	3	3	28	20	22	Ι	ANA	A/D Reference Voltage Negative Input	
Vss	19	27	24	16,29,29	17,31,31	19	27	24	16,29,29	17,31,31	Р	—	Device Ground Return Voltage	

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, I²C[™] = I²C/SMBus input buffer

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	Repeat Loop Counter Register
CORCON	CPU Control Register

	REGISTER 3-2:	CORCON: CPU CONTROL REGISTER
--	---------------	------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_		—		—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0
—	—		—	IPL3 ⁽¹⁾	PSV	—	—
bit 7							bit 0

Legend:	C = Clearable bit	HSC = Hardware Settable	e/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	IPL3: CPU Interrupt Priority Level Status bit ⁽¹⁾
	 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
bit 2	PSV: Program Space Visibility in Data Space Enable bit
	1 = Program space is visible in Data Space
	0 = Program space is not visible in Data Space
bit 1-0	Unimplemented: Read as '0'

Note 1: User interrupts are disabled when IPL3 = 1.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware division for 16-bit divisor.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with Data Memory Space Addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables, located from 000004h to 0000FFh, and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. **Section 8.1 "Interrupt Vector Table (IVT)**" discusses the Interrupt Vector Tables in more detail.

4.1.3 DATA EEPROM

In the PIC24FV16KM204 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit-wide memory and 256 words deep. This memory is accessed using Table Read and Write operations similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24FV16KM204 family. Their location in the memory map is displayed in Figure 4-1.

Refer to **Section 25.1** "**Configuration Bits**" for more information on device Configuration Words.

TABLE 4-1: DEVICE CONFIGURATION WORDS FOR PIC24FXXXXX FAMILY DEVICES

Configuration Word	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION msw most significant word least significant word PC Address (Isw Address) Address 16 8 Λ 23 000000h 000001h 00000000 0000000 000002h 000003h 000004h 00000000 000005h 0000000 000006h 000007h Instruction Width Program Memory Phantom' Byte (read as '0')

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0				
NVMIE		AD1IE	U1TXIE	U1RXIE		_	CCT2IE				
bit 15	+			•	•		bit				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
CCT1IE	CCP4IE	CCP3IE	<u> </u>	T1IE	CCP2IE	CCP1IE	INTOIE				
bit 7				1.112			bit				
Legend:											
R = Readabl		W = Writable		•	nented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown				
bit 15	NVMIE: NVM	Interrupt Enat	ole bit								
	1 = Interrupt r	equest is enab	oled								
	0 = Interrupt r	request is not e	enabled								
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	AD1IE: A/D C	Conversion Cor	nplete Interrup	t Enable bit							
		request is enat									
	-	request is not e									
bit 12			r Interrupt Ena	ble bit							
		request is enab									
L:1 44	-	request is not e									
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit 1 = Interrupt request is enabled										
		request is enaction of equest is not e									
bit 10-9	•	ted: Read as '									
bit 8	CCT2IE: Capture/Compare 2 Timer Interrupt Enable bit										
		request is enab									
bit 7	•	request is not e ture/Compare	nabled 1 Timer Interru	nt Enable bit							
	•	request is enat									
		request is not e									
bit 6	CCP4IE: Cap	ture/Compare	4 Event Interru	ipt Enable bit							
		equest is enab									
	-	request is not e									
bit 5	CCP3IE: Cap	ture/Compare	3 Event Interru	ipt Enable bit							
		equest is enab									
	-	equest is not e									
bit 4	-	ted: Read as '									
bit 3		Interrupt Enab									
		request is enat request is not e									
bit 2	-	-	2 Event Interru	unt Enchlo hit							
DIL Z	•	•		ipt Enable bit							
		request is enat request is not e									
bit 1	-	-	1 Event Interru	ipt Enable bit							
	-	equest is enab									
		equest is not e									
bit 0	INT0IE: Exter	nal Interrupt 0	Enable bit								
	1 = Interrupt r	equest is enab	oled								
		equest is not e	mahlad								

REGISTER 8-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

NOTES:

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
PWMRSEN	ASDGM	—	SSDG	—	—	_	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14	ASDGM: CCI 1 = Wait until	Px Auto-Shutdo	own Gate Mode Base Reset or	e to resume PW e Enable bit r rollover for shu			
bit 13		ted: Read as '	-				
bit 12	•	Software Shut		ontrol bit			
	•	force auto-sh bit still applies)		clock gate or	input capture	signal gate evo	ent (setting of
	0 = Normal n	nodule operatio	n				
bit 11-8		tod. Pood as "	י'				
DIL II-O	Unimplemen	leu. Reau as					
bit 7-0	•			g Source Enable	e bits		

REGISTER 13-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS

TABLE 13-7: AUTO-SHUTDOWN AND GATING SOURCES

ASDG<7:0> Bits	Auto-Shutdown/Gating Source
0	Comparator 1 Output
1	Comparator 2 Output
2	Comparator 3 Output
3	SCCP4 Output Compare
4	SCCP5 Output Compare
5	CLC1 Output
6	OCFA Fault Input
7	OCFB Fault Input

16.2.6 ALRMVAL REGISTER MAPPINGS

REGISTER 16-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8
11.0		D/1/					
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
<u> </u>		DAYTEN1	DAYTEN0	R/W-X DAYONE3	R/W-X DAYONE2	DAYONE1	R/W-x DAYONE0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 bit 12	Unimplemented: Read as '0' MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 16-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 G2D4T G2D4N G2D3T G2D3N G2D2T G2D2N G2D1T G2D1N bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 G1D4T G1D2N G1D4N G1D3T G1D3N G1D2T G1D1T G1D1N bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared x = Bit is unknown '1' = Bit is set bit 15 G2D4T: Gate 2 Data Source 4 True Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 2 0 = The Data Source 4 inverted signal is disabled for Gate 2 bit 14 G2D4N: Gate 2 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 2 0 = The Data Source 4 inverted signal is disabled for Gate 2 bit 13 G2D3T: Gate 2 Data Source 3 True Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 2 0 = The Data Source 3 inverted signal is disabled for Gate 2 bit 12 G2D3N: Gate 2 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 2 0 = The Data Source 3 inverted signal is disabled for Gate 2 bit 11 G2D2T: Gate 2 Data Source 2 True Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2 bit 10 G2D2N: Gate 2 Data Source 2 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2 bit 9 G2D1T: Gate 2 Data Source 1 True Enable bit 1 = The Data Source 1 inverted signal is enabled for Gate 2 0 = The Data Source 1 inverted signal is disabled for Gate 2 bit 8 G2D1N: Gate 2 Data Source 1 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 1 0 = The Data Source 2 inverted signal is disabled for Gate 1 bit 7 G1D4T: Gate 1 Data Source 4 True Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 1 0 = The Data Source 4 inverted signal is disabled for Gate 1 bit 6 G1D4N: Gate 1 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 1 0 = The Data Source 4 inverted signal is disabled for Gate 1 G1D3T: Gate 1 Data Source 3 True Enable bit bit 5 1 = The Data Source 3 inverted signal is enabled for Gate 1 0 = The Data Source 3 inverted signal is disabled for Gate 1 bit 4 G1D3N: Gate 1 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 1 0 = The Data Source 3 inverted signal is disabled for Gate 1

To perform an A/D conversion:

- 1. Configure the A/D module:
 - a) Configure the port pins as analog inputs and/or select band gap reference inputs (ANSx registers).
 - b) Select the voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - e) Configure the MODE12 bit to select A/D resolution (AD1CON1<10>).
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - g) Select the interrupt rate (AD1CON2<6:2>).
 - h) Turn on the A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

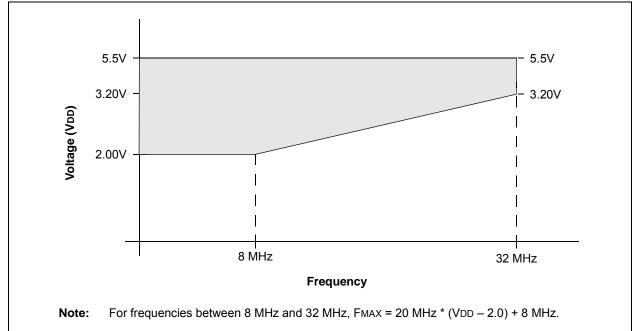
To perform an A/D sample and conversion using Threshold Detect scanning:

- 1. Configure the A/D module:
 - a) Configure the port pins as analog inputs (ANSx registers).
 - b) Select the voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - e) Configure the MODE12 bit to select A/D resolution (AD1CON1<10>).
 - f) Select how the conversion results are presented in the buffer (AD1CON1<9:8>).
 - g) Select the interrupt rate (AD1CON2<6:2>).

- 2. Configure the threshold compare channels:
 - a) Enable auto-scan; set the ASEN bit (AD1CON5<15>).
 - b) Select the Compare mode, "Greater Than, Less Than or Windowed"; set the CMx bits (AD1CON5<1:0>).
 - c) Select the threshold compare channels to be scanned (AD1CSSH, AD1CSSL).
 - d) If the CTMU is required as a current source for a threshold compare channel, enable the corresponding CTMU channel (AD1CTMENH, AD1CTMENL).
 - e) Write the threshold values into the corresponding ADC1BUFx registers.
 - f) Turn on the A/D module (AD1CON1<15>).
- Note: If performing an A/D sample and conversion, using Threshold Detect in Sleep Mode, the RC A/D clock source must be selected before entering into Sleep mode.
- 3. Configure the A/D interrupt (OPTIONAL):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

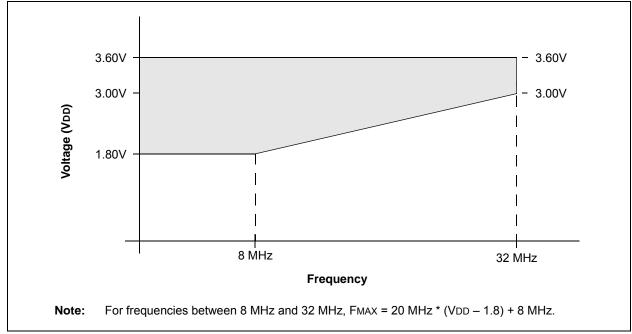
PVCFG bit 15 R/W-0	1 PVCFG0	1					
		NVCFG0		BUFREGEN	CSCNA	—	_
							bit
R/W-U	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS ⁽¹) SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM ⁽¹⁾	ALTS
oit 7	•			· ·		· · ·	bit
_egend:							
R = Reada	able bit	W = Writable b	pit	U = Unimpleme	ented bit, read	d as '0'	
n = Value	at POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkno	own
bit 15-14	PVCFG<1:0> 11 = 4 * Inter 10 = 2 * Inter 01 = Externa 00 = AVDD	rnal V _{BG} (2) rnal VBG ⁽³⁾	r Positive Volt	age Reference C	configuration I	bits	
oit 13	NVCFG0: A/I 1 = External 0 = AVss		gative Voltage	Reference Conf	iguration bits		
oit 12	Unimplemen	ted: Read as '0	,				
oit 11	-	A/D Buffer Reg		oit			
	1 = Conversi	-	led into a buff	er location deterr	nined by the	converted chanr	nel
oit 10	CSCNA: Sca	n Input Selectio	ns for CH0+ S	S/H Input for MUX	K A Setting bi	t	
	1 = Scans in 0 = Does not						
oit 9-8	Unimplemen	ted: Read as '0	,				
oit 7	BUFS: A/D B	uffer Fill Status	bit ⁽¹⁾				
		• • • •		er; user should ac r; user should ac			
oit 6-2	SMPI<4:0>:	Interrupt Sample	e Rate Select	bits			
		•	•	e conversion for e conversion for		•	
	00000 = Inte	errupts at the co	mpletion of th	e conversion for e conversion for		ample	
bit 1	1 = Starts filli interrupt 0 = Starts fill	(Split Buffer mo	address, ADC de)	1BUF0, on the fin	-		
oit O	•	ate Input Sampl	e Mode Selec	t bit			
	1 = Uses cha		cts for Sample	e A on the first sa	mple and Sa	mple B on the n	ext sample
Note 1: 2:	This is only applid used when BUFM PIC24FV16KMX	/ = 1.					

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS


R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R-0			
CON	COE	CPOL	CLPWR	_		CEVT	COUT			
bit 15	•						bit 8			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
EVPOL1 ⁽²⁾	EVPOL0 ⁽²⁾	_	CREF1	CREF0	_	CCH1	CCH0			
bit 7			UNL I	UNLI U		00111	bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 15	CON: Compa	rator x Enable	bit							
		tor is enabled								
bit 11	•	tor is disabled	Enchlo hit							
bit 14	•	rator x Output itor output is pr		vOLIT nin						
		itor output is pr								
bit 13	CPOL: Comp	arator x Outpu	t Polarity Selec	ct bit						
		tor output is in								
	•	tor output is no								
bit 12	CLPWR: Comparator x Low-Power Mode Select bit 1 = Comparator operates in Low-Power mode									
	•	tor operates in tor does not op								
bit 11-10	-	ted: Read as '		owermode						
bit 9	-	arator x Event								
	•			<1:0>, has occu	irred; subseque	ent Triggers and	d interrupts are			
	disabled	until the bit is c	leared			00	·			
	-	tor event has r								
bit 8		arator x Outpu	t bit							
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{VI}}$									
	0 = VIN + < VI									
	When CPOL									
	1 = VIN + < VI $0 = VIN + > VI$									
bit 7-6			Interrupt Pola	rity Select bits ⁽²	2)					
DIL 7-0		00		n any change o		or output (while	$\sim CEVT = 0$			
				n the high-to-lo						
				n the low-to-hig	h transition of	the comparator	output			
		event/interrupt	•	lisabled						
bit 5	•	ted: Read as '								
bit 4-3		-		ect bits (non-inv	erting input)					
		erting input cor erting input cor								
	01 = Non-inve	erting input cor	nects to the in	ternal CVREF vo	oltage					
	00 = Non-inve	erting input cor	nects to the C	xINA pin						
Note 1: BC	GBUF1 voltage	is configured b	y BUFREF1<1	:0> (BUFCON	0<1:0>).					
• 161		·			· · · · · · · · · · · · · · · · · · ·					

2: If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1				
FWDTEN1	WINDIS	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0				
bit 7							bit (
Legend:											
R = Readab	ole bit	P = Programn	nable bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7,5	FWDTEN<1:0	>: Watchdog Ti	mer Enable bi	ts							
		enabled in hardw									
	 10 = WDT is controlled with the SWDTEN bit setting 01 = WDT is enabled only while the device is active, WDT is disabled in Sleep; SWDTEN bit is disabled 										
		disabled in hard									
bit 6											
	WINDIS: Windowed Watchdog Timer Disable bit 1 = Standard WDT is selected; windowed WDT is disabled										
	0 = Windowe hardware	d WDT is enable and software (ed; note that e	xecuting a CLR	WDT instruction						
bit 4	device Reset FWPSA: WDT Prescaler bit										
	1 = WDT pres	caler ratio of 1:	128								
	0 = WDT pres	caler ratio of 1:3	32								
bit 3-0	WDTPS<3:0>: Watchdog Timer Postscale Select bits										
	1111 = 1:32,768										
	1110 = 1:16,3										
	1101 = 1:8,19 1100 = 1:4,09										
	1011 = 1:2,04										
	1011 = 12,048 1010 = 1:1,024										
	1001 = 1:512										
	1000 = 1:256										
	0111 = 1:128										
	0110 = 1:64										
	0101 = 1:32 0100 = 1:16										
	0100 = 1.16 0011 = 1:8										
	0011 = 1.0 0010 = 1.4										
	0001 = 1:2										
	0000 = 1:1										


REGISTER 25-5: FWDT: WATCHDOG TIMER CONFIGURATION REGISTER

27.1 DC Characteristics

FIGURE 27-2: PIC24F16KM204 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

AC CHARACTERISTICS				Operating temperatu		: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
OS50	Fplli	PLL Input Frequency Range	4	—	8	MHz	ECPLL, HSPLL modes, -40°C \leq TA \leq +85°C	
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz	$-40^{\circ}C \le TA \le +85^{\circ}C$	
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	1	2	ms		
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over 100 ms period	

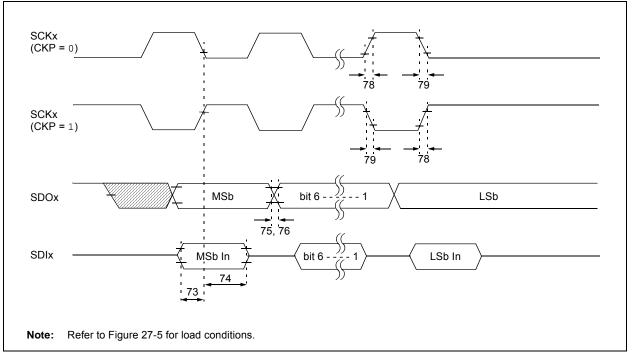
TABLE 27-21: PLL CLOCK TIMING SPECIFICATIONS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-22: INTERNAL RC OSCILLATOR ACCURACY

AC CHARACTERISTICS		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
F20	FRC @ 8 MHz ⁽¹⁾	-2		+2	%	+25°C	$\begin{array}{l} 3.0V \leq V \text{DD} \leq 3.6V, \mbox{ F device} \\ 3.2V \leq V \text{DD} \leq 5.5V, \mbox{ FV device} \end{array}$	
		-5	_	+5	%	$-40^\circ C \le T A \le +125^\circ C$	$\begin{array}{l} 1.8V \leq V\text{DD} \leq 3.6\text{V}, \mbox{ F device} \\ 2.0V \leq V\text{DD} \leq 5.5\text{V}, \mbox{ FV device} \end{array}$	
F21	LPRC @ 31 kHz ⁽²⁾	-15		+15	%	$-40^{\circ}C \le TA \le +125^{\circ}C$	$\begin{array}{l} 1.8V \leq V\text{DD} \leq 3.6\text{V}, \ \text{F} \ \text{device} \\ 2.0V \leq V\text{DD} \leq 5.5\text{V}, \ \text{FV} \ \text{device} \end{array}$	


Note 1: The frequency is calibrated at +25°C and 3.3V. The OSCTUN bits can be used to compensate for temperature drift.

2: The change of LPRC frequency as VDD changes.

TABLE 27-23: INTERNAL RC OSCILLATOR SPECIFICATIONS

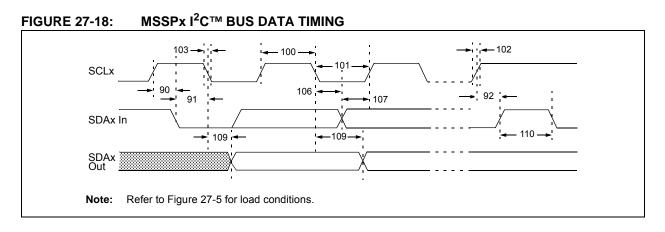

AC CHARACTERISTICS			$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Тур	Max	Units	Conditions	
	TFRC	FRC Start-up Time	—	5	_	μS		
	TLPRC	LPRC Start-up Time	—	70	_	μS		

FIGURE 27-11: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 27-29: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	ns	
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time		25	ns	
76	TDOF	SDOx Data Output Fall Time		25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	—	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)		25	ns	
	FSCK	SCKx Frequency	—	10	MHz	

TABLE 27-36: I²C[™] BUS DATA REQUIREMENTS (MASTER MODE)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	_	_	
			400 kHz mode	2(Tosc)(BRG + 1)	—	_	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	_	
			400 kHz mode	2(Tosc)(BRG + 1)		_	
102	TR	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
103	TF	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
90	Tsu:sta	Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)		_	Only relevant for Repeated
			400 kHz mode	2(Tosc)(BRG + 1)		_	Start condition
91	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)			After this period, the first
			400 kHz mode	2(Tosc)(BRG + 1)		_	clock pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input	100 kHz mode	250		ns	(Note 1)
		Setup Time	400 kHz mode	100		ns	
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	_	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)		_	
109	ΤΑΑ	Output Valid	100 kHz mode	—	3500	ns	
		from Clock	400 kHz mode	—	1000	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
D102	Св	Bus Capacitive L	oading	—	400	pF	

Note 1: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but Parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, Parameter 102 + Parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

Comparator Voltage Reference	239
Configuring	239
Configurable Logic Cell (CLC)	195
Configuration Bits	
CPU	
ALU	39
Control Registers	38
Core Registers	36
Programmer's Model	35
CTMU	
Measuring Capacitance	241
Measuring Time	242
Pulse Generation and Delay	243
Customer Change Notification Service	332
Customer Notification Service	332
Customer Support	332
D	

Data EEPROM Memory73 Erasing76 Operations75 Programming Reading Data EEPROM78 Single-Word Write77 Programming Control Registers NVMADR(U)75 NVMKEY73 Data Memory SFR Space44 Data Space **DC** Characteristics I/O Pin Input Specifications274 Operating Current (IDD)270 Operational Amplifier278 Power-Down Current (IPD)272 Program Memory275 Demo/Development Boards, Evaluation and **Device Features** PIC24F16KM104 Family16 PIC24F16KM204 Family15 PIC24FV16KM104 Family18 PIC24FV16KM204 Family17

Device Overview	13
Core Features	13
Other Special Features	
Pinout Description	
Dual Operational Amplifier	233
E	
Electrical Characteristics	
Absolute Maximum Ratings	
Thermal Operating Conditions	
Thermal Packaging	
Equations	
A/D Conversion Clock Period	
UARTx Baud Rate with BRGH = 0	
UARTx Baud Rate with BRGH = 1	
Errata	
Examples	174
Baud Rate Error Calculation (BRGH = 0)	
F	
Flash Program Memory	
Control Registers	68
Enhanced ICSP Operation	68
Programming Algorithm	
Programming Operations	
RTSP Operation	
Table Instructions	67
G	
Getting Started Guidelines	
External Oscillator Pins	
ICSP Pins	
Master Clear (MCLR) Pin	30
Power Supply Pins	30
Unused I/Os	
Voltage Regulator Pin (VCAP)	
Н	
High/Low-Voltage Detect (HLVD)	207
•	
I/O Ports	100
Analog Port Pins Configuration Analog Selection Registers	
Input Change Notification	
Open-Drain Configuration	
Parallel (PIO)	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	
Inter-Integrated Circuit. See I ² C.	
Internet Address	332
Interrupts	
Alternate Interrupt Vector Table (AIVT)	
Control and Status Registers	
Implemented Vectors	
Interrupt Vector Table (IVT)	
Reset Sequence Setup Procedures	
Trap Vectors	
Vector Table	

т

Timer1	1
Timing Diagrams	
A/D Conversion	5
Brown-out Reset Characteristics	4
Capture/Compare/PWM (MCCPx, SCCPx)	5
CLKO and I/O Timing	2
Example SPI Master Mode (CKE = 0)	ô
Example SPI Master Mode (CKE = 1)287	7
Example SPI Slave Mode (CKE = 0)288	
Example SPI Slave Mode (CKE = 1)289	
External Clock	
I ² C Bus Data	
I ² C Bus Start/Stop Bits	C
MSSPx I ² C Bus Data	3
MSSPx I ² C Bus Start/Stop Bits	2
Reset, Watchdog Timer. Oscillator Start-up Timer,	
Power-up Timer Characteristics	3
Timing Requirements	
Capture/Compare/PWM (MCCPx, SCCPx)	
Comparator	
Comparator Voltage Reference Settling Time	
I ² C Bus Data (Slave Mode)	
I ² C Bus Data Requirements (Master Mode)	
I ² C Bus Start/Stop Bits (Master Mode)	
I ² C Bus Start/Stop Bits (Slave Mode)	
SPI Mode (Master Mode, CKE = 0)	
SPI Mode (Master Mode, CKE = 1)287	
SPI Mode (Slave Mode, CKE = 0)288	
SPI Slave Mode (CKE = 1)289	9

UARI	
Baud Rate Generator (BRG) 1	74
Break and Sync Transmit Sequence 1	75
IrDA Support 1	75
IrDA Support 1 Operation of UxCTS and UxRTS Control Pins 1	75
Receiving in 8-Bit or 9-Bit Data Mode 1	
Transmitting in 8-Bit Data Mode 1	75
Transmitting in 9-Bit Data Mode 1	75
Universal Asynchronous Receiver	
Transmitter (UART) 1	73
V	
Voltage Regulator (VREG) 1	34
Voltage-Frequency Graph	
(PIC24F16KM204 Extended) 2	267
Voltage-Frequency Graph	
(PIC24F16KM204 Industrial) 2	266
Voltage-Frequency Graph	
(PIC24FV16KM204 Extended) 2	267
Voltage-Frequency Graph	
(PIC24FV16KM204 Industrial) 2	266
W	
Watchdog Timer (WDT) 2	257

Watchdog Timer (WDT)	257
Windowed Operation	258
WWW Address	332
WWW, On-Line Support	11