

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km101-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F					FV						
			Pin Numt	ber			I	Pin Numb	ber		_			
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description	
MCLR	1	1	26	18	19	1	1	26	18	19	I	ST	Master Clear (Device Reset) Input (active-low)	
OA1INA	—	5	2	22	24	_	5	2	22	24	Ι	ANA	Op Amp 1 Input A	
OA1INB	—	6	3	23	25	_	6	3	23	25	Ι	ANA	Op Amp 1 Input B	
OA1INC	—	24	21	11	12	_	24	21	11	12	Ι	ANA	Op Amp 1 Input C	
OA1IND	—	25	22	14	15	_	25	22	14	15	Ι	ANA	Op Amp 1 Input D	
OA1OUT	—	7	4	24	26	_	7	4	24	26	0	ANA	Op Amp 1 Analog Output	
OA2INA	—	5	2	22	24	—	5	2	22	24	I	ANA	Op Amp 2 Input A	
OA2INB	_	6	3	23	25	_	6	3	23	25	I	ANA	Op Amp 2 Input B	
OA2INC	_	24	21	11	12	—	24	21	11	12	I	ANA	Op Amp 2 Input C	
OA2IND	_	25	22	14	15	—	25	22	14	15	I	ANA	Op Amp 2 Input D	
OA2OUT	_	26	23	15	16	—	26	23	15	16	0	ANA	Op Amp 2 Analog Output	
OC1A	14	20	17	7	7	11	16	13	43	47	0	—	MCCP1 Output Compare A	
OC1B	12	17	14	44	48	12	17	14	44	48	0	—	MCCP1 Output Compare B	
OC1C	15	21	18	8	9	15	21	18	8	9	0	—	MCCP1 Output Compare C	
OC1D	16	24	21	11	12	16	24	21	11	12	0	—	MCCP1 Output Compare D	
OC1E	_	14	11	41	45	—	14	11	41	45	0	—	MCCP1 Output Compare E	
OC1F	_	15	12	42	46	—	15	12	42	46	0	—	MCCP1 Output Compare F	
OC2A	4	22	19	9	10	4	22	19	9	10	0	—	MCCP2 Output Compare A	
OC2B	—	23	20	10	11	_	23	20	10	11	0	—	MCCP2 Output Compare B	
OC2C	—	—	—	2	2	_	_	—	2	2	0	—	MCCP2 Output Compare C	
OC2D	—	—	—	3	3	_	_	—	3	3	0	—	MCCP2 Output Compare D	
OC2E	—	—	—	4	4	_	_	—	4	4	0	—	MCCP2 Output Compare E	
OC2F	—	—	—	5	5	_	_	—	5	5	0	—	MCCP2 Output Compare F	
OC3A	_	21	18	12	13	_	21	18	12	13	0	_	MCCP3 Output Compare A	
OC3B	_	24	21	13	14	_	24	21	13	14	0	_	MCCP3 Output Compare B	
OC4	_	18	15	1	1	_	18	15	1	1	0	_	SCCP4 Output Compare	
OC5	—	19	16	6	6	_	19	16	6	6	0	—	SCCP5 Output Compare	
OCFA	17	25	22	14	15	17	25	22	14	15	I	ST	MCCP/SCCP Output Compare Fault Input A	
OCFB	16	24	21	32	35	16	24	21	32	35	I	ST	MCCP/SCCP Output Compare Fault Input B	
		Ioval input		T – C e le me i H			$\frac{1201}{1201} = 12$				•	•		

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, I²C[™] = I²C/SMBus input buffer

DS30003030B-page 24

3.0 CPU

Note:	This data sheet summarizes the features								
	of this group of PIC24F devices. It is not								
	intended to be a comprehensive refer-								
	ence source. For more information on the								
	CPU, refer to the "PIC24F Family								
	Reference Manual", "CPU" (DS39703).								

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The upper 32 Kbytes of the Data Space (DS) memory map can optionally be mapped into program space at any 16K word boundary of either program memory or data EEPROM memory, defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to Data Space mapping feature lets any instruction access program space as if it were Data Space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (i.e., A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is illustrated in Figure 3-1.

3.1 Programmer's Model

Figure 3-2 displays the programmer's model for the PIC24F. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions.

Table 3-1 provides a description of each register. All registers associated with the programmer's model are memory mapped.

TABLE 4-9: MCCP2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP2CON1L	164h	CCPON	—	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP2CON1H	166h	OPSSRC	RTRGEN	_	_	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP2CON2L	168h	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP2CON2H	16Ah	OENSYNC	_	OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN	ICGSM1	ICGSM0	—	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP2CON3L	16Ch	_	_	_	_	_	_	_	_	_		DT5	DT4	DT3	DT2	DT1	DT0	0000
CCP2CON3H	16Eh	OETRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾	_	_	POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0(1)	0000
CCP2STATL	170h	_	_	_	_	_	_	_		CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP2TMRL	174h							MCC	P2 Time Ba	ase Register	r Low Word							0000
CCP2TMRH	176h							MCC	P2 Time Ba	se Register	High Word							0000
CCP2PRL	178h							MCCP2	Time Base	Period Regi	ister Low Wo	rd						FFFF
CCP2PRH	17Ah							MCCP2	Time Base I	Period Regi	ster High Wo	ord						FFFF
CCP2RAL	17Ch							C	utput Comp	oare 2 Data	Word A							0000
CCP2RBL	180h							C	utput Comp	oare 2 Data	Word B							0000
CCP2BUFL	184h							Inpu	t Capture 2	Data Buffer	Low Word							0000
CCP2BUFH	186h							Input	Capture 2	Data Buffer	High Word							0000

PIC24FV16KM204 FAMILY

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These bits are available only on PIC24F(V)16KM2XX devices.

EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

;	Set up NVMCO	N for row programming operation	ıs	
	MOV	#0x4004, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poir	nter to the first program memor	сy	location to be written
;	program memo:	ry selected, and writes enabled	1	
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x1500, W0	;	An example program memory address
;	Perform the '	TBLWT instructions to write the	2	latches
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	#HIGH_BYTE_0, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_v	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program_v	word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BYTE_2, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•			
;	32nd_program	_word		
	MOV	#LOW_WORD_31, W2	;	
	MOV	<pre>#HIGH_BYTE_31, W3</pre>	;	
	TBLWTL	W2, [WU]	;	Write PM low word into program latch
	TBLWTH	W3, [W0]	;	Write PM high byte into program latch

EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
  #define NUM_INSTRUCTION_PER_ROW 64
int __attribute__ ((space(auto_psv))) progAddr = 0x1234 // Variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
  unsigned int progData[2*NUM_INSTRUCTION_PER_ROW];
                                                            // Buffer of data to write
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4004;
                                                            // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr);
                                                           // Initialize PM Page Boundary SFR
                                                            // Initialize lower word of address
  offset = __builtin_tbloffset(&progAddr);
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
  {
                                                          // Write to address low word
      __builtin_tblwtl(offset, progData[i++]);
       __builtin_tblwth(offset, progData[i]);
                                                            // Write to upper byte
      offset = offset + 2;
                                                            // Increment address
  }
```

R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
WR	WREN	WRERR	PGMONLY		—	—	—	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	
bit 7								
Legend:		HC = Hardware	Clearable bit	U = Unimple	mented bit, re	ead as '0'		
R = Readable	bit	W = Writable bit		S = Settable	Only bit			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown	
L								
bit 15	WR: Write Co	ontrol bit (program	or erase)					
-	1 = Initiates	a data EEPROM e	erase or write cv	cle (can be set	, but not clea	red in softwar	e)	
	0 = Write cyc	cle is complete (cle	eared automatica	ally by hardwa	re)		,	
bit 14	WREN: Write	e Enable bit (erase	or program)					
	1 = Enables a	an erase or progra	im operation					
	0 = No opera	tion allowed (devi	ce clears this bit	on completion	of the write/e	erase operatio	n)	
bit 13	WRERR: Fla	sh Error Flag bit						
	1 = A write	operation is prem	naturely termina	ted (any MCL	R or WDT F	Reset during	programming	
	operation	n)						
1.11.40	0 = The write		eted successfully	/				
bit 12	PGMONLY: H	Program Only Ena	ble bit					
	1 = VVrite ope	eration is executed	d without erasing	g target addres	s(es) first			
	Write operation	ons are preceded	automatically by	an erase of th	e target addr	ess(es).		
bit 11-7	Unimplemen	ited: Read as '0'				().		
bit 6	ERASE: Fras	se Operation Sele	ct bit					
2.1.0	1 = Performs	s an erase operatio	on when WR is s	set				
	0 = Performs	a write operation	when WR is set	t				
bit 5-0	NVMOP<5:0	>: Programming C	peration Comm	and Byte bits				
	Erase Operat	tions (when ERAS	<u>E bit is '1'):</u>	-				
	011010 = Era	ase 8 words						
	011001 = Era	ase 4 words						
	011000 = Er	ase 1 word						
		ase entire udid EE		o') .				
	$r_{10}y_{1}amming$ 0001xx = Wr	rite 1 word	II ERAJE DILIS (<u>. j.</u>				

REGISTER 6-1: NVMCON: NONVOLATILE MEMORY CONTROL REGISTER

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator Configuration".

TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC<2:0> Configuration bits
BOR	(FOSCSEL<2:0>)
MCLR	COSC<2:0> Control bits
WDTO	(OSCCON<14:12>)
SWR	

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT	_	1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	TLOCK	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Тоѕт	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	Tost + Tlock	1, 2, 4, 5
BOR	EC	TPWRT	—	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	TLOCK	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Tost	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	—	_	None

TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if the Power-up Timer is enabled; otherwise, it is zero.
- **3:** TFRC and TLPRC = RC Oscillator start-up times.
- **4:** TLOCK = PLL Lock time.
- **5:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.
- 6: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 27.0 "Electrical Characteristics".

8.3 Interrupt Control and Status Registers

The PIC24FV16KM204 family of devices implements a total of 33 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS6
- · IEC0 through IEC6
- IPC0 through IPC7, IPC10, IPC12, IPC15, IPC16, IPC18 through IPC20 and IPC24
- INTTREG

Global Interrupt Enable (GIE) control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIVT.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals, or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence. For example, the INT0 (External Interrupt 0) is depicted as having a vector number and a natural order priority of 0. The INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits are in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU Interrupt Priority Level by writing to the IPLx bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that the trap events cannot be masked by the user's software.

All Interrupt registers are described in Register 8-1 through Register 8-35, in the following sections.

IFS1: INTERRUPT FLAG STATUS REGISTER 1

REGISTER 8-6:

R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0	U-0		
U2TXIF	U2RXIF	INT2IF	CCT4IF	CCT3IF	_	<u> </u>	_		
bit 15							bit 8		
U-0	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS		
	CCP5IF	—	INT1IF	CNIF	CMIF	BCL1IF	SSP1IF		
bit 7							bit 0		
Logondi			ra Cattabla bit						
Legena:	, bit	HS = Haluwal			aantad hit raar				
n = Value at		'1' = Bit is set	DIL	$0^{\circ} = \text{Bit is clear}$	ared	v – Bitis unkn	as U x = Dit is unknown		
	TOR				areu		OWIT		
bit 15	U2TXIF: UAR	T2 Transmitter	Interrupt Flag	Status bit					
Sit 10	1 = Interrupt r	equest has occ	curred	clatue bit					
	0 = Interrupt r	equest has not	occurred						
bit 14	U2RXIF: UAR	RT2 Receiver In	nterrupt Flag St	atus bit					
	1 = Interrupt r	equest has occ	curred						
hit 12		equest has not	Coccurred						
DIL 13	1 = Interrupt r	request has occ	riay Status Dit Surred						
	0 = Interrupt r	equest has not	occurred						
bit 12	CCT4IF: Capt	ture/Compare 4	4 Timer Interru	ot Flag Status b	pit				
	1 = Interrupt r	equest has occ	curred						
	0 = Interrupt r	equest has not	occurred						
bit 11	CCT3IF: Capi	ture/Compare 3	3 Timer Interru	pt Flag Status b	bit				
	1 = Interrupt r 0 = Interrupt r	equest has occ equest has not	currea coccurred						
bit 10-7	Unimplement	ted: Read as 'd)'						
bit 6	CCP5IF: Cap	ture/Compare &	5 Event Interru	pt Flag Status b	bit				
	1 = Interrupt r	equest has occ	curred						
	0 = Interrupt r	equest has not	occurred						
bit 5	Unimplement	ted: Read as 'o)'						
bit 4	INT1IF: Exter	nal Interrupt 1	Flag Status bit						
	1 = Interrupt r 0 = Interrupt r	equest has occ	occurred						
bit 3	CNIF: Input C	hange Notifica	tion Interrupt F	lag Status bit					
	1 = Interrupt r	equest has occ	curred						
	0 = Interrupt r	equest has not	occurred						
bit 2	CMIF: Compa	arator Interrupt	Flag Status Bit	:					
	1 = Interrupt r	equest has occ	curred						
bit 1			Collision Interr	unt Elaa Status	bit				
DILI	1 = Interrupt r	equest has occ		upi riag Sialus	bit				
	0 = Interrupt r	equest has not	occurred						
bit 0	SI2C1IF: MSS	SP1 SPI/I ² C Ev	ent Interrupt F	lag Status bit					
	1 = Interrupt r	equest has occ	curred						
	0 = Interrupt r	equest has not	occurred						

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit <u>If FSCM is Enabled (FCKSM1 = 1):</u> 1 = Clock and PLL selections are locked 0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit <u>If FSCM is Disabled (FCKSM1 = 0):</u> Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit ⁽²⁾
	 1 = PLL module is in lock or PLL module start-up timer is satisfied 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	 1 = FSCM has detected a clock failure 0 = No clock failure has been detected
bit 2	SOSCDRV: Secondary Oscillator Drive Strength bit ⁽³⁾
	 1 = High-power SOSC circuit is selected 0 = Low/high-power select is done via the SOSCSRC Configuration bit
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	 1 = Enables the Secondary Oscillator 0 = Disables the Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	 1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits 0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.

- 2: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
- **3:** When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

13.5 Auxiliary Output

The MCCPx and SCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCP or SCCP modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

On the PIC24FV16KM204 family of devices, only the CTMU discharge trigger has access to the auxiliary output signal.

AUXOUT<1:0>	CCSEL	MOD<3:0>	Comments	Signal Description
00	х	xxxx	Auxiliary output disabled	No Output
01	0	0000	Time Base modes	Time Base Period Reset or Rollover
10				Special Event Trigger Output
11				No Output
01	0	0001	Output Compare modes	Time Base Period Reset or Rollover
10		through		Output Compare Event Signal
11				Output Compare Signal
01	1	xxxx	Input Capture modes	Time Base Period Reset or Rollover
10				Reflects the Value of the ICDIS bit
11				Input Capture Event Signal

TABLE 13-5: AUXILIARY OUTPUT

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0		
PWMRSEN	ASDGM	—	SSDG	_	—	_			
bit 15		·		·	·		bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15 bit 14 bit 13	 bit 15 PWMRSEN: CCPx PWM Restart Enable bit 1 = ASEVT bit clears automatically at the beginning of the next PWM period, after the shutdown input has ended 0 = ASEVT bit must be cleared in software to resume PWM activity on output pins bit 14 ASDGM: CCPx Auto-Shutdown Gate Mode Enable bit 1 = Wait until the next Time Base Reset or rollover for shutdown to occur 0 = Shutdown event occurs immediately 								
bit 10		Software Shut	, down/Cato Ca	ntral hit					
UIL IZ	 12 SSDG: CCPx Software Shutdown/Gate Control bit 1 = Manually force auto-shutdown, timer clock gate or input capture signal gate event (setting of ASDGM bit still applies) 0 = Normal module operation 								
bit 11-8	Unimplemen	ted: Read as ')'						
bit 7-0	ASDG<7:0>:	CCPx Auto-Sh	utdown/Gating	g Source Enable	e bits				
	1 = ASDGx S 0 = ASDGx S	Source n is ena Source n is disa	bled (see Tabl bled	e 13-7 for auto-	shutdown/gatir	ng sources)			

REGISTER 13-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS

TABLE 13-7: AUTO-SHUTDOWN AND GATING SOURCES

ASDG<7:0> Bits	Auto-Shutdown/Gating Source			
0	Comparator 1 Output			
1	Comparator 2 Output			
2	Comparator 3 Output			
3	SCCP4 Output Compare			
4	SCCP5 Output Compare			
5	CLC1 Output			
6	OCFA Fault Input			
7	OCFB Fault Input			

16.2.4 RTCC CONTROL REGISTERS

REGISTER 16-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0 HSC	R-0 HSC	R/W-0	R/W-0	R/W-0	
RTCEN ⁽²⁾	_	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0	
bit 15							bit 8	
							J	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	
bit 7							bit 0	
Legend:		HSC = Hardw	are Settable/C	learable bit				
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
L:1 4 F		C Enchla hit(2)						
DIL 15	1 = RTCC m		d					
	0 = RTCC m	odule is disable	ed					
bit 14	Unimplemen	ted: Read as 'd	כי					
bit 13	RTCWREN: F	RTCC Value Re	egisters Write E	Enable bit				
	1 = RTCVAL	H and RTCVAL	L registers car	n be written to b	y the user			
	0 = RTCVALI	H and RTCVAL	L registers are	locked out from	n being writter	n to by the user		
bit 12	RTCSYNC: R	TCC Value Re	gisters Read S	Synchronization	bit			
	1 = RTCVALI	H, RTCVALL ar in an invalid da	nd ALCFGRPT	registers can c	hange while ro	eading due to a	rollover ripple	
	can be as	ssumed to be v	alid.		twice and rest			
	0 = RTCVAL	H, RTCVALL or	ALCFGRPT r	egisters can be	read without of	concern over a	rollover ripple	
bit 11	HALFSEC: Half Second Status bit ⁽³⁾							
	1 = Second h	alf period of a	second					
	0 = First half	period of a sec	cond					
bit 10		C Output Enab	ble bit					
	1 = RTCC out = 0 = RTCC out = 0 = RTCC out = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	itput is enabled	1					
bit 9-8	RTCPTR<1:0>: RTCC Value Register Window Pointer bits							
	Points to the c	corresponding F	RTCC Value reg	gisters when rea	ading the RTC	ALH and RTC	ALL registers.	
	The RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'.							
	<u>RICVAL<15:8>:</u> 00 = MINUTES							
	01 = WEEKDAY							
	10 = MONTH							
	11 = Reserve	d						
	$\frac{\text{RICVAL} < 7:0}{0.0} = \text{SECON}$	<u>>:</u> DS						
	01 = HOURS							
	10 = DAY							
	11 = YEAR							

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

19.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter with Threshold Detect, refer to the "PIC24F Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739).

The PIC24F 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 100 ksps
- Up to 32 Analog Input Channels (internal and external)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed-Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in some PIC24 devices. Both modules are Successive Approximation Register (SAR) converters at their cores, surrounded by a range of hardware features for flexible configuration. This version of the module extends functionality by providing 12-bit resolution, a wider range of automatic sampling options and tighter integration with other analog modules, such as the CTMU, and a configurable results buffer. There is a legacy 10-bit mode on this A/D to allow the option to run with lower resolution in order to obtain higher throughput. This module also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results.

A simplified block diagram for the module is illustrated in Figure 19-1.

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ADON	_	ADSIDL	_	_	MODE12	FORM1	FORM0
bit 15							bit 8
L							
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
SSRC3	SSRC2	SSRC1	SSRC0		ASAM	SAMP	DONE
bit 7						•	bit 0
Legend:		C = Clearable	bit	U = Unimplem	nented bit, read	l as '0'	
R = Readable	e bit	W = Writable b	bit	HSC = Hardw	are Settable/C	learable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	ADON: A/D O 1 = A/D Conv 0 = A/D Conv	perating Mode verter is operation verter is off	bit ng				
bit 14	Unimplement	ted: Read as 'o	3				
bit 13	ADSIDL: A/D	Stop in Idle Mo	de bit				
	1 = Discontin 0 = Continues	ues module op s module opera	eration when o tion in Idle mo	device enters Id	le mode		
bit 12-11	Unimplement	ted: Read as '0	,				
bit 10	MODE12: 12-	Bit A/D Operati	on Mode bit				
	1 = 12-bit A/E 0 = 10-bit A/E) operation) operation					
bit 9-8	FORM<1:0>:	Data Output Fo	ormat bits (see	the following for	ormats)		
	 11 = Fractional result, signed, left justified 10 = Absolute fractional result, unsigned, left justified 01 = Decimal result, signed, right justified 00 = Absolute decimal result, unsigned, right justified 						
bit 7-4	SSRC<3:0>: 3	Sample Clock S	Source Select	bits			
	1111 = Reser	ved					
	•						
	•						
	 1101 = Reserved 1100 = CLC2 event ends sampling and starts conversion 1011 = SCCP4 Compare Event (CCP4IF) ends sampling and starts conversion 1010 = MCCP3 Compare Event (CCP3IF) ends sampling and starts conversion 1001 = MCCP2 Compare Event (CCP2IF) ends sampling and starts conversion 1000 = CLC1 event ends sampling and starts conversion 0111 = Internal counter ends sampling and starts conversion (auto-convert) 0110 = TMR1 Sleep mode Trigger event ends sampling and starts conversion 0101 = TMR1 event ends sampling and starts conversion 0100 = CTMU event ends sampling and starts conversion 0111 = SCCP5 Compare Event (CCP5IF) ends sampling and starts conversion 0011 = MCCP1 Compare Event (CCP1IF) ends sampling and starts conversion 0001 = INT0 event ends sampling and starts conversion 0000 = Clearing the Sample bit ends sampling and starts conversion 						

REGISTER 19-1: AD1CON1: A/DA/D CONTROL REGISTER 1

Note 1: This version of the TMR1 Trigger allows A/D conversions to be triggered from TMR1 while the device is operating in Sleep mode. The SSRC<3:0> = 0101 option allows conversions to be triggered in Run or Idle modes only.

NOTES:

TABLE 27-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
$\begin{array}{l} \mbox{Power Dissipation} \\ \mbox{Internal Chip Power Dissipation:} \\ \mbox{PINT} = \mbox{VDD } x \ (\mbox{IDD} - \Sigma \ \mbox{IOH}) \\ \mbox{I/O Pin Power Dissipation:} \\ \mbox{PI/O} = \Sigma \ (\{\mbox{VDD} - \mbox{VOH} \} \ x \ \mbox{IOH}) + \Sigma \ (\mbox{VOL } x \ \mbox{IOL}) \end{array}$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	A	W

TABLE 27-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 20-Pin PDIP	θJA	62.4	—	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60		°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θJA	108		°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71		°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	75		°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	80.2		°C/W	1
Package Thermal Resistance, 20-Pin QFN	θJA	43		°C/W	1
Package Thermal Resistance, 28-Pin QFN	θJA	32		°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29		°C/W	1
Package Thermal Resistance, 44-Pin TQFP	θJA	40		°C/W	1
Package Thermal Resistance, 48-Pin UQFN	θJA	41	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 27-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS		Standar Operatin	d Operat	t ing Co trature	ondition	s: 1.8V to 3.6V (PIC24F16KMXXX) 2.0V to 5.5V (PIC24FV16KMXXX) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended	
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DC10	Vdd	Supply Voltage	1.8	—	3.6	V	For PIC24F devices
			2.0		5.5	V	For PIC24FV devices
DC12	DC12 VDR RAM Data Retention		1.6		—	V	For PIC24F devices
		Voltage ⁽²⁾	1.8		_	V	For PIC24FV devices
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	_	0.7	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_		V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

INDEX

1	١.
r	١

A/D	
Buffer Data Formats	. 225
Control Registers	. 212
AD1CHITH/L	. 212
AD1CHS	. 212
AD1CON1	. 212
AD1CON2	. 212
AD1CON3	. 212
AD1CON5	. 212
AD1CSSH/L	. 212
AD1CTMENH/L	. 212
Sampling Requirements	. 223
Transfer Function	. 224
AC Characteristics	
8-Bit DAC Specifications	. 296
A/D Conversion Requirements	. 295
A/D Module Specifications	. 294
Capacitive Loading Requirements on	
Output Pins	. 279
CLKO and I/O Requirements	. 282
External Clock Requirements	. 280
Internal RC Accuracy	. 281
Internal RC Oscillator Specifications	. 281
Load Conditions and Requirements	. 279
PLL Clock Specification	. 281
Reset, Watchdog Timer. Oscillator Start-up Timer,	
Power-up Timer, Brown-out Reset	
Requirements	. 284
Temperature and Voltage Specifications	. 279
Assembler	
MPASM Assembler	. 262

В

Block Diagrams	
12-Bit A/D Converter	210
12-Bit A/D Converter Analog Input Model	223
16-Bit Timer1	141
32-Bit Timer Mode	146
Accessing Program Memory with	
Table Instructions	65
CALL Stack Frame	63
CLCx Input Source Selection	197
CLCx Logic Function Combinatorial Options	196
CLCx Module	195
Comparator Voltage Reference	239
Comparator x Module	235
Conceptual MCCPx/SCCPx Modules	143
CPU Programmer's Model	37
CTMU Connections, Internal Configuration for	
Capacitance Measurement	242
CTMU Connections, Internal Configuration for	
Pulse Delay Generation	243
CTMU Connections, Internal Configuration for	
Time Measurement	242
Data Access from Program Space Address Gen 64	eration
Data EEPROM Addressing with TBLPAG and	
NVM Registers	75
Dual 16-Bit Timer Mode	145
High/Low-Voltage Detect (HLVD)	207
Individual Comparator Configurations	236
Input Capture x Module	148

MCLR Pin Connections Example	30
MSSPx (I ² C Master Mode)	161
MSSPx (I ² C Mode)	161
MSSPx (SPI Mode)	160
On-Chip Voltage Regulator Connections	257
Output Compare x Module	147
PIC24F CPU Core	36
PIC24FXXXXX Family (General)	19
PSV Operation	66
Recommended Minimum Connections	29
Reset System	79
RTCC Module	181
Series Resistor	132
Shared I/O Port Structure	137
Simplified Single DACx Module	229
Simplified UARTx	173
Single Operational Amplifier	233
SPI Master/Slave Connection	160
Suggested Oscillator Circuit Placement	33
System Clock	121
Table Register Addressing	67
Timer Clock Generator	144
Watchdog Timer (WDT)	258
Brown-out Reset	
Trip Points	

С

C Compilers
MPLAB XC Compilers 262
Capture/Compare/PWM/Timer
Auxiliary Output 149
General Purpose Timer 145
Input Capture Mode 148
Output Compare Mode 147
Synchronization Sources 153
Time Base Generator 144
Capture/Compare/PWM/Timer (MCCP, SCCP) 143
Charge Time Measurement Unit. See CTMU.
CLC
Control Registers 198
Code Examples
Assembly Code Sequence for Clock Switching 128
C Code Power-Saving Entry 131
C Code Sequence for Clock Switching 128
Data EEPROM Bulk Erase 77
Data EEPROM Unlock Sequence
Erasing a Program Memory Row,
Assembly Language
Erasing a Program Memory Row, C Language 70
I/O Port Write/Read 140
Initiating a Programming Sequence,
Assembly Language72
Initiating a Programming Sequence, C Language 72
Loading the Write Buffers, Assembly Language 71
Loading the Write Buffers, C Language
Reading Data EEPROM Using
TBLRD Command78
Setting the RTCWREN Bit in 'C' 182
Setting the RTCWREN Bit in Assembly 182
Single-Word Erase
Single-Word Write to Data EEPROM
Ultra Low-Power Wake-up Initialization
Code Protection
Comparator 235

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Rar Package — Pattern —	PIC 24 FV 16 KM2 04 T - I / PT - XXX markamily y Size (Kbytes) lag (if applicable)	 Examples: a) PIC24FV16KM204-I/ML: Wide Voltage Range, General Purpose, 16-Kbyte Program Memory, 44-Pin, Industrial Temp., QFN Package b) PIC24F08KM102-I/SS: Standard Voltage Range, General Purpose with Reduced Feature Set, 8-Kbyte Program Memory, 28-Pin, Industrial Temp., SSOP Package
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	F = Standard voltage range Flash program memoryFV = Wide voltage range Flash program memory	
Product Group	KM2 = General Purpose PIC24F Lite Microcontroller KM1 = General Purpose PIC24F Lite Microcontroller with Reduced Feature Set	
Pin Count	01 = 20-pin 02 = 28-pin 04 = 44-pin	
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package	SP = SPDIP SO = SOIC SS = SSOP ML = QFN P = PDIP PT = TQFP MV = UQFN	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	