

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km101-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.4 EASY MIGRATION

The PIC24FV16KM204 family devices have two variants. The KM20X variant provides the full feature set of the device, while the KM10X offers a reduced peripheral set, allowing for the balance of features and cost (refer to Table 1-1). Both variants allow for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, different die variants, or even moving from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple to the powerful and complex, yet still selecting a Microchip device.

1.2 Other Special Features

- Communications: The PIC24FV16KM204 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an MSSP module which implements both SPI and I²C™ protocols, and supports both Master and Slave modes of operation for each. Devices also include one of two UARTs with built-in IrDA[®] encoders/decoders.
- Analog Features: Select members of the PIC24FV16KM204 family include two 8-bit Digital-to-Analog Converters which offer support in Idle mode, and left and right justified input data, as well as up to two operational amplifiers with selectable power and speed modes.
- Real-Time Clock/Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- 12-Bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep, to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV16KM204 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation. The CTMU can also be connected to the operational amplifiers to provide active guarding, which provides increased robustness in the presence of noise in capacitive touch applications.

1.3 Details on Individual Family Members

Devices in the PIC24FV16KM204 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

Members of the PIC24FV16KM204 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV16KM204), accommodate an operating VDD range of 2.0V to 5.5V and have an on-board voltage regulator that powers the core. Peripherals operate at VDD.

Standard devices, designated by "F" (such as PIC24F16KM204), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

The PIC24FV16KM204 family may be thought of as two different device groups, both offering slightly different sets of features. These differ from each other in multiple ways:

- · The size of the Flash program memory
- The number of external analog channels available
- The number of Digital-to-Analog Converters
- · The number of operational amplifiers
- The number of analog comparators
- The presence of a Real-Time Clock and Calendar (RTCC)
- The number and type of CCP modules (i.e., MCCP vs. SCCP)
- The number of serial communication modules (both MSSPs and UARTs)
- The number of Configurable Logic Cell (CLC) modules

The general differences between the different sub-families are shown in Table 1-1 and Table 1-2.

A list of the pin features available on the PIC24FV16KM204 family devices, sorted by function, is provided in Table 1-5.

TABLE 1-3: DEVICE FEATURES FOR	R THE PIC24FV1							
Features	PIC24FV16KM204	PIC24FV08KM204	PIC24FV16KM202	PIC24FV08KM202				
Operating Frequency		DC-3	2 MHz					
Program Memory (bytes)	16K	8K	16K	8K				
Program Memory (instructions)	5632	2816	5632	2816				
Data Memory (bytes)		20)48	I				
Data EEPROM Memory (bytes)		5	12					
Interrupt Sources (soft vectors/NMI traps)		40 (36/4)					
Voltage Range		2.0-	-5.5V					
I/O Ports	PORTA<1 PORTB< PORTC	:15:0>		RTA<7,5:0> RTB<15:0>				
Total I/O Pins	37			23				
Timers	11 (One 16-bit timer, five MCCPs/SCCPs with up to two 16/32 timers each)							
Capture/Compare/PWM modules MCCP SCCP			3 2					
Serial Communications MSSP UART			2 2					
Input Change Notification Interrupt	36			22				
12-Bit Analog-to-Digital Module (input channels)	22			19				
Analog Comparators			3					
8-Bit Digital-to-Analog Converters			2					
Operational Amplifiers			2					
Charge Time Measurement Unit (CTMU)		Y	íes 🛛					
Real-Time Clock and Calendar (RTCC)		Y	'es					
Configurable Logic Cell (CLC)	2							
Resets (and delays) POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismat (PWRT, OST, PLL Lock)								
Instruction Set	76 Base Inst	ructions, Multiple	e Addressing N	Iode Variations				
Packages	44-Pin QFI 48-Pin U		28-Pin SPDIP/SSOP/SOIC/QFN					

TABLE 1-3: DEVICE FEATURES FOR THE PIC24FV16KM204 FAMILY

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION

			F					FV					
			Pin Numb	er				Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
AN0	2	2	27	19	21	2	2	27	19	21	I	ANA	A/D Analog Inputs
AN1	3	3	28	20	22	3	3	28	20	22	I	ANA	A/D Analog Inputs
AN2	4	4	1	21	23	4	4	1	21	23	I	ANA	A/D Analog Inputs
AN3	5	5	2	22	24	5	5	2	22	24	Ι	ANA	A/D Analog Inputs
AN4	6	6	3	23	25	6	6	3	23	25	I	ANA	A/D Analog Inputs
AN5	_	7	4	24	26	—	7	4	24	26	I	ANA	A/D Analog Inputs
AN6	_	—	—	25	27	—	—		25	27	I	ANA	A/D Analog Inputs
AN7	_	—	—	26	28	—	—		26	28	I	ANA	A/D Analog Inputs
AN8	_	—	—	27	29	—	—		27	29	I	ANA	A/D Analog Inputs
AN9	18	26	23	15	16	18	26	23	15	16	I	ANA	A/D Analog Inputs
AN10	17	25	22	14	15	17	25	22	14	15	I	ANA	A/D Analog Inputs
AN11	16	24	21	11	12	16	24	21	11	12	-	ANA	A/D Analog Inputs
AN12	15	23	20	10	11	15	23	20	10	11	Ι	ANA	A/D Analog Inputs
AN13	7	9	6	30	33	7	9	6	30	33	Ι	ANA	A/D Analog Inputs
AN14	8	10	7	31	34	8	10	7	31	34	Ι	ANA	A/D Analog Inputs
AN15	9	11	8	33	36	9	11	8	33	36	I	ANA	A/D Analog Inputs
AN16	10	12	9	34	37	10	12	9	34	37	Ι	ANA	A/D Analog Inputs
AN17	_	14	11	41	45	_	14	11	41	45	I	ANA	A/D Analog Inputs
AN18	_	15	12	42	46	_	15	12	42	46	I	ANA	A/D Analog Inputs
AN19	11	16	13	43	47	11	16	13	43	47	I	ANA	A/D Analog Inputs
AN20	12	17	14	44	48	12	17	14	44	48	I	ANA	A/D Analog Inputs
AN21	13	18	15	1	1	13	18	15	1	1	I	ANA	A/D Analog Inputs
ASCL1	_	15	12	42	46	_	15	12	42	46	I/O	I ² C™	Alternate I2C1 Clock Input/Output
ASDA1	_	14	11	41	45	_	14	11	41	45	I/O	l ² C	Alternate I2C1 Data Input/Output
AVDD	20	28	25	17	18	20	28	25	17	18	Р		A/D Supply Pins
AVss	19	27	24	16	17	19	27	24	16	17	Р		A/D Supply Pins
C1INA	8	7	4	24	26	8	7	4	24	26	I	ANA	Comparator 1 Input A (+)
C1INB	7	6	3	23	25	7	6	3	23	25	I	ANA	Comparator 1 Input B (-)
C1INC	5	5	2	22	24	5	5	2	22	24	I	ANA	Comparator 1 Input C (+)
C1IND	4	4	1	21	23	4	4	1	21	23	Ι	ANA	Comparator 1 Input D (-)

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

DS30003030B-page 20

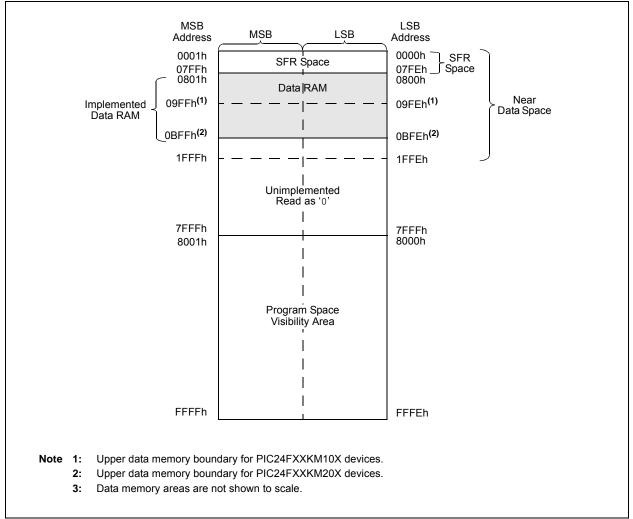
TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

TABLE 1-5.			F				<u> </u>	FV	,				
		I	Pin Numb	er			I	Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
OSCI	7	9	6	30	33	7	9	6	30	33	Ι	ANA	Primary Oscillator Input
OSCO	8	10	7	31	34	8	10	7	31	34	0	ANA	Primary Oscillator Output
PGEC1	5	5	2	22	24	5	5	2	22	24	I/O	ST	ICSP Clock 1
PGED1	4	4	1	21	23	4	4	1	21	23	I/O	ST	ICSP Data 1
PGEC2	2	22	19	9	10	2	22	19	9	10	I/O	ST	ICSP Clock 2
PGED2	3	21	18	8	9	3	21	18	8	9	I/O	ST	ICSP Data 2
PGEC3	10	15	12	42	46	10	15	12	42	46	I/O	ST	ICSP Clock 3
PGED3	9	14	11	41	45	9	14	11	41	45	I/O	ST	ICSP Data 3
PWRLCLK	10	12	9	34	37	10	12	9	34	37	Ι	ST	RTCC Power Line Clock Input
RA0	2	2	27	19	21	2	2	27	19	21	I/O	ST	PORTA Pins
RA1	3	3	28	20	22	3	3	28	20	22	I/O	ST	PORTA Pins
RA2	7	9	6	30	33	7	9	6	30	33	I/O	ST	PORTA Pins
RA3	8	10	7	31	34	8	10	7	31	34	I/O	ST	PORTA Pins
RA4	10	12	9	34	37	10	12	9	34	37	I/O	ST	PORTA Pins
RA5	1	1	26	18	19	1	1	26	18	19	I/O	ST	PORTA Pins
RA6	14	20	17	7	7	_		_	_	_	I/O	ST	PORTA Pins
RA7	_	19	16	6	6	_	19	16	6	6	I/O	ST	PORTA Pins
RA8	—	—		32	35	—		—	32	35	I/O	ST	PORTA Pins
RA9	—	—		35	38	—		—	35	38	I/O	ST	PORTA Pins
RA10	_	_	_	12	13	_	_	—	12	13	I/O	ST	PORTA Pins
RA11	_	_	_	13	14	_	_	—	13	14	I/O	ST	PORTA Pins
RB0	4	4	1	21	23	4	4	1	21	23	I/O	ST	PORTB Pins
RB1	5	5	2	22	24	5	5	2	22	24	I/O	ST	PORTB Pins
RB2	6	6	3	23	25	6	6	3	23	25	I/O	ST	PORTB Pins
RB3	_	7	4	24	26	_	7	4	24	26	I/O	ST	PORTB Pins
RB4	9	11	8	33	36	9	11	8	33	36	I/O	ST	PORTB Pins
RB5	—	14	11	41	45	_	14	11	41	45	I/O	ST	PORTB Pins
RB6	—	15	12	42	46	_	15	12	42	46	I/O	ST	PORTB Pins
RB7	11	16	13	43	47	11	16	13	43	47	I/O	ST	PORTB Pins
RB8	12	17	14	44	48	12	17	14	44	48	I/O	ST	PORTB Pins

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, I²C[™] = I²C/SMBus input buffer

4.2 **Data Address Space**

The PIC24F core has a separate, 16-bit-wide data memory space, addressable as a single linear range. The Data Space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is displayed in Figure 4-3.


All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This gives a Data Space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data From Program Memory Using Program Space Visibility").

Depending on the particular device, PIC24FV16KM family devices implement either 512 or 1024 words of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.

FIGURE 4-3:

4.2.1 DATA SPACE WIDTH

The data organized memory space is in byte-addressable, 16-bit-wide blocks. Data is aligned in data memory and registers as 16-bit words, but all the Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

DATA SPACE MEMORY MAP FOR PIC24FXXXXX FAMILY DEVICES⁽³⁾

TABLE 4-12: SCCP5 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP5CON1L ⁽¹⁾	1D0h	CCPON	_	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP5CON1H(1)	1D2h	OPSSRC	RTRGEN	_	_	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP5CON2L ⁽¹⁾	1D4h	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP5CON2H(1)	1D6h	OENSYNC	_	_	_	_	_	_	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP5CON3H ⁽¹⁾	1DAh	OETRIG	OSCNT2	OSCNT1	OSCNT0	-	_	_	_	_	_	POLACE	_	PSSACE1	PSSACE0	_	_	0000
CCP5STATL ⁽¹⁾	1DCh	-	_	_	—	-	_	_	_	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP5TMRL ⁽¹⁾	1E0h							SCCP5	i Time Base	Register Lo	w Word							0000
CCP5TMRH ⁽¹⁾	1E2h							SCCP5	Time Base	Register Hig	gh Word							0000
CCP5PRL ⁽¹⁾	1E4h							SCCP5 Tir	ne Base Pe	iod Register	r Low Word							FFFF
CCP5PRH ⁽¹⁾	1E6h							SCCP5 Tin	ne Base Per	iod Register	High Word							FFFF
CCP5RAL ⁽¹⁾	1E8h							Out	put Compar	e 5 Data Wo	rd A							0000
CCP5RBL ⁽¹⁾	1ECh		Output Compare 5 Data Word B 00								0000							
CCP5BUFL ⁽¹⁾	1F0h							Input C	apture 5 Da	ta Buffer Lo	w Word							0000
CCP5BUFH ⁽¹⁾	1F2h							Input C	apture 5 Da	ta Buffer Hig	h Word							0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

REGISTER 8-33: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	—	ULPWUIP2	ULPWUIP1	ULPWUIP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-3	Unimplemer	ted: Read as '0)'				
bit 2-0	ULPWUIP<2	:0>: Ultra Low-F	Power Wake-u	p Interrupt Prior	rity bits		

111 = Interrupt is Priority 7 (highest priority interrupt)

- •
- 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 8-34: IPC24: INTERRUPT PRIORITY CONTROL REGISTER 24

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	CLC2IP2	CLC2IP1	CLC2IP0	—	CLC1IP2	CLC1IP1	CLC1IP0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	CLC2IP<2:0>: CLC2 Interrupt Priority bits
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	CLC1IP<2:0>: CLC1 Interrupt Priority bits
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources.

The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 5.25\%$. Each bit increment or decrement changes the factory calibrated frequency of the FRC Oscillator by a fixed amount.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	R/W-0 ⁽³⁾	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	SOSCDRV	SOSCEN	OSWEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/C	HSC = Hardware Settable/Clearable bit					
HS = Hardware Settable bit	CO = Clearable Only bit SO = Settable Only bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits
	 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV) 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL) 000 = 8 MHz FRC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽¹⁾
	 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV) 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL) 000 = 8 MHz FRC Oscillator (FRC)
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.
2:	This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

3: When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 -	REGISTER	9-2: CLKL	DIV: CLOCK L		GISTER			
bit 15 bit U-0 U-0 U-0 U-0 U-0 U-0 bit 7 <	R/W-0	R/W-0	R/W-1	R/W-1		R/W-0	R/W-0	R/W-1
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 -	ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
- -	bit 15							bit 8
- -	11.0	11.0	11.0	11.0	11.0	11.0	11.0	
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit 11 = 1:128 110 = 1:52 100 = 1:6 111 = 1:128 100 = 1:16 011 = 1:32 100 = 1:16 011 = 1:32 100 = 1:1 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE<:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE<:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10 -8 RCDIV-2:0>: FRC Postscaler Select bits When COSC<:2:0> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 100 = 2 MHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 1.96 kHz (divide-by-4) 101 = 15.52 kHz (divide-by-4) 101 = 15.52 kHz (divide-by-26) 101 = 15.52 kHz (divide-by-26) 101 = 15.52 kHz (divide-by-26) 101 = 15.52 kHz (divide-by-27) - default 001 = 41 kLz (divide-by-28) 102 = 256 kHz (divide-by-29) - default 103 = 15.52 kHz (divide-by-24) 104 = 15.52 kHz (divide-by-24) 105 = 15.52 kHz (divide-by-24) 105 = 15.52 kHz (divide-by-27) - default 106 = 125 kHz (divide-by-27) - default 107 = 125 kHz (divide-by-27) - default 108 = 125 kHz (divide-by-27) - default 109 = 200 kHz (divide-by-27) - default 100 = 125 kHz (divide-by-27) - default 101 = 125 kHz (divide-by-27) - default 102 = 125 kHz (divide-by-27) - default 103 = 125 kHz (divide-by-27) - default 104 = 125 kHz (divide-by-27) - default 105 = 200 kHz (divide-by-27) - default 105 = 200 kHz (divide-by-27) - default 106 = 000 kHz (divide-by-27) - default 107 = 250 kHz (divide-by-27) - default 108 = 125 kHz (divide-by-27) - default 109 = 500 kHz (divide-by-27) - default 100 = 500 kHz (divide-by-27) - default 100 = 500 kH	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0:: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 111 = 1:64 100 = 1:4 001 = 1:4 010 = 1:4 001 = 1:2 000 = 1:1 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE+2:0>: ERC Postscaler Select bits When COSC-2:0 (OSCCON+14:12>) = 111: 111 = 31:25 kHz (divide-by-256) 110 = 1:25 kHz (divide-by-256) 100 = 125 kHz (divide-by-3) 100 = 125 kHz (divide-by-3) 101 = 250 kHz (divide-by-4) 101 = 250 kHz (divide-by-4) 101 = 250 kHz (divide-by-4) 101 = 25 kHz (divide-by-2) - default 100 = 2 MHz (divide-by-2) 100 = 125 kHz (divide-by-2) 101 = 4 MHz (divide-by-2) 110 = 15.62 kHz (divide-by-4) 101 = 1 95 kHz (divide-by-2) 110 = 15.62 kHz (divide-by-4) 101 = 15.62 kHz (divide-by-4) 111 = 15.62 kHz (div	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0:: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 111 = 1:64 100 = 1:4 001 = 1:4 010 = 1:4 001 = 1:2 000 = 1:1 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE+2:0>: ERC Postscaler Select bits When COSC-2:0 (OSCCON+14:12>) = 111: 111 = 31:25 kHz (divide-by-256) 110 = 1:25 kHz (divide-by-256) 100 = 125 kHz (divide-by-3) 100 = 125 kHz (divide-by-3) 101 = 250 kHz (divide-by-4) 101 = 250 kHz (divide-by-4) 101 = 250 kHz (divide-by-4) 101 = 25 kHz (divide-by-2) - default 100 = 2 MHz (divide-by-2) 100 = 125 kHz (divide-by-2) 101 = 4 MHz (divide-by-2) 110 = 15.62 kHz (divide-by-4) 101 = 1 95 kHz (divide-by-2) 110 = 15.62 kHz (divide-by-4) 101 = 15.62 kHz (divide-by-4) 111 = 15.62 kHz (div	Logondi							
n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknownpoit 15ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bitpoit 14-12DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits111 = 1:128 110 = 1:64 010 = 1:16 011 = 1:32 100 = 1:16100 = 1:14 001 = 1:2 000 = 1:1poit 11DOZEN: Doze Enable bit(1) 1 = DOZE-2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1poit 10-8RCDIV-2:0>: FRC Postscaler Select bits When COSC-2:0> (OSCCON:14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-26) 110 = 125 kHz (divide-by-26) 110 = 125 kHz (divide-by-26) 110 = 100 = 2 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-256) 110 = 7.81 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-2) 111 = 1.95 kHz (divide-by-2) 1111 = 1.95 kHz (divide-by-2) 1111 = 1.95 kHz (divide-by-2) 1111111111	-	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
A ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit DOZE-2:05: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:6 111 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE-2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 POZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE-2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 When COSC-2:0> (OSCCON<14:12>) = 111; 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-264) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 4 MHz (divide-by-4) 011 = 4 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-2) 100 = 7.81 kHz (divide-by-2) 100 = 125 kHz (divide-by-2) 100 = 125 kHz (divide-by-2) 101 = 1.562 kHz (divide-by-2) 102 = 125 kHz (divide-by-2) 103 = 125 kHz (divide-by-3) 104 = 125 kHz (divide-by-2) 105 = 115 kHz (divide-by-2) 105 = 110; 111 = 1.52 kHz (divide-by-2) 105 = 125 kHz (divide-by-2) 105 = 125 kHz (divide-by-1) 015 = 125 kHz (divide-by-1) 016 = 200 kHz (divide-by-2) 107 = 125 kHz (divide-by-2) 108 = 125 kHz (divide-by-2) 109 = 125 kHz (divide-by-2) 100 = 500 kHz (divide-by-1) 111 = 1.562 kHz (divide-by-2) 112 = 1.56 kHz (divide-by-2) 113 = 1.562 kHz (divide-by-2) 114 = 1.562 kHz (divide-by-2) 115 = 1.562 kHz (divid	-n = Value a	t POR			-			nown
$111 = 1:128$ $110 = 1:64$ $101 = 1:32$ $100 = 1:16$ $011 = 1:32$ $100 = 1:16$ $011 = 1:8$ $010 = 1:4$ $001 = 1:2$ $000 = 1:1$ DOZEN: Doze Enable bit ⁽¹⁾ $1 = \text{DOZE-2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1$ $DOZE-2:0> FRC Postscaler Select bits$ $When COSC-2:0> (OSCCON<14:12>) = 111:$ $111 = 31.25 \text{ kHz (divide-by-266)}$ $100 = 520 \text{ kHz (divide-by-4)}$ $011 = 2 \text{ MHz (divide-by-4)}$ $011 = 1 \text{ MHz (divide-by-4)}$ $011 = 1 \text{ MHz (divide-by-2) - default}$ $000 = 31.25 \text{ kHz (divide-by-26)}$ $110 = 125 \text{ kHz (divide-by-4)}$ $101 = 15.62 \text{ kHz (divide-by-4)}$ $101 = 15.62 \text{ kHz (divide-by-4)}$ $101 = 15.62 \text{ kHz (divide-by-4)}$ $100 = 31.25 \text{ kHz (divide-by-4)}$ $101 = 15.62 \text{ kHz (divide-by-4)}$ $101 = 125 \text{ kHz (divide-by-4)}$ $101 = 125 \text{ kHz (divide-by-4)}$ $101 = 125 \text{ kHz (divide-by-2) - default}$ $102 = 31.25 \text{ kHz (divide-by-4)}$ $103 = 125 \text{ kHz (divide-by-4)}$ $104 = 125 \text{ kHz (divide-by-4)}$ $105 = 125 \text{ kHz (divide-by-4)}$	bit 15	1 = Interrupts 0 = Interrupts	s clear the DOZ s have no effect	EN bit, and re on the DOZE	N bit	d peripheral cl	ock ratio to 1:1	
1 = DOZE<2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-264) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-3) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 4 MHz (divide-by-2) – default 000 = 8 MHz (divide-by-2) – default 000 = 8 MHz (divide-by-26) 110 = 7.81 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-3) 101 = 62.5 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 250 kHz (divide-by-2) – default 000 = 500 kHz (divide-by-1)		111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2						
bit 10-8 RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-64) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 011 = 4 MHz (divide-by-2) – default 000 = 8 MHz (divide-by-1) When COSC<2:0> (OSCCON<14:12>) = 110: 111 = 1.95 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-38) 010 = 125 kHz (divide-by-4) 011 = 250 kHz (divide-by-4) 011 = 250 kHz (divide-by-2) – default 000 = 500 kHz (divide-by-1)	bit 11	1 = DOZE<2	:0> bits specify			ratio		
	bit 10-8	When COSC 111 = 31.25 K 110 = 125 K 101 = 250 K 100 = 500 K 011 = 1 MHz 010 = 2 MHz 001 = 4 MHz 000 = 8 MHz When COSC 111 = 1.95 K 100 = 7.81 K 101 = 15.62 K 100 = 31.25 K 011 = 62.5 K 010 = 125 K 001 = 250 K	<2:0> (OSCCO kHz (divide-by-2 dz (divide-by-2 dz (divide-by-32 dz (divide-by-32 dz (divide-by-32) (divide-by-4) (divide-by-4) (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-3) dz (divide-by-4) dz (divide-by-2) dz (divide-by-2)	<u>N<14:12>) = 1</u> 256)))) default <u>N<14:12>) = 1</u> 56) 4) 32) 16)	-			
	bit 7-0)'				

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

16.3 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value, loaded into the lower half of RCFGCAL, is multiplied by four and will be either added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- 3. a) If the oscillator is faster than ideal (negative result from Step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from Step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

EQUATION 16-1:

(Ideal Frequency [†] – Measured Frequency) *				
60 = Clocks per Minute				
† Ideal Frequency = 32,768 Hz				

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse, except when SECONDS = 00, 15, 30 or 45. This is due to the auto-adjust of the RTCC at 15 second intervals.

Note: It is up to the user to include, in the error value, the initial error of the crystal: drift due to temperature and drift due to crystal aging.

16.4 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options are available

16.4.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 16-2, the interval selection of the alarm is configured through the AMASKx bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPTx bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled, and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

16.4.2 ALARM INTERRUPT

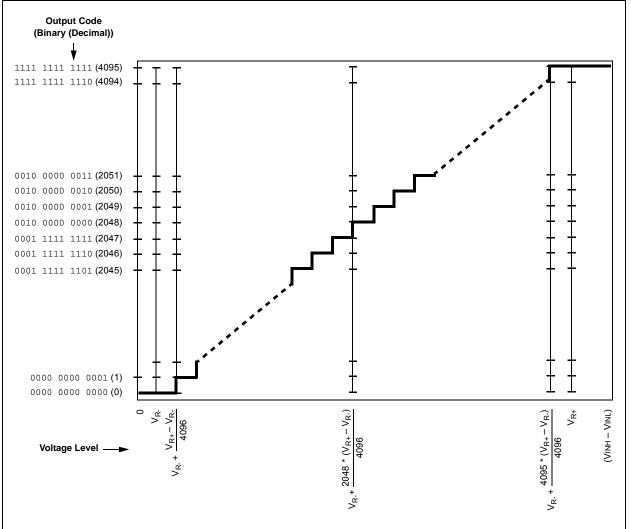
At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a Trigger clock to other peripherals.

Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

REGISTER 18-1:

U-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0 HLVDEN HLSIDL _____ ____ _____ _____ bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 VDIR BGVST **IRVST** HLVDL3 HLVDL2 HLVDL1 HLVDL0 bit 7 bit 0 Legend: R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 HLVDEN: High/Low-Voltage Detect Power Enable bit 1 = HLVD is enabled 0 = HLVD is disabled bit 14 Unimplemented: Read as '0' bit 13 HLSIDL: HLVD Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 Unimplemented: Read as '0' bit 7 VDIR: Voltage Change Direction Select bit 1 = Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>) 0 = Event occurs when voltage equals or falls below trip point (HLVDL<3:0>) bit 6 BGVST: Band Gap Voltage Stable Flag bit 1 = Indicates that the band gap voltage is stable 0 = Indicates that the band gap voltage is unstable bit 5 **IRVST:** Internal Reference Voltage Stable Flag bit 1 = Indicates that the internal reference voltage is stable and the High-Voltage Detect logic generates the interrupt flag at the specified voltage range 0 = Indicates that the internal reference voltage is unstable and the High-Voltage Detect logic will not generate the interrupt flag at the specified voltage range, and the HLVD interrupt should not be enabled bit 4 Unimplemented: Read as '0' bit 3-0 HLVDL<3:0>: High/Low-Voltage Detection Limit bits 1111 = External analog input is used (input comes from the HLVDIN pin) 1110 = Trip Point 1⁽¹⁾ 1101 = Trip Point 2⁽¹⁾ 1100 = Trip Point 3⁽¹⁾ 0000 = Trip Point 15⁽¹⁾

HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER



19.3 Transfer Function

The transfer functions of the A/D Converter in 12-bit resolution are shown in Figure 19-3. The difference of the input voltages (VINH – VINL) is compared to the reference ((VR+) – (VR-)).

- The first code transition occurs when the input voltage is ((VR+) (VR-))/4096 or 1.0 LSb.
- The '0000 0000 0001' code is centered at VR- + (1.5 * ((VR+) (VR-))/4096).

- The '0010 0000 0000' code is centered at VREFL + (2048.5 * ((VR+) – (VR-))/4096).
- An input voltage less than VR- + (((VR-) – (VR-))/4096) converts as '0000 0000 0000'.
- An input voltage greater than (VR-) + (4095 ((VR+) – (VR-))/4096) converts as '1111 1111 1111'.

FIGURE 19-3: 12-BIT A/D TRANSFER FUNCTION

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
MCLRE ⁽²⁾	BORV1 ⁽³⁾	BORV0 ⁽³⁾	I2C1SEL ⁽¹⁾	PWRTEN	RETCFG ⁽¹⁾	BOREN1	BOREN0	
bit 7							bit (
Legend:								
R = Reada	ble bit	P = Programr	nable bit	U = Unimplem	nented bit, read	as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown	
bit 7	MCLRE: MCL	R Pin Fnable b	_{it} (2)					
bit i			5 input pin is di	sabled				
			MCLR is disab					
bit 6-5	BORV<1:0>: E	Brown-out Rese	et Enable bits ⁽³⁾)				
	11 = Brown-ou	it Reset is set t	o the lowest vo	ltage				
			o the middle vo	•				
			o the highest vo					
		-		a – Low-Power	BOR (LPBOR)	is selected		
bit 4	I2C1SEL: Alternate I2C1 Pin Mapping bit ⁽¹⁾ 1 = Default location for SCL1/SDA1 pins							
	1 = Default loc0 = Alternate loc							
bit 3	PWRTEN: Pov		-					
	1 = PWRT is e	•						
	0 = PWRT is d	isabled						
bit 2	RETCFG: Ret	ention Regulate	or Configuration	n bit ⁽¹⁾				
	1 = Low-voltag 0 = Low-voltag			ontrolled by the	RETEN bit (RC	ON<12>) durin	a Sleep	
bit 1-0		•	set Enable bits	,	, ,	,	0 1	
	11 = Brown-ou	it Reset is enal	oled in hardwar	e; SBOREN bit	is disabled			
					and disabled in S	leep; SBOREN	l bit is disable	
			rolled with the S					
	00 = Brown-o u	it Reset is disa	bled in hardwar	e; SBOREN bi	t is disabled			
Note 1:	This setting only devices.	applies to the	"FV" devices. T	his bit is reser	ved and should I	be maintained a	as '1' on "F"	
2:	The MCLRE fus	e can only be c	hanged when ι	using the VPP-b	ased ICSP™ m	ode entry. This	prevents a	
	user from accide					-		
	Refer to Section							

REGISTER 25-6: FPOR: RESET CONFIGURATION REGISTER

26.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

26.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

26.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

26.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

26.7 MPLAB REAL ICE In-Circuit Emulator System

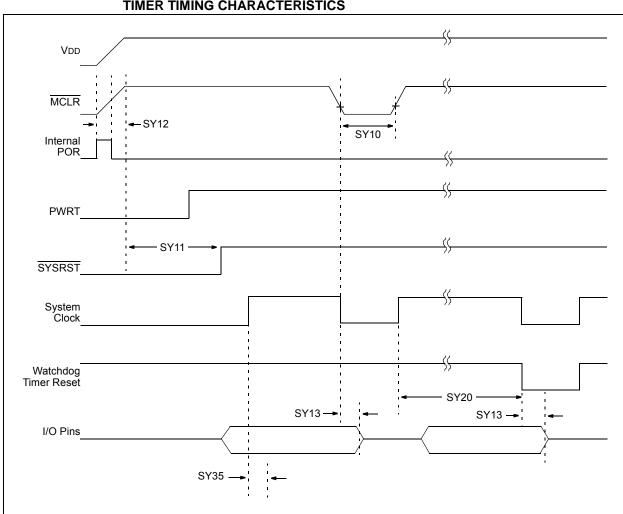
The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

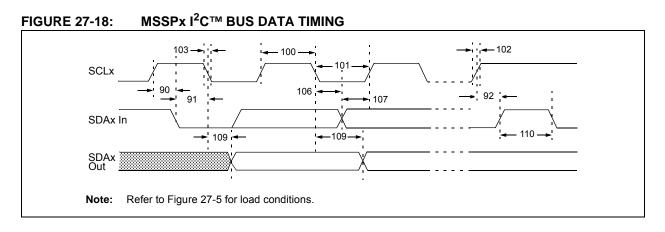
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

26.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.


The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

26.9 PICkit 3 In-Circuit Debugger/ Programmer


The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

26.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

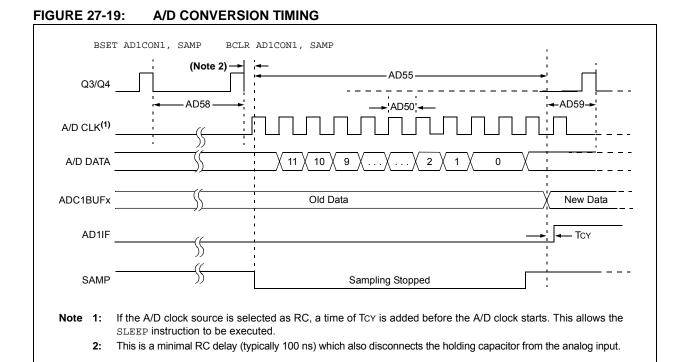
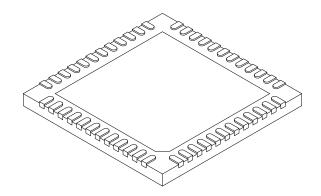

FIGURE 27-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 27-36: I²C[™] BUS DATA REQUIREMENTS (MASTER MODE)

Param. No.	Symbol	Charac	Characteristic		Max	Units	Conditions						
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	_	_							
			400 kHz mode	2(Tosc)(BRG + 1)	—	_							
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	_							
			400 kHz mode	2(Tosc)(BRG + 1)		_							
102	TR	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from						
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF						
103	TF	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from						
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF						
90	TSU:STA	Tsu:sta	TSU:STA	TSU:STA	TSU:STA	TSU:STA	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)		_	Only relevant for Repeated
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)		_	Start condition						
91	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)			After this period, the first						
			400 kHz mode	2(Tosc)(BRG + 1)		_	clock pulse is generated						
106	THD:DAT	T Data Input Hold Time	100 kHz mode	0		ns							
			400 kHz mode	0	0.9	μS							
107	TSU:DAT	Data Input	100 kHz mode	250		ns	(Note 1)						
		Setup Time	400 kHz mode	100		ns							
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	_							
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)		_							
109	ΤΑΑ	Output Valid	100 kHz mode	—	3500	ns							
		from Clock	400 kHz mode	—	1000	ns							
110	TBUF	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free						
			400 kHz mode	1.3	_	μS	before a new transmission can start						
D102	Св	Bus Capacitive Loading		—	400	pF							

Note 1: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but Parameter 107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, Parameter 102 + Parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

TABLE 27-38: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾


			Standard Operating Conditions:1.8V to 3.6V (PIC24F16KM20 2.0V to 5.5V (PIC24FV16KM20 -40°C \leq TA \leq +85°C for Indus -40°C \leq TA \leq +125°C for External -40°C \leq +140°C \leq +140					
Param No.	Sym Characteristic			Тур	Max.	Units	Conditions	
			Clock P	aramete	rs			
AD50	Tad	A/D Clock Period	600	_	—	ns	Tcy = 75 ns, AD1CON3 in default state	
AD51	TRC	A/D Internal RC Oscillator Period	—	1.67	—	μs		
			Conver	sion Rat	e			
AD55	Τςονν	Conversion Time		12 14	_	Tad Tad	10-bit results 12-bit results	
AD56	FCNV	Throughput Rate	_	_	100	ksps		
AD57	TSAMP	Sample Time	_	1	_	TAD		
AD58	TACQ	Acquisition Time	750		—	ns	(Note 2)	
AD59	Tswc	Switching Time from Convert to Sample	—	—	(Note 3)			
AD60	TDIS	Discharge Time	12		—	TAD		
		·	Clock P	aramete	rs		•	
AD61	TPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	—	3	Tad		

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

- 2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).
- 3: On the following cycle of the device clock.

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS			
Dimension	Dimension Limits				
Number of Pins	Ν		48		
Pitch	е		0.40 BSC		
Overall Height	А	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	Е	6.00 BSC			
Exposed Pad Width	E2	4.45	4.60	4.75	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	4.45	4.60	4.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2

NOTES: