

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

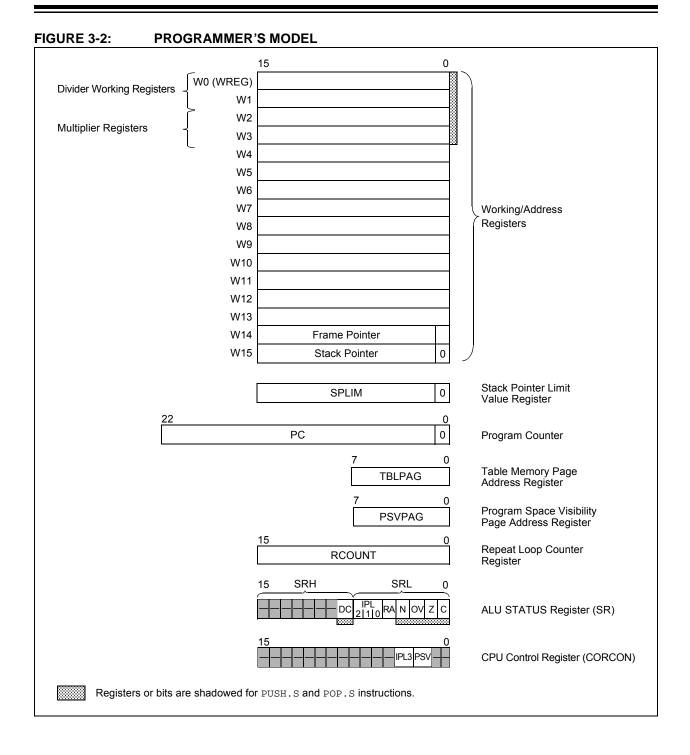
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km102-e-so

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F					FV					
		I	Pin Numb	er				Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
CN13	16	24	21	11	12	16	24	21	11	12	I	ST	Interrupt-on-Change Inputs
CN14	15	23	20	10	11	15	23	20	10	11	I	ST	Interrupt-on-Change Inputs
CN15	—	22	19	9	10	—	22	19	9	10	I	ST	Interrupt-on-Change Inputs
CN16	_	21	18	8	9	_	21	18	8	9	I	ST	Interrupt-on-Change Inputs
CN17	—	—		3	3	—		—	3	3	I	ST	Interrupt-on-Change Inputs
CN18	—	—		2	2	—		—	2	2	I	ST	Interrupt-on-Change Inputs
CN19	—	—		5	5	—		—	5	5	I	ST	Interrupt-on-Change Inputs
CN20	—	—		4	4	—		—	4	4	I	ST	Interrupt-on-Change Inputs
CN21	13	18	15	1	1	13	18	15	1	1	I	ST	Interrupt-on-Change Inputs
CN22	12	17	14	44	48	12	17	14	44	48	I	ST	Interrupt-on-Change Inputs
CN23	11	16	13	43	47	11	16	13	43	47	I	ST	Interrupt-on-Change Inputs
CN24	—	15	12	42	46	—	15	12	42	46	I	ST	Interrupt-on-Change Inputs
CN25	_	_		37	40	_		_	37	40	I	ST	Interrupt-on-Change Inputs
CN26	_	_		38	41	_		_	38	41	I	ST	Interrupt-on-Change Inputs
CN27	_	14	11	41	45	_	14	11	41	45	I	ST	Interrupt-on-Change Inputs
CN28	—	—		36	39	—		—	36	39	I	ST	Interrupt-on-Change Inputs
CN29	8	10	7	31	34	8	10	7	31	34	I	ST	Interrupt-on-Change Inputs
CN30	7	9	6	30	33	7	9	6	30	33	I	ST	Interrupt-on-Change Inputs
CN31	—	—		26	28	—		—	26	28	I	ST	Interrupt-on-Change Inputs
CN32	—	—		25	27	—		—	25	27	I	ST	Interrupt-on-Change Inputs
CN33	—	—		32	35	—		—	32	35	I	ST	Interrupt-on-Change Inputs
CN34	_	_	_	35	38	_		_	35	38	I	ST	Interrupt-on-Change Inputs
CN35	_	_	_	12	13	_		_	12	13	I	ST	Interrupt-on-Change Inputs
CN36	_	_	_	13	14	_		_	13	14	I	ST	Interrupt-on-Change Inputs
CTCMP	4	4	1	21	23	4	4	1	21	23	I	ANA	CTMU Comparator Input

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

TABLE 4-13: MSSP1 (I²C[™]/SPI) REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SSP1BUF	200h	—	_	_	—	—	—	_	—	MSSP1 Receive Buffer/Transmit Register						00xx		
SSP1CON1	202h	_	_	_	_	_	_	_	_	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP1CON2	204h	_	_	_	_	_	_	_	_	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP1CON3	206h	_	_	_	_	_	_	_	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP1STAT	208h	_	_	_	_	_	_	—	_	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000
SSP1ADD	20Ah	—	_	_	—	_	—			MSSP1 Address Register in I ² C Slave Mode MSSP1 Baud Rate Reload Register in I ² C Master Mode					0000			
SSP1MSK	20Ch	_	_	_	_	_	_		_	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	OOFF

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-14: MSSP2 (I²C[™]/SPI) REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SSP2BUF ⁽¹⁾	210h	—	_	—	—		_		_	MSSP2 Receive Buffer/Transmit Register					00xx			
SSP2CON1 ⁽¹⁾	212h	_	_	_	_	_	_	_	_	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP2CON2 ⁽¹⁾	214h	_	_	_	_	_	_	_	_	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP2CON3 ⁽¹⁾	216h	_	_	_	_	_	_	_	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP2STAT ⁽¹⁾	218h	_	_	_	_	_	_	_	_	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000
SSP2ADD ⁽¹⁾	21Ah	—	_	—	—	_	—	_	_	MSSP2 Address Register in I ² C Slave Mode MSSP2 Baud Rate Reload Register in I ² C Master Mode				0000				
SSP2MSK ⁽¹⁾	21Ch	—	_	_	_		_	_	_	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	00FF

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

;	Set up NVMCO	N for row programming operation	ns	
	MOV	#0x4004, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poir	nter to the first program memor	ry	location to be written
;	program memo:	ry selected, and writes enabled	b	
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x1500, W0	;	An example program memory address
;	Perform the	TBLWT instructions to write the	e .	latches
;	0th_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	<pre>#HIGH_BYTE_0, W3</pre>	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program_	word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BYTE_2, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•			
;	32nd_program	—		
		#LOW_WORD_31, W2	;	
		#HIGH_BYTE_31, W3	;	
		W2, [W0]		Write PM low word into program latch
	TBLWTH	W3, [W0]	;	Write PM high byte into program latch
1				

EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
  #define NUM_INSTRUCTION_PER_ROW 64
int __attribute__ ((space(auto_psv))) progAddr = 0x1234 // Variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
  unsigned int progData[2*NUM_INSTRUCTION_PER_ROW];
                                                            // Buffer of data to write
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4004;
                                                            // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr);
                                                           // Initialize PM Page Boundary SFR
                                                            // Initialize lower word of address
  offset = __builtin_tbloffset(&progAddr);
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
  {
                                                          // Write to address low word
      __builtin_tblwtl(offset, progData[i++]);
       __builtin_tblwth(offset, progData[i]);
                                                            // Write to upper byte
      offset = offset + 2;
                                                            // Increment address
  }
```

8.3 Interrupt Control and Status Registers

The PIC24FV16KM204 family of devices implements a total of 33 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS6
- · IEC0 through IEC6
- IPC0 through IPC7, IPC10, IPC12, IPC15, IPC16, IPC18 through IPC20 and IPC24
- INTTREG

Global Interrupt Enable (GIE) control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIVT.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals, or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence. For example, the INT0 (External Interrupt 0) is depicted as having a vector number and a natural order priority of 0. The INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits are in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU Interrupt Priority Level by writing to the IPLx bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that the trap events cannot be masked by the user's software.

All Interrupt registers are described in Register 8-1 through Register 8-35, in the following sections.

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—	U2TXIP2	U2TXIP1	U2TXIP0		U2RXIP2	U2RXIP1	U2RXIP0			
bit 15							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	INT2IP2	INT2IP1	INT2IP0	_	CCT4IP2	CCT4IP1	CCT4IP0			
bit 7							bit			
Legend: R = Readat	ole hit	W = Writable	hit	II = Unimple	mented bit, read	1 as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown			
bit 15	Unimplemen	ted: Read as 'o)'							
bit 14-12		: UART2 Trans								
	111 = Interru	pt is Priority 7(highest priority	interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1 pt source is dis	abled							
bit 11	Unimplemented: Read as '0'									
bit 10-8	U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits									
		pt is Priority 7 (
	•	· · · ·	• • •							
	•									
	001 = Interru	pt is Priority 1								
	000 = Interru	pt source is dis	abled							
bit 7	Unimplemen	ted: Read as 'o								
)'							
bit 6-4		External Interr	upt 2 Priority b							
	111 = Interru		upt 2 Priority b							
		External Interr	upt 2 Priority b							
	111 = Interru • •	External Interr pt is Priority 7(upt 2 Priority b							
	111 = Interru • • 001 = Interru	External Interr pt is Priority 7(pt is Priority 1	upt 2 Priority t highest priority							
bit 6-4	111 = Interru • • 001 = Interru 000 = Interru	External Interr pt is Priority 7(pt is Priority 1 pt source is dis	upt 2 Priority b highest priority abled							
bit 6-4 bit 3	111 = Interru • • 001 = Interru 000 = Interru Unimplemen	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(upt 2 Priority b highest priority abled)'	v interrupt)	av hits					
	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(-: Capture/Com	upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	y bits					
bit 6-4 bit 3	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	y bits					
bit 6-4 bit 3	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(-: Capture/Com	upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	y bits					
bit 6-4 bit 3	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' •: Capture/Com pt is Priority 7 (upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	ty bits					

REGISTER 8-26: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

REGISTER 10-1: ULPWCON: ULPWU CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
ULPEN		ULPSIDL	_	—	_	_	ULPSINK			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_	—		—	_	_	—			
bit 7	·	· · ·					bit 0			
Legend:										
R = Readabl										
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown										
bit 15	ULPEN: ULF	PWU Module En	able bit							
	1 = Module i									
	0 = Module i	s disabled								
bit 14	Unimpleme	nted: Read as '0	,							
bit 13	ULPSIDL: U	LPWU Stop in Ic	lle Select bit							
		nues module ope			Idle mode					
	0 = Continue	es module operat	tion in Idle mod	e						
bit 12-9	Unimplemented: Read as '0'									
bit 8	ULPSINK: U	ILPWU Current S	Sink Enable bit							
	1 = Current	sink is enabled								
	0 = Current s	sink is disabled								
bit 7-0	Unimpleme	nted: Read as '0	3							

-							,		
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
OPSSRC ⁽¹⁾	RTRGEN ⁽²⁾		—	OPS3 ⁽³⁾	OPS2 ⁽³⁾	OPS1 ⁽³⁾	OPS0 ⁽³⁾		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
TRIGEN ⁽⁴⁾	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0		
bit 7							bit 0		
Legend:									
R = Readable		W = Writable I	oit	-	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
				(1)					
bit 15		tput Postscaler							
		ostscaler scales		er output event	IS				
bit 14		trigger Enable							
		e can be retrig		RIGEN bit = 1					
				en TRIGEN bit =	= 1				
bit 13-12	Unimplement	ted: Read as 'o)'						
bit 11-8	OPS3<3:0>: CCPx Interrupt Output Postscale Select bits ⁽³⁾								
	<pre>1111 = Interrupt every 16th time base period match 1110 = Interrupt every 15th time base period match</pre>								
	0011 = Interru 0010 = Interru 0001 = Interru	upt every 3rd tir upt every 2nd ti	ne base perio ne base perio me base perio	d match d match or 4th i d match or 3rd od match or 2nc od match or inp	input capture e l input capture	event event			
bit 7	TRIGEN: CCF	Px Trigger Enal	ole bit ⁽⁴⁾						
		peration of time peration of time							
bit 6	ONESHOT: One-Shot Mode Enable bit								
	 1 = One-Shot Trigger mode is enabled; Trigger duration is set by OSCNT<2:0> 0 = One-Shot Trigger mode IS disabled 								
bit 5	ALTSYNC: CCPx Clock Select bits								
	 1 = An alternate signal is used as the module synchronization output signal 0 = The module synchronization output signal is the Time Base Reset/rollover event 								
		-			Base Reset/ro	ollover event			
bit 4-0		CCPx Synchroi		e Select bits					
	See lable 13-	6 for the definit	ion of inputs.						
Note 1: Th	nis control bit ha	is no function ir	Input Capture	e modes.					
	nis control bit ha								
	utput postscale s odes.	settings from 1:8	5 to 1:16 (0100)-1111) will resu	ult in a FIFO but	ffer overflow for	Input Capture		

REGISTER 13-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

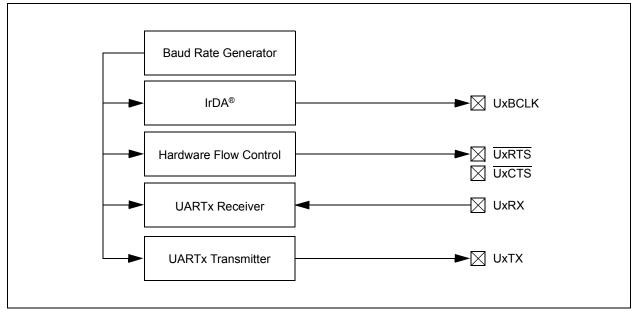
4: Clock source options are limited when Trigger operation is enabled; refer to Table 13-1.

15.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information on the Univer-
	sal Asynchronous Receiver Transmitter,
	refer to the "PIC24F Family Reference
	Manual", " UART" (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in this PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. This module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:


- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator (IBRG) with 16-Bit Prescaler

- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- · Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 15-1. The UARTx module consists of these important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- · Asynchronous Receiver
- Note: Throughout this section, references to register and bit names that may be associated with a specific USART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTA" might refer to the USART Status register for either USART1 or USART2.

FIGURE 15-1: UARTX MODULE SIMPLIFIED BLOCK DIAGRAM

16.2.5 RTCVAL REGISTER MAPPINGS

REGISTER 16-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

- -	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit 8	_	—	_	—	—	—	—	—
	bit 15							bit 8

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | • | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 16-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

- bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
- bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 17-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)

bit 3	G1D2T: Gate 1 Data Source 2 True Enable bit
	 1 = The Data Source 2 inverted signal is enabled for Gate 1 0 = The Data Source 2 inverted signal is disabled for Gate 1
	-
bit 2	G1D2N: Gate 1 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 1
	0 = The Data Source 2 inverted signal is disabled for Gate 1
bit 1	G1D1T: Gate 1 Data Source 1 True Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 1
	0 = The Data Source 1 inverted signal is disabled for Gate 1
bit 0	G1D1N: Gate 1 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 1
	0 = The Data Source 1 inverted signal is disabled for Gate 1

To perform an A/D conversion:

- 1. Configure the A/D module:
 - a) Configure the port pins as analog inputs and/or select band gap reference inputs (ANSx registers).
 - b) Select the voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - e) Configure the MODE12 bit to select A/D resolution (AD1CON1<10>).
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
 - g) Select the interrupt rate (AD1CON2<6:2>).
 - h) Turn on the A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

To perform an A/D sample and conversion using Threshold Detect scanning:

- 1. Configure the A/D module:
 - a) Configure the port pins as analog inputs (ANSx registers).
 - b) Select the voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
 - e) Configure the MODE12 bit to select A/D resolution (AD1CON1<10>).
 - f) Select how the conversion results are presented in the buffer (AD1CON1<9:8>).
 - g) Select the interrupt rate (AD1CON2<6:2>).

- 2. Configure the threshold compare channels:
 - a) Enable auto-scan; set the ASEN bit (AD1CON5<15>).
 - b) Select the Compare mode, "Greater Than, Less Than or Windowed"; set the CMx bits (AD1CON5<1:0>).
 - c) Select the threshold compare channels to be scanned (AD1CSSH, AD1CSSL).
 - d) If the CTMU is required as a current source for a threshold compare channel, enable the corresponding CTMU channel (AD1CTMENH, AD1CTMENL).
 - e) Write the threshold values into the corresponding ADC1BUFx registers.
 - f) Turn on the A/D module (AD1CON1<15>).
- Note: If performing an A/D sample and conversion, using Threshold Detect in Sleep Mode, the RC A/D clock source must be selected before entering into Sleep mode.
- 3. Configure the A/D interrupt (OPTIONAL):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

REGISTER 19-1: AD1CON1: A/DA/D CONTROL REGISTER 1 (CONTINUED)

- bit 3
 Unimplemented: Read as '0'

 bit 2
 ASAM: A/D Sample Auto-Start bit

 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set

 0 = Sampling begins when the SAMP bit is manually set

 bit 1
 SAMP: A/D Sample Enable bit

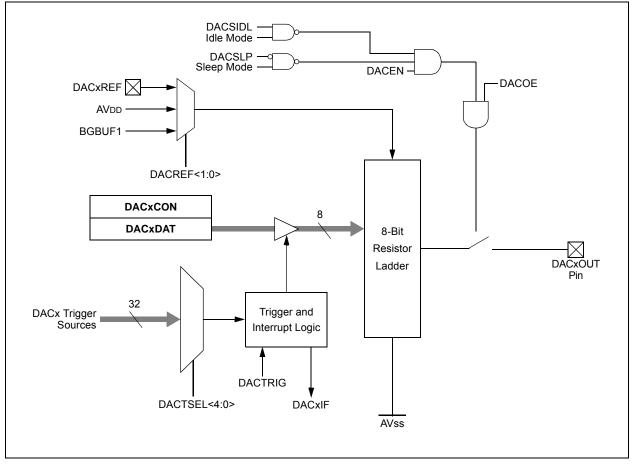
 1 = A/D Sample-and-Hold amplifiers are sampling
 0 = A/D Sample-and-Hold amplifiers are holding
- bit 0 DONE: A/D Conversion Status bit
 - 1 = A/D conversion cycle has completed
 - 0 = A/D conversion cycle has not started or is in progress
- **Note 1:** This version of the TMR1 Trigger allows A/D conversions to be triggered from TMR1 while the device is operating in Sleep mode. The SSRC<3:0> = 0101 option allows conversions to be triggered in Run or Idle modes only.

20.0 8-BIT DIGITAL-TO-ANALOG CONVERTER (DAC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*. Device-specific information in this data sheet supersedes the information in the *"PIC24F Family Reference Manual"*.

PIC24FV16KM204 family devices include two 8-bit Digital-to-Analog Converters (DACs) for generating analog outputs from digital data. A simplified block diagram for a single DAC is shown in Figure 20-1. Both of the DACs are identical. The DAC generates an analog output voltage based on the digital input code, according to the formula:

VDAC = $\frac{V$ DACREF × DACxDAT}{256}


where *V*DAC is the analog output voltage and *V*DACREF is the reference voltage selected by DACREF<1:0>.

Each DAC includes these features:

- Precision 8-bit resistor ladder for high accuracy
- Fast settling time, supporting 1 Msps effective sampling rates
- · Buffered output voltage
- Three user-selectable voltage reference options
- Multiple conversion Trigger options, plus a manual convert-on-write option
- · Left and right justified input data options
- User-selectable Sleep and Idle mode operation

When using the DAC, it is recommended to set the ANSx and TRISx bits for the DACx output pin to configure it as an analog output. See **Section 11.2** "**Configuring Analog Port Pins**" for more information.

FIGURE 20-1: SINGLE DACX SIMPLIFIED BLOCK DIAGRAM

TABLE 27-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

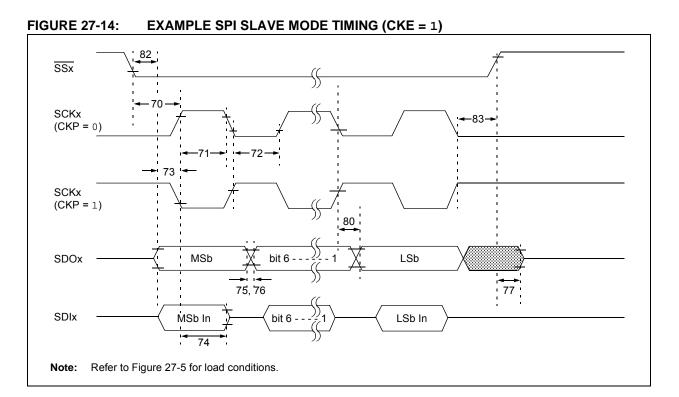

Operati	Operating Conditions: $-40^{\circ}C < TA < +85^{\circ}C$ (unless otherwise stated) $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
	Vbg	Band Gap Reference Voltage	0.973	1.024	1.075	V	VDD > 4.5V for 4*VBG reference VDD > 2.3V for 2*VBG reference		
	Tbg	Band Gap Reference Start-up Time	-	1	-	ms			
	Vrgout	Regulator Output Voltage	3.1	3.3	3.6	V			
	Cefc	External Filter Capacitor Value	4.7	10	_	μF	Series resistance < 3 Ohm recommended; < 5 Ohm is required.		
	Vlvr	Low-Voltage Regulator Output Voltage	_	2.6		V			

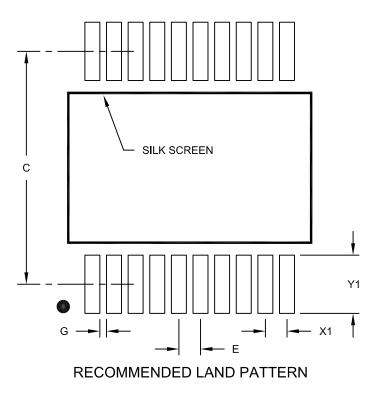
TABLE 27-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$					V16KM204) or Industrial
Param No. Sym Characteristic		Min	Typ ⁽¹⁾	Max	Units	Comments	Conditions	
	IOUT1	CTMU Current Source, Base Range	—	550	—	nA	CTMUCON1L<1:0> = 01	
	IOUT2	CTMU Current Source, 10x Range	_	5.5	_	μA	CTMUCON1L<1:0> = 10	2.5V < VDD < VDDMAX
	IOUT3	CTMU Current Source, 100x Range	—	55	—	μA	CTMUCON1L<1:0> = 11	2.5V < VDD < VDDMAX
	IOUT4 CTMU Current Source, 1000x Range		_	550	—	μA	CTMUCON1L<1:0> = 00 (Note 2)	
VF Temperature Diode Forward Voltage		—	.76	—	V			
	VΔ	Voltage Change per Degree Celsius	_	1.6	_	mV/°C		

Note 1: Nominal value at the center point of the current trim range (CTMUCON1L<7:2> = 000000). On PIC24F16KM parts, the current output is limited to the typical current value when IOUT4 is chosen.

2: Do not use this current range with a temperature sensing diode.

TABLE 27-32: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)


Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	3 Тсү		ns		
70A	TssL2WB	SSx to Write to SSPxBUF		3 TCY	_	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	CKx Input Low Time Continuous		—	ns	
72A		(Slave mode) Single Byte		40	_	ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the First	1.5 Tcy + 40	—	ns	(Note 2)	
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SC	40	_	ns		
75	TDOR	SDOx Data Output Rise Time			25	ns	
76	TDOF	SDOx Data Output Fall Time			25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impeda	ance	10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx	—	50	ns		
82	TssL2DoV	SDOx Data Output Valid After SSx	_	50	ns		
83	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge	1.5 Tcy + 40	_	ns		
	Fsck	SCKx Frequency	—	10	MHz		

Note 1: Requires the use of Parameter 73A.

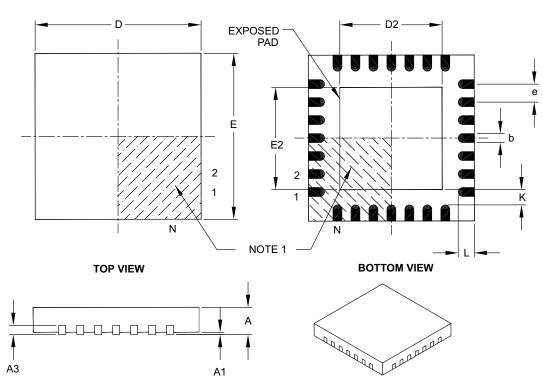
2: Only if Parameters 71A and 72A are used.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIMETER	-	
	Units			
Dimensio	Dimension Limits			MAX
Contact Pitch E			0.65 BSC	
Contact Pad Spacing			7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	e		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	ontact Thickness A3 0.20 REF				
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65 3.70 4.20			
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	К	0.20	-	—	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

APPENDIX A: REVISION HISTORY

Revision A (February 2013)

Original data sheet for the PIC24FV16KM204 family of devices.

Revision B (July 2013)

Updates all references to PGCx and PGDx pin functions throughout the document to PGECx and PGEDx.

Updates **Section 4.0 "Memory Organization"** to change bit 12 in the following registers to reserved ("r" designation):

- CCP1CON1L (Table 4-8)
- CCP2CON1L (Table 4-9)
- CCP3CON1L (Table 4-10)
- CCP4CON1L (Table 4-11)
- CCP5CON1L (Table 4-12)

Updates Section 13.0 "Capture/Compare/PWM/ Timer Modules (MCCP and SCCP)":

- Replaces bit 12 of CCPxCON1L (CCPSLP) and its description with a reserved bit
- Removes references to asynchronous operation in Sleep mode (and in other occurrences throughout the document)
- Modifies Section 13.1 "Time Base Generator" to add synchronous operation limitations; adds Table 13-1 to list valid clock options for all operating modes
- Removes the system clock as a time base input option
- Removes external input sources, comparators and CTMU as synchronization sources in Table 13-6; clarifies that other selected sources must be synchronous

Removes the input buffer from the band gap reference input in Figure 20-1.

Adds BUFCON0 register description (Register 20-2) to Section 20.0 "8-Bit Digital-to-Analog Converter (DAC)".

Changes references to internal band gap voltages (VBG, VBG/2 and BGBUF0) in Section 20.0 "8-Bit Digital-to-Analog Converter (DAC)" and Section 22.0 "Comparator Module" to BGBUF1.

Adds minimum VDD conditions for VBG specification in Table 27-15 (Internal Voltage Regulator Specifications).

Other minor typographical corrections throughout the document.