

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 22x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16km204t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC			
	—	_			_	—	DC			
bit 15	bit 15 bit									
							1			
R/W-0, HS0	C ⁽¹⁾ R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC			
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С			
bit 7							bit 0			
Legend:		HSC = Hardwa	re Settable/0	Clearable bit						
R = Readat	ole bit	W = Writable bi	t	U = Unimpler	mented bit, rea	id as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown			
bit 15-9	Unimplemente	d: Read as '0'								
bit 8	DC: ALU Half C	arry/Borrow bit								
	1 = A carry-out	from the 4 th low-	order bit (for	byte-sized dat	ta) or 8 th Iow-o	rder bit (for wo	rd-sized data)			
	of the resul	t occurred	oth low and	r bit of the rea		ad				
hit 7 5		Interrupt Drigrit		bit of the res		eu				
DIL 7-5	111 - CPU Inte	rrupt Priority Ley		S DILS	are disabled					
	110 = CPU Inte	rrupt Priority Lev	vel is 6 (13),	user menupis	s are disabled					
	101 = CPU Inte	rrupt Priority Lev	vel is 5 (13)							
	100 = CPU Inte	rrupt Priority Lev	/el is 4 (12)							
	011 = CPU Inte	rrupt Priority Lev	/el is 3 (11)							
	010 = CPU Inte	rrupt Priority Lev	$/eI IS \ge (10)$							
	000 = CPU Inte	rrupt Priority Lev	/el is 0 (8)							
bit 4	RA: REPEAT LO	op Active bit								
	1 = REPEAT loo	p in progress								
	0 = REPEAT loo	p not in progres	5							
bit 3	N: ALU Negativ	e bit								
	1 = Result was	negative								
	0 = Result was	non-negative (ze	ero or positiv	re)						
bit 2	OV: ALU Overflo	ow bit								
	1 = Overflow oc 0 = No overflow	curred for signe has occurred	d (2's compl	ement) arithme	etic in this arith	imetic operatio	n			
bit 1	Z: ALU Zero bit									
	1 = An operation	n, which effects	the Z bit, ha	s set it at some	e time in the pa	ast				
h:+ 0	0 = 1 ne most re	beent operation,	which effects	s uie ∠ dit, nas	cieared it (i.e.	, a non-zero re	esuit)			
bit 0 C: ALU Carry/Borrow bit										
	0 = No carry-ou	t from the Most	Significant b	it (MSb) of the	result occurre	d				
Note 1:	The IPLx Status bits a	are read-only wh	en NSTDIS	(INTCON1<15	5>) = 1.					
2: T	The IPL<2:0> Status Priority Level (IPL). T	bits are concate he value in pare	nated with th ntheses indi	ne IPL3 bit (CC cates the IPL v	DRCON<3>) to when IPL3 = 1	o form the CPL	J Interrupt			

7.4.2 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<13>). Setting SBOREN enables the BOR to function as previously described. Clearing the SBOREN disables the BOR entirely. The SBOREN bit operates only in this mode; otherwise, it is read as '0'.

Placing BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change the BOR configuration. It also allows the user to tailor the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

Note:	Even when the BOR is under software con-
	trol, the Brown-out Reset voltage level is
	still set by the BORV<1:0> Configuration
	bits; it can not be changed in software.

7.4.3 DETECTING BOR

When BOR is enabled, the BOR bit (RCON<1>) is always reset to '1' on any BOR or POR event. This makes it difficult to determine if a BOR event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR and BOR bits are reset to '0' in the software immediately after any POR event. If the BOR bit is '1' while POR is '0', it can be reliably assumed that a BOR event has occurred.

7.4.4 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, BOR remains under hardware control and operates as previously described. However, whenever the device enters Sleep mode, BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled.

This mode allows for applications to recover from brown-out situations, while actively executing code, when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current.

Note: BOR levels differ depending on device type; PIC24FV16KM204 devices are at different levels than those of PIC24F16KM204 devices. See Section 27.0 "Electrical Characteristics" for BOR voltage levels.

REGISTER 8-21: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

	• = • • • • • • • •							
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
	U1RXIP2	U1RXIP1	U1RXIP0	—	_	_		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
—	—	—	_	—	CCT2IP2	CCT2IP1	CCT2IP0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	Unimplemen	ted: Read as '	0'					
bit 14-12	bit 14-12 U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits							
111 = Interrupt is Priority 7 (highest priority interrupt)								

- bit 11-3
 bit 2-0
 CCT2IP<2:0>: Capture/Compare 2 Timer Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)
 - ٠

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 CNIP2 CNIP1 CNIP0 CMIP2 CMIP1 CMIP0 bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 BCL1IP2 BCL1IP1 BCL1IP0 SSP1IP2 SSP1IP1 SSP1IP0 ____ ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 CNIP<2:0>: Input Change Notification Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 CMIP<2:0>: Comparator Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' bit 7 BCL1IP<2:0>: MSSP1 I²C[™] Bus Collision Interrupt Priority bits bit 6-4 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 **SSP1IP<2:0>:** MSSP1 SPI/I²C Event Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled

REGISTER 8-23: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

8.4 Interrupt Setup Procedures

8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS control bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

8.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR (Interrupt Service Routine) and initialize the IVT with the correct vector address depends on the programming language (i.e., C or assembly), and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, 0Eh, with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period. Level 7 interrupt sources are not disabled by the DISI instruction.

9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins

The PIC24FXXXXX family devices consist of two types of secondary oscillator:

- High-Power Secondary Oscillator
- Low-Power Secondary Oscillator

These can be selected by using the SOSCSEL (FOSC<5>) bit.

- Fast Internal RC (FRC) Oscillator:
 - 8 MHz FRC Oscillator
 - 500 kHz Lower Power FRC Oscillator
- Low-Power Internal RC (LPRC) Oscillator with two modes:
 - High-Power/High-Accuracy mode
 - Low-Power/Low-Accuracy mode

The Primary Oscillator and 8 MHz FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clock, Fcy. In this document, the instruction cycle clock is also denoted by Fosc/2. The internal instruction cycle clock, Fosc/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (for more information, see Section 25.1 "Configuration Bits"). The Primary Oscillator Configuration bits, POSCMD<1:0> (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a POR. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The Secondary Oscillator, or one of the internal oscillators, may be chosen by programming these bit locations. The EC mode Frequency Range Configuration bits, POSCFREQ<1:0> (FOSC<4:3>), optimize power consumption when running in EC mode. The default configuration is "frequency range is greater than 8 MHz".

The Configuration bits allow users to choose between the various clock modes, shown in Table 9-1.

9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (FOSC<7:6>) are used jointly to configure device clock switching and the FSCM. Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
8 MHz FRC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
500 kHz FRC Oscillator with Postscaler (LPFRCDIV)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	00	100	1
Primary Oscillator (HS) with PLL Module (HSPLL)	Primary	10	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
8 MHz FRC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
8 MHz FRC Oscillator (FRC)	Internal	11	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: The OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

13.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base, using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 13-2.

There are eight inputs available to the clock generator, which are selected using the CLKSEL<2:0> bits (CCPxCON1L<10:8>). Available sources include the FRC and LPRC, the Secondary Oscillator, and the TCLKI External Clock inputs. The system clock is the default source (CLKSEL<2:0> = 000). On PIC24FV16KM204 family devices, clock sources to the MCCPx module must be synchronized with the system clock; as a result, when clock sources are selected, clock input timing restrictions or module operating restrictions may exist. Table 13-1 describes which time base sources are valid for the various operating modes.

TABLE 13-1: VALID TIMER OPTIONS FOR MCCPx/SCCPx MODES

CLKSEL	Tir	ner	Input	Output
<2:0> ⁽¹⁾	Sync ⁽²⁾	Async ⁽³⁾	Capture	Compare
111	Х	_	—	_
110	Х	—	—	_
101	Х	—	—	—
011	Х	—	—	—
010	Х	—	—	—
001	Х	—	—	—
₀₀₀ (4)	—	Х	Х	Х

Note 1: See Register 13-1 for the description of the time base sources.

- 2: Synchronous Operation: TMRSYNC (CCPxCON1L<11>) = 1 and TRIGEN (CCPxCON1H<7>) = 0.
- Asynchronous Operation: (TMRSYNC = 0) or Triggered mode (TRIGEN = 1).
- 4: When CLKSEL<2:0> = 000, the TMRSYNC bit must be cleared.

15.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write the appropriate values for data, parity and Stop bits.
 - b) Write the appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write the data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0, and then, the user may set UTXEN. This will cause the serial bit stream to begin immediately, because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

15.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 15.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

15.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an Auto-Baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK this sets up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

15.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 15.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. A receive interrupt will be generated when one or more data characters have been received, as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

15.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-To-Send (UxCTS) and Request-To-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx module. These two pins allow the UARTx to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

15.7 Infrared Support

The UARTx module provides two types of infrared UARTx support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder.

As the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

15.7.1 EXTERNAL IrDA SUPPORT – IrDA CLOCK OUTPUT

To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

15.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

REGISTER 17-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
bit 15	1				1		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
bit 7							bit 0
Legend:	. 1. 11					1	
R = Readable		vv = vvritable i	DIT	0 = 0	iented dit, read	as U v = Ditio unkr	
	FUK	I – DILIS SEL			areu	X - DILISUIKI	IOWIT
bit 15	G4D4T: Gate	4 Data Source	4 True Enable	bit			
	1 = The Data	Source 4 invert	ted signal is er	habled for Gate	4		
	0 = The Data	Source 4 invert	ted signal is di	sabled for Gate	e 4		
bit 14	G4D4N: Gate	4 Data Source	4 Negated Er	nable bit			
	1 = The Data	Source 4 invert	ted signal is er	habled for Gate	4		
hit 13	G4D3T: Gate	4 Data Source	3 True Enable	hit	; 4		
bit 10	1 = The Data	Source 3 invert	ted signal is er	nabled for Gate	4		
	0 = The Data	Source 3 invert	ted signal is di	sabled for Gate	e 4		
bit 12	G4D3N: Gate	4 Data Source	3 Negated Er	nable bit			
	1 = The Data	Source 3 inver	ted signal is er	nabled for Gate	4		
bit 11	0 = 1 ne Data	4 Data Source	ed signal is di 2 True Encelo	sabled for Gate	9 4		
	1 = The Data	Source 2 invert	ed signal is er	abled for Gate	4		
	0 = The Data	Source 2 invert	ted signal is di	sabled for Gate	24		
bit 10	G4D2N: Gate	4 Data Source	2 Negated Er	nable bit			
	1 = The Data	Source 2 invert	ted signal is er	nabled for Gate	4		
h it 0	0 = 1 ne Data	Source 2 Inven	ted signal is di	sabled for Gate	9 4		
DIL 9	1 = The Data	4 Data Source Source 1 invert	I True Enable ted signal is er	: DIL Dabled for Gate	4		
	0 = The Data	Source 1 invert	ted signal is di	sabled for Gate	+ • 4		
bit 8	G4D1N: Gate	4 Data Source	1 Negated Er	nable bit			
	1 = The Data	Source 1 invert	ted signal is er	nabled for Gate	4		
h:+ 7	0 = 1 he Data	Source 1 invert	ted signal is di	sabled for Gate	e 4		
DIT /	G3D41: Gate	3 Data Source	4 True Enable	e DIT Dabled for Cate	3		
	0 = The Data	Source 4 invert	ted signal is di	sabled for Gate	3		
bit 6	G3D4N: Gate	3 Data Source	4 Negated Er	nable bit			
	1 = The Data	Source 4 invert	ted signal is er	nabled for Gate	3		
	0 = The Data	Source 4 invert	ted signal is di	sabled for Gate	93		
bit 5	G3D3T: Gate	3 Data Source	3 Irue Enable	e bit	2		
	1 = 110 Data 0 = The Data	Source 3 inven	ted signal is di	sabled for Gate	3		
bit 4	G3D3N: Gate	3 Data Source	3 Negated Er	nable bit			
	1 = The Data	Source 3 invert	ted signal is er	nabled for Gate	3		
	0 = The Data	Source 3 invert	ted signal is di	sabled for Gate	e 3		

REGISTER 18-1:

U-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 HLVDEN HLSIDL _____ ____ _____ _____ bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 VDIR BGVST **IRVST** HLVDL3 HLVDL2 HLVDL1 HLVDL0 bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 HLVDEN: High/Low-Voltage Detect Power Enable bit 1 = HLVD is enabled 0 = HLVD is disabled bit 14 Unimplemented: Read as '0' bit 13 HLSIDL: HLVD Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 Unimplemented: Read as '0' bit 7 VDIR: Voltage Change Direction Select bit 1 = Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>) 0 = Event occurs when voltage equals or falls below trip point (HLVDL<3:0>) bit 6 BGVST: Band Gap Voltage Stable Flag bit 1 = Indicates that the band gap voltage is stable 0 = Indicates that the band gap voltage is unstable bit 5 **IRVST:** Internal Reference Voltage Stable Flag bit 1 = Indicates that the internal reference voltage is stable and the High-Voltage Detect logic generates the interrupt flag at the specified voltage range 0 = Indicates that the internal reference voltage is unstable and the High-Voltage Detect logic will not generate the interrupt flag at the specified voltage range, and the HLVD interrupt should not be enabled bit 4 Unimplemented: Read as '0' bit 3-0 HLVDL<3:0>: High/Low-Voltage Detection Limit bits 1111 = External analog input is used (input comes from the HLVDIN pin) 1110 = Trip Point 1⁽¹⁾ 1101 = Trip Point 2⁽¹⁾ 1100 = Trip Point 3⁽¹⁾ 0000 = Trip Point 15⁽¹⁾

HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

REGISTER 20-1: DACxCON: DACx CONTROL REGISTER (CONTINUED)

- bit 6-2 DACTSEL<4:0>: DACx Trigger Source Select bits
 - 11101-11111 = Unused 11100 = CTMU 11011 = A/D 11010 = Comparator 3 11001 = Comparator 2 11000 = Comparator 1 10011 to 10111 = Unused 10010 = CLC2 output 10001 = CLC1 output 01100 to 10000 = Unused 01011 = Timer1 Sync output 01010 = External Interrupt 2 01001 = External Interrupt 1 01000 = External Interrupt 0 0011x = Unused 00101 = MCCP5 or SCCP5 Sync output 00100 = MCCP4 or SCCP4 Sync output 00011 = MCCP3 or SCCP3 Sync output 00010 = MCCP2 or SCCP2 Sync output 00001 = MCCP1 or SCCP1 Sync output 00000 = Unused DACREF<1:0>: DACx Reference Source Select bits 11 = Internal Band Gap Buffer 1 (BGBUF1)⁽¹⁾
 - 10 = AVDD

bit 1-0

- 01 = DVREF+
- 00 = Reference is not connected (lowest power but no DAC functionality)
- **Note 1:** BGBUF1 voltage is configured by BUFREF<1:0> (BUFCON0<1:0>).

22.0 COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator module, refer to the "PIC24F Family Reference Manual", "Scalable Comparator Module" (DS39734).

The comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as a voltage reference input from either the Internal Band Gap Buffer 1 (BGBUF1) or the comparator voltage reference generator. The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is shown in Figure 22-1. Diagrams of the possible individual comparator configurations are shown in Figure 22-2.

Each comparator has its own control register, CMxCON (Register 22-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 22-2).

FIGURE 22-1: COMPARATOR x MODULE BLOCK DIAGRAM

25.2 On-Chip Voltage Regulator

All of the PIC24FXXXXX family devices power their core digital logic at a nominal 3.0V. This may create an issue for designs that are required to operate at a higher typical voltage, as high as 5.0V. To simplify system design, all devices in the "FV" family incorporate an on-chip regulator that allows the device core to run at 3.0V, while the I/O is powered by VDD at a higher voltage.

The regulator is always enabled and provides power to the core from the other VDD pins. A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 25-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Section 27.1 "DC Characteristics" and discussed in detail in Section 2.0 "Guidelines for Getting Started with 16-Bit Microcontrollers".

In all of the "F" family of devices, the regulator is disabled. Instead, the core logic is directly powered from VDD. "F" devices operate at a lower range of VDD voltage, from 1.8V-3.6V.

25.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION

For all PIC24FXXXXX devices, the on-chip regulator provides a constant voltage of 3.0V nominal to the digital core logic. The regulator can provide this level from a VDD of about 3.2V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 3.2V. In order to prevent "brown out" conditions when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD with a typical voltage drop of 150 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip High/Low-Voltage Detect (HLVD) module can be used. The HLVD trip point should be configured so that if VDD drops close to the minimum voltage for the operating frequency of the device, the HLVD Interrupt Flag, HLVDIF (IFS4<8>), will occur. This can be used to generate an interrupt and put the application into a low-power operational mode or trigger an orderly shutdown. Refer to **Section 27.1 "DC Characteristics"** for the specifications detailing the maximum operating speed based on the applied VDD voltage.

FIGURE 25-1:

CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR

25.2.2 VOLTAGE REGULATOR START-UP TIME

For PIC24FXXXXX family devices, it takes a short time, designated as TPM, for the regulator to generate a stable output. During this time, code execution is disabled. TPM is applied every time the device resumes operation after any power-down, including Sleep mode. TPM is specified in Section 27.2 "AC Characteristics and Timing Parameters".

25.3 Watchdog Timer (WDT)

For the PIC24FXXXXX family of devices, the WDT is driven by the LPRC Oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT Time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the Configuration bits, WDTPS<3:0> (FWDT<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranges from 1 ms to 131 seconds can be achieved.

DC CHARACTERISTICS			Standard Op	mperating C	onditions:	$\begin{array}{l} \textbf{1.8V to 3.6V (PIC24F16KM204)} \\ \textbf{2.0V to 5.5V (PIC24FV16KM204)} \\ \textbf{-40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial}} \\ \textbf{-40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended}} \end{array}$		
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
	VIL	Input Low Voltage ⁽⁴⁾						
DI10		I/O Pins	Vss	—	0.2 Vdd	V		
DI15		MCLR	Vss	_	0.2 Vdd	V		
DI16		OSCI (XT mode)	Vss	—	0.2 Vdd	V		
DI17		OSCI (HS mode)	Vss	_	0.2 Vdd	V		
DI18		I/O Pins with I ² C™ Buffer	Vss	—	0.3 VDD	V	SMBus disabled	
DI19		I/O Pins with SMBus Buffer	Vss	—	0.8	V	SMBus enabled	
	Viн	Input High Voltage ^(4,5)						
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd		Vdd Vdd	V V		
DI25		MCLR	0.8 VDD		Vdd	V		
DI26		OSCI (XT mode)	0.7 Vdd	_	Vdd	V		
DI27		OSCI (HS mode)	0.7 Vdd	_	Vdd	V		
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd Vdd	V V		
DI29		I/O Pins with SMBus	2.1	—	Vdd	V	$2.5V \le V\text{PIN} \le V\text{DD}$	
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS	
DI31	IPU	Maximum Load Current for	—		30	μA	VDD = 2.0V	
		w/Internal Pull-up	—	_	1000	μA	VDD = 3.3V	
	lı∟	Input Leakage Current ^(2,3)						
D150		I/O Ports	—	0.050	±0.100	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\rm in \ at \ high-impedance} \end{split}$	
DI51		Pins with OAxOUT Functions (RB15 and RB3)	—	0.100	±0.200	μA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ &\text{Pin at high-impedance} \end{split}$	

TABLE 27-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-4 and Table 1-5 for I/O pin buffer types.

5: VIH requirements are met when the internal pull-ups are enabled.

DC CHA	RACTER	RISTICS	Standard Operatin	Standard Operating Conditions:1.8V to 3.6V (PIC24F16KM204)2.0V to 5.5V (PIC24FV16KM204)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Мах	Conditions			
		Data EEPROM Memory							
D140	Epd	Cell Endurance	100,000	—	—	E/W			
D141	Vprd	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage		
D143A	TIWD	Self-Timed Write Cycle Time	—	4	—	ms			
D143B	TREF	Number of Total Write/Erase Cycles Before Refresh	_	10M		E/W			
D144	TRETDD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated		
D145	Iddpd	Supply Current During Programming	—	7	—	mA			

TABLE 27-12: DC CHARACTERISTICS: DATA EEPROM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 27-13: DC CHARACTERISTICS: COMPARATOR

DC CHARACTERISTICS			Standard O	perating Co	nditions: 1.8\ 2.0\ -40° -40°	/ to 3.6V (F / to 5.5V (F C ≤ TA ≤ +8 C ≤ TA ≤ +?	PIC24F16KM204) PIC24FV16KM204) 85°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
D300	VIOFF	Input Offset Voltage		20	40	mV	
D301	VICM	Input Common-Mode Voltage	0	—	Vdd	V	
D302	CMRR	Common-Mode Rejection Ratio	55	_		dB	

TABLE 27-14: DC CHARACTERISTICS: COMPARATOR VOLTAGE REFERENCE

DC CHARACTERISTICS			Standard	Operating temperatu	Conditions: re	1.8V to 3.6 2.0V to 5.5 -40°C \leq TA -40°C \leq TA	5V (PIC24F16KM204) 5V (PIC24FV16KM204) $A \le +85^{\circ}$ C for Industrial $A \le +125^{\circ}$ C for Extended
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
VRD310	CVRES	Resolution	_		VDD/32	LSb	
VRD311	CVRAA	Absolute Accuracy	—	—	1	LSb	AVDD = 3.3V-5.5V
VRD312	CVRur	Unit Resistor Value (R)	—	2k		Ω	

DC CH	ARACTE	RISTICS	Standard Op	perating Cono	ditions: 1.8V 2.0V -40°C -40°C	to 3.6V to 5.5V C ≤ TA ≤ C ≤ TA ≤	(PIC24F16KM204) (PIC24FV16KM204) +85°C for Industrial +125°C for Extended
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Мах	Units	Comments
	GBWP	Gain Bandwidth	_	5		MHz	SPDSEL = 1
		Product	—	0.5	—	MHz	SPDSEL = 0
	SR	Slew Rate	—	1.2	_	V/µs	SPDSEL = 1
			—	0.3	_	V/µs	SPDSEL = 0
	AOL	DC Open-Loop Gain	—	90	_	dB	
	VIOFF	Input Offset Voltage	—	±2	±10	mV	
	VIBC	Input Bias Current	—	—	—	nA	(Note 1)
	VICM	Common-Mode Input Voltage Range	AVss	_	AVdd	V	
	CMRR	Common-Mode Rejection Ratio	—	60	_	db	
	PSRR	Power Supply Rejection Ratio	—	— 60 —		dB	
	Vor	Output Voltage Range	AVss + 200	AVss + 5 to AVDD - 5	AVDD - 200	mV	0.5V input overdrive, no output loading

TABLE 27-17: OPERATIONAL AMPLIFIER SPECIFICATIONS

Note 1: The op amps use CMOS input circuitry with negligible input bias current. The maximum "effective bias current" is the I/O pin leakage specified by electrical Parameter DI50.

TABLE 27-24: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating	Operating temperatu	Condition re	s: 1.8V to 2.0V to -40°C ≤ -40°C ≤	$\begin{array}{l} \textbf{1.8V to 3.6V (PIC24F16KM204)} \\ \textbf{2.0V to 5.5V (PIC24FV16KM204)} \\ \textbf{-40^{\circ}C} \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ \textbf{-40^{\circ}C} \leq TA \leq +125^{\circ}C \text{ for Extended} \end{array}$		
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
DO31	TIOR	Port Output Rise Time	_	10	25	ns			
DO32	TIOF	Port Output Fall Time	—	10	25	ns			
DI35	TINP	INTx Pin High or Low Time (output)	20	_	—	ns			
DI40	Trbp	CNx High or Low Time (input)	2	—	_	Тсү			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
300	TRESP	Response Time ^{*(1)}	_	150	400	ns	
301	Тмс2оv	Comparator Mode Change to Output Valid [*]	—	—	10	μS	

TABLE 27-26: COMPARATOR TIMING REQUIREMENTS

Parameters are characterized but not tested.

*

Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 27-27: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time ⁽¹⁾			10	μS	

Note 1: Settling time is measured while CVRSS = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

FIGURE 27-10: CAPTURE/COMPARE/PWM TIMINGS (MCCPx, SCCPx MODULES)

TABLE 27-28: CAPTURE/COMPARE/PWM REQUIREMENTS (MCCPx, SCCPx MODULES)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
50	TCLKL	CCPx Time Base Clock Source Low Time	TCY/2		ns	
51	ТсікН	CCPx Time Base Clock Source High Time	TCY/2		ns	
52	TCLK	CCPx Time Base Clock Source Period	Тсү		ns	
53	TccL	CCPx Capture or Gating Input Low Time	TCLK	—	ns	
54	ТссН	CCPx Capture or Gating Input High Time	TCLK	_	ns	
55	TCCP	CCPx Capture or Gating Input Period	2 * Tclk/N	—	ns	N = Prescale Value (1, 4 or 16)

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

20-Lead PDIP (300 mil)

20-Lead SSOP (5.30 mm)

20-Lead SOIC (7.50 mm)

20-Lead QFN

Example PIC24F08KM101 -I/P@3 0 1342M7W

Example

Example

Legend:	XXX Y YY WW NNN @3	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the e will be charac	event the full Microchip part number cannot be marked on one line, it carried over to the next line, thus limiting the number of available ters for customer-specific information.