E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km102-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION

	F				FV								
			Pin Numb	er				Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
AN0	2	2	27	19	21	2	2	27	19	21	Ι	ANA	A/D Analog Inputs
AN1	3	3	28	20	22	3	3	28	20	22	Ι	ANA	A/D Analog Inputs
AN2	4	4	1	21	23	4	4	1	21	23	I	ANA	A/D Analog Inputs
AN3	5	5	2	22	24	5	5	2	22	24	I	ANA	A/D Analog Inputs
AN4	6	6	3	23	25	6	6	3	23	25	I	ANA	A/D Analog Inputs
AN5	—	7	4	24	26	—	7	4	24	26	I	ANA	A/D Analog Inputs
AN6	_	_	_	25	27	_	_	_	25	27	I	ANA	A/D Analog Inputs
AN7	—	—	_	26	28	—		—	26	28	I	ANA	A/D Analog Inputs
AN8	-	_	_	27	29	-	_	-	27	29	I	ANA	A/D Analog Inputs
AN9	18	26	23	15	16	18	26	23	15	16	I	ANA	A/D Analog Inputs
AN10	17	25	22	14	15	17	25	22	14	15	I	ANA	A/D Analog Inputs
AN11	16	24	21	11	12	16	24	21	11	12	I	ANA	A/D Analog Inputs
AN12	15	23	20	10	11	15	23	20	10	11	I	ANA	A/D Analog Inputs
AN13	7	9	6	30	33	7	9	6	30	33	I	ANA	A/D Analog Inputs
AN14	8	10	7	31	34	8	10	7	31	34	I	ANA	A/D Analog Inputs
AN15	9	11	8	33	36	9	11	8	33	36	I	ANA	A/D Analog Inputs
AN16	10	12	9	34	37	10	12	9	34	37	I	ANA	A/D Analog Inputs
AN17	—	14	11	41	45	—	14	11	41	45	I	ANA	A/D Analog Inputs
AN18	—	15	12	42	46	—	15	12	42	46	I	ANA	A/D Analog Inputs
AN19	11	16	13	43	47	11	16	13	43	47	I	ANA	A/D Analog Inputs
AN20	12	17	14	44	48	12	17	14	44	48	I	ANA	A/D Analog Inputs
AN21	13	18	15	1	1	13	18	15	1	1	I	ANA	A/D Analog Inputs
ASCL1	_	15	12	42	46	_	15	12	42	46	I/O	l ² C™	Alternate I2C1 Clock Input/Output
ASDA1	—	14	11	41	45	—	14	11	41	45	I/O	l ² C	Alternate I2C1 Data Input/Output
AVDD	20	28	25	17	18	20	28	25	17	18	Р	_	A/D Supply Pins
AVss	19	27	24	16	17	19	27	24	16	17	Р	—	A/D Supply Pins
C1INA	8	7	4	24	26	8	7	4	24	26	Ι	ANA	Comparator 1 Input A (+)
C1INB	7	6	3	23	25	7	6	3	23	25	Ι	ANA	Comparator 1 Input B (-)
C1INC	5	5	2	22	24	5	5	2	22	24	1	ANA	Comparator 1 Input C (+)
C1IND	4	4	1	21	23	4	4	1	21	23	1	ANA	Comparator 1 Input D (-)

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

DS30003030B-page 20

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with Data Memory Space Addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables, located from 000004h to 0000FFh, and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. **Section 8.1 "Interrupt Vector Table (IVT)**" discusses the Interrupt Vector Tables in more detail.

4.1.3 DATA EEPROM

In the PIC24FV16KM204 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit-wide memory and 256 words deep. This memory is accessed using Table Read and Write operations similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24FV16KM204 family. Their location in the memory map is displayed in Figure 4-1.

Refer to **Section 25.1** "**Configuration Bits**" for more information on device Configuration Words.

TABLE 4-1: DEVICE CONFIGURATION WORDS FOR PIC24FXXXXX FAMILY DEVICES

Configuration Word	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION msw most significant word least significant word PC Address (Isw Address) Address 16 8 Λ 23 00000000 000000h 000001h 00000000 000002h 000003h 000004h 00000000 000005h 00000000 000006h 000007h Instruction Width Program Memory Phantom' Byte (read as '0')

DS30003030B-page 42

PIC24FV16KM204 FAMILY

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0			
CPUIRQ	—	VHOLD	_	ILR3	ILR2	ILR1	ILR0			
bit 15			•	•		-	bit 8			
U-0	R-0	R-0 R-0		R-0	R-0	R-0	R-0			
—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0			
bit 7										
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	CPUIRQ: Inte	errupt Request	from Interrupt	Controller CP	U bit					
	1 = An interr	upt request ha	as occurred bu	ut has not yet	been Acknowl	edged by the	CPU (this will			
	happen v	when the CPU	priority is high	er than the inte	errupt priority)					
h:+ 1 1				eugeu						
Dit 14		ed: Read as	0							
DIT 13	VHOLD: Vect	OF HOID DIE	ure and Chang	na which late	runt in Starad in		C.O. bito			
	1 = VECNUN	$\Lambda < 6:0>$ will cor	ntain the value	e of the highe	est priority pend	dina interrupt.	instead of the			
	current in	nterrupt		g						
	0 = VECNUN	/I<6:0> will con	tain the value	of the last Ac	knowledged int	errupt (last inte	errupt that has			
	occurred	with higher pri	ority than the (CPU, even if o	ther interrupts a	are pending)				
bit 12	Unimplemented: Read as '0'									
bit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits									
	1111 = CPU	Interrupt Priorit	y Level is 15							
	•									
	•									
	0001 = CPU Interrupt Priority Level is 1 0000 = CPU Interrupt Priority Level is 0									
bit 7	Unimplemented: Read as '0'									
bit 6-0	VECNUM<6:0	0>: Vector Num	nber of Pendin	g Interrupt bits	3					
	0111111 = Ir	nterrupt vector	pending is Nur	mber 135						
	•									
	•									
	0000001 = lr	nterrupt vector i	pending is Nur	mber 9						
	0000000 = Interrupt vector pending is Number 8									

REGISTER 8-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

PIC24FV16KM204 FAMILY

TABLE 27-30: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Max	Units (Conditions
73	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	35		ns	
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	—	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	—	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	—	25	ns	
81	TDOV2SCH, TDOV2SCL	SDOx Data Output Setup to SCKx Edge	Тсү	—	ns	
	Fsck	SCKx Frequency	—	10	MHz	

PIC24FV16KM204 FAMILY

AC CHARACTERISTICS			Standard Operating Conditions: 1.8V to 3.6V (PIC24F16KM204)							
			Operatir	ng temper	rature	o 5.5V (PIC24FV16KM204) dTA d+85°C for Industrial dTA d+125°C for Extended				
Param No.	Sym	Characteristic	Min.	Тур	Max.	Units	Conditions			
Clock Parameters										
AD50	Tad	A/D Clock Period	600	—	—	ns	TCY = 75 ns, AD1CON3 in default state			
AD51	TRC	A/D Internal RC Oscillator Period		1.67	—	μs				
Conversion Rate										
AD55	ΤΟΟΝΛ	Conversion Time	—	12 14	—	Tad Tad	10-bit results 12-bit results			
AD56	FCNV	Throughput Rate			100	ksps				
AD57	TSAMP	Sample Time		1	_	TAD				
AD58	TACQ	Acquisition Time	750	—	—	ns	(Note 2)			
AD59	Tswc	Switching Time from Convert to Sample	—	—	(Note 3)					
AD60	TDIS	Discharge Time	12	—	—	TAD				
Clock Parameters										
AD61	TPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	_	3	TAD				
Note 1:	Beca	ause the sample caps will eventual	ally lose o	charge cl	ock rates b	elow 10 kH	z can affect linearity			

TABLE 27-38: A/D CONVERSION TIMING REQUIREMENTS ⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).

3: On the following cycle of the device clock.