

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km102-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

NOTES:

REGISTER				KI CONTRO	LREGISTE	ĸ			
R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
WR	WREN	WRERR	PGMONLY	_	_	—	_		
bit 15	•			·			bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0		
bit 7							bit 0		
Legend:		HC = Hardware	Clearable bit	U = Unimple	mented bit, re	ead as '0'			
R = Readable	bit	W = Writable bit		S = Settable	Only bit				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown		
bit 15		ontrol bit (program a data EEPROM e		cle (can be set	. but not clea	red in softwar	e)		
		le is complete (cle					-,		
bit 14	WREN: Write	Enable bit (erase	or program)						
1 = Enables an erase or program operation									
	0 = No operation allowed (device clears this bit on completion of the write/erase operation)								
bit 13		sh Error Flag bit							
		operation is prem	aturely terminat	ted (any MCL	R or WDT F	Reset during	programming		
	operation 0 = The write) operation comple	eted successfully	/					
bit 12		Program Only Enal	,	,					
511 12		Nrite operation is executed without erasing target address(es) first							
		c erase-before-wr	-	,	-()				
	Write operation	ons are preceded	automatically by	an erase of th	e target addr	ess(es).			
bit 11-7	Unimplemen	ted: Read as '0'							
bit 6		e Operation Selec							
		an erase operation							
		a write operation							
bit 5-0		Programming O	-	and byte bits					
	Erase Operations (when ERASE bit is '1'): 011010 = Erase 8 words								
	011001 = Era								
	011000 = Era								
		ase entire data EE	-						
	• •	Operations (when	n ERASE bit is '	<u>0'):</u>					
	0001xx = Wr	ite 1 word							

REGISTER 6-1: NVMCON: NONVOLATILE MEMORY CONTROL REGISTER

7.0 RESETS

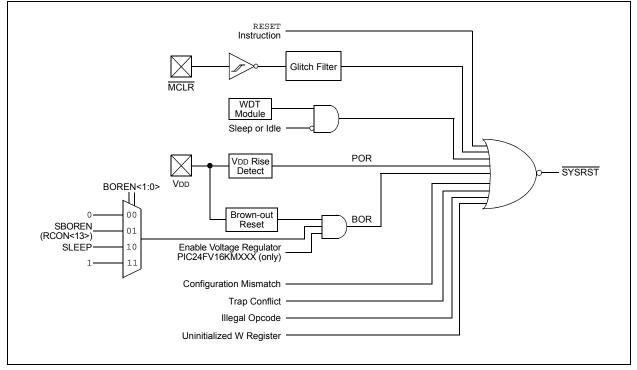
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Resets, refer to the "PIC24F Family Reference Manual", "Reset with Programmable Brown-out Reset" (DS39728).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- LPBOR: Low-Power BOR
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on Power-on Reset (POR) and unchanged by all other Resets.


Note: Refer to the specific peripheral or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A Power-on Reset will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer (WDT) and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—			—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0
—	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—
bit 7							bit 0

Legend:	C = Clearable bit	HSC = Hardware Settal	ble/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 1-0 Unimplemented: Read as '0'

Note 1: See Register 3-2 for the description of this bit, which is not dedicated to interrupt control functions.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

Note: Bit 2 is described in Section 3.0 "CPU".

REGISTER 8-17: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	ULPWUIE
bit 7							bit 0
Legend:							

Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 8-18: IEC6: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	_	CLC2IE	CLC1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 CLC2IE: Configurable Logic Cell 2 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

bit 0 CLC1IE: Configurable Logic Cell 1 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
—	—	—	_	—	CCP5IP2	CCP5IP1	CCP5IP0				
bit 15						-	bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	—	—		—	INT1IP2	INT1IP1	INT1IP0				
bit 7							bit 0				
Legend:											
R = Readat	ole hit	W = Writable b	hit	II = Unimpler	nented bit, read	1 as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unknown					
bit 15-11	Unimplemer	nted: Read as '0	'								
bit 10-8	CCP5IP<2:0	>: Capture/Com	pare 5 Event	Interrupt Priorit	y bits						
	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•	•									
	•										
		001 = Interrupt is Priority 1									
		pt source is disa									
bit 7-3	Unimplemer	nted: Read as '0	'								
bit 2-0		: External Interru									
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•										
	•										
		001 = Interrupt is Priority 1									
	000 = interru	pt source is disa	adied								

REGISTER 8-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

11.2.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation, and a read operation of the same port. Typically, this instruction would be a NOP.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC24FXXXXX family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 37 external signals (CN0 through CN36) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the CN module. The CNEN1 and CNEN3 registers contain the interrupt enable control bits for each of the CNx input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CNx pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately using the CNPU1 and CNPU3 registers, which contain the control bits for each of the CNx pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately using the CNPD1 and CNPD3 registers, which contain the control bits for each of the CNx pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

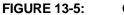
When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to Vss by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on Change Notification (CN) pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0; MOV W0, TRISB;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP ;	//Delay 1 cycle
BTSS PORTB, #13;	//Next Instruction
<pre>Equivalent `C' Code TRISB = 0xFF00; NOP(); if(PORTBbits.RB13 == 1) { }</pre>	<pre>//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs //Delay 1 cycle // execute following code if PORTB pin 13 is set.</pre>

13.3 Output Compare Mode


Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module on compare match events has the ability to generate a single output transition or a train of output

pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

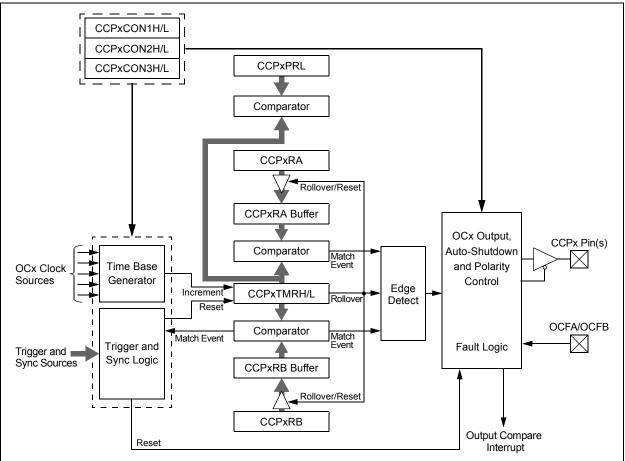

Table 13-3 shows the various modes available in Output Compare modes.

TABLE 13-3:	OUTPUT COMPARE/PWM MODES
-------------	--------------------------

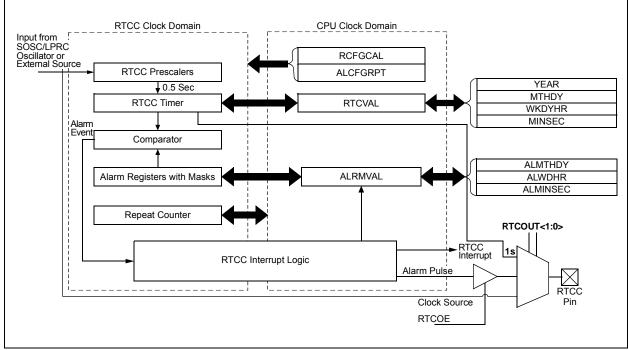
MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)			
0001	0	Output High on Compare (16-bit)		
0001	1	Output High on Compare (32-bit)		
0010	0	Output Low on Compare (16-bit)	Single Edge Mede	
0010	1	Output Low on Compare (32-bit)	Single Edge Mode	
0011	0	Output Toggle on Compare (16-bit)		
0011	1	Output Toggle on Compare (32-bit)		
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode	
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode	
0110	0	Center-Aligned Pulse (16-bit buffered)	Center PWM	
0111	0	Variable Frequency Pulse (16-bit)		
0111	1	Variable Frequency Pulse (32-bit)		

OUTPUT COMPARE x BLOCK DIAGRAM

16.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "PIC24F Family Reference Manual", "Real-Time Clock and Calendar (RTCC)" (DS39696).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.


Key features of the RTCC module are:

- · Operates in Sleep and Retention Sleep modes
- · Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat chime
- Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- Optimized for long term battery operation
- User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
- · Optimized for long term battery operation
- · Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake-up external devices without CPU intervention (external power control)
- · Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- · Runs from any one of the following:
 - External Real-Time Clock of 32.768 kHz
 - Internal 31.25 kHz LPRC Clock
 - 50 Hz or 60 Hz External Input

16.1 RTCC Source Clock

The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.

FIGURE 16-1: RTCC BLOCK DIAGRAM

16.2.4 RTCC CONTROL REGISTERS

REGISTER 16-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾		RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0
bit 15				1			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CAL7	CAL6	CAL5	CAL4	CAL3	CAL1	CAL0	
bit 7							bit (
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown
bit 15	RTCEN: RT	CC Enable bit ⁽²⁾					
		nodule is enable	-				
		nodule is disable					
bit 14	•	nted: Read as '0					
bit 13		RTCC Value Re	-		u the upor		
		_H and RTCVAL _H and RTCVAL				n to by the user	
bit 12	0 = RTCVAL	H and RTCVAL	L registers are	locked out from	n being writter	n to by the user	
bit 12	0 = RTCVAL RTCSYNC:		L registers are gisters Read S	locked out from	h being writter bit		rollover ripple
bit 12	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting	∟H and RTCVAL RTCC Value Reo ∟H, RTCVALL ar g in an invalid da	L registers are gisters Read S nd ALCFGRPT ta read. If the	locked out from ynchronization registers can c	n being writter bit hange while r	eading due to a	
bit 12	0 = RTCVAI RTCSYNC: 1 = RTCVAI resulting can be a	₋H and RTCVAL RTCC Value Reg ∟H, RTCVALL ar g in an invalid da assumed to be va	L registers are gisters Read S nd ALCFGRPT ta read. If the alid.	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL	H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or	L registers are gisters Read S nd ALCFGRPT ta read. If the alid. ALCFGRPT r	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
bit 12 bit 11	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H	H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or Half Second Stat	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r tus bit ⁽³⁾	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: 1 = Second	H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r sus bit ⁽³⁾ second	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a s	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r sus bit ⁽³⁾ second ond	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
bit 11	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: 1 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r tus bit ⁽³⁾ second ond le bit	locked out from ynchronization registers can c register is read t	h being writter bit hange while r twice and rest	eading due to a ults in the same	data, the data
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab output is enabled output is disabled	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r second ond le bit	locked out from ynchronization registers can c register is read t egisters can be	h being writter bit hange while r twice and rest read without	eading due to a ults in the same	data, the data
bit 11	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1:	-H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0-: RTCC Value	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind	locked out from ynchronization registers can c register is read t egisters can be	h being writter bit hange while r twice and rest read without	eading due to a ults in the same concern over a	data, the data
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab output is enabled output is disabled	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the	-H and RTCVAL RTCC Value Reg LH, RTCVALL ar g in an invalid da assumed to be va LH, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ES	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKI	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab output is enabled output is disabled 0>: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ES DAY	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT	-H and RTCVAL RTCC Value Reg -H, RTCVALL ar g in an invalid da assumed to be va -H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec :8>: ES DAY H	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKE 10 = MONTH	-H and RTCVAL RTCC Value Reg H, RTCVALL ar g in an invalid da assumed to be va H, RTCVALL or Half Second Stat half period of a sec CC Output Enabled utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec : <u>8>:</u> ES DAY H ed	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKI 10 = MONTH 11 = Reserv <u>RTCVAL<7:(</u> 00 = SECON	-H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va- H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec <u>:8>:</u> ES DAY H ed <u>)>:</u> NDS	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers
bit 11 bit 10	0 = RTCVAL RTCSYNC: 1 1 = RTCVAL resulting can be a 0 = RTCVAL HALFSEC: H 1 = Second 0 = First hal RTCOE: RTC 1 = RTCC o 0 = RTCC o RTCPTR<1: Points to the The RTCPTF <u>RTCVAL<15</u> 00 = MINUT 01 = WEEKI 10 = MONTH 11 = Reserv <u>RTCVAL<7:0</u>	-H and RTCVAL RTCC Value Reg H, RTCVALL ar in an invalid da assumed to be va- H, RTCVALL or Half Second Stat half period of a sec CC Output Enab utput is enabled utput is disabled 0>: RTCC Value corresponding R R<1:0> value dec <u>:8>:</u> ES DAY H ed <u>)>:</u> NDS	L registers are gisters Read S ad ALCFGRPT ta read. If the alid. ALCFGRPT r us bit ⁽³⁾ second ond le bit Register Wind TCC Value reg	locked out from ynchronization registers can c register is read t egisters can be dow Pointer bits gisters when rea	h being writter bit hange while r twice and rest read without ding the RTC	eading due to a ults in the same concern over a VALH and RTC\	data, the data rollover ripple /ALL registers

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

R/W-0	R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	R/W-0
ASEN ⁽¹⁾	LPEN	CTMREQ	BGREQ	r	_	ASINT1	ASINT0
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	_	WM1	WM0	CM1	CM0
bit 7							bit 0
Legend:		r = Reserved b	it				
R = Reada	able bit	W = Writable b	it	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	ASEN. A/D A	Auto-Scan Enable	hit(1)				
	1 = Auto-sca						
	0 = Auto-sca	in is disabled					
bit 14	LPEN: A/D L	ow-Power Enabl	e bit				
		to Low-Power me in Full-Power m					
bit 13	CTMREQ: C	TMU Request bit					
		enabled when the the solution of the second se		led and active			
bit 12	BGREQ: Bar	nd Gap Request	oit				
		p is enabled whe p is not enabled		nabled and acti	ve		
bit 11	Reserved: M	•					
bit 10	Unimplemen	ted: Read as '0'					
bit 9-8	-	: Auto-Scan (Thr	eshold Detect)	Interrupt Mode	bits		
		t after a Thresho			pleted and a val	lid compare has	occurred
	•	t after a valid cor	•				
	01 = Interrup 00 = No inter	t after a Thresho	la Detect sequ	ience nas comp	Dieted		
bit 7-4		nted: Read as '0'					
bit 3-2	-	/D Write Mode bi	ts				
	11 = Reserve	ed					
		mpare only (cor				s are generate	d when a valid
		as defined by the tand save (conve			,	mined by the rea	nister bits when
		n, as defined by t					
	00 = Legacy	operation (conve	ersion data is s	aved to a locat	ion determined	by the buffer re	gister bits)
bit 1-0		D Compare Mod					
		Window mode (N esponding buffer		curs if the conve	rsion result is o	utside of the win	dow defined by
	10 = Inside V	Vindow mode (va	lid match occu	urs if the conver	sion result is in	side the window	defined by the
		onding buffer pair Than mode (valio		if the result is g	reater than the v	alue in the corre	sponding buffer
	register)			-			
Note 1		uto-scan with Th					
	Auto-Convert	mode (SSRC<3: ock source (SSR))> = 7). Any ot	her available S	SRC selection i		

REGISTER 19-4: AD1CON5: A/D CONTROL REGISTER 5

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA2	CH0NA1	CHONAO	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7							
Legend:							
-	Readable bit W = Writable bit U = Unimplemented bit, read as '0'					d as '0'	
-n = Value at							
L: 45 40		· Comple D Ch	annal O Nagati	ve less to Celest	hite		
bit 15-13	111 = AN6 ⁽¹⁾	•	annei 0 Negati	ve Input Select	DIIS		
	$111 = AN6^{(1)}$ $110 = AN5^{(2)}$						
	101 = AN3						
	101 - AN4 100 = AN3						
	011 = AN2						
	010 = AN1						
	001 = ANO						
	000 = AVss						
bit 12-8	CH0SB<4:0>	: S/H Amplifier	Positive Input	Select for MUX	B Multiplexer	Setting bits	
	11111 = Unii	mplemented, d	o not use			-	
	11110 = AV C						
	11101 = AVs						
		per guardband i					
		ver guardband i					
		rnal Band Gap					
		1 = Unimpleme					
				puts are floating			
				puts are floatin			
						/U temperature	sensor input
		annel 0 positive		ng CTMEN22 (A	ADICIMENH<	0>) DIL)	
		annel 0 positive					
		annel 0 positive					
		annel 0 positive		2)			
		annel 0 positive					
	•						
	•						
	•						
		annel 0 positive					
		annel 0 positive					
		annel 0 positive					
		annel 0 positive					
		annel 0 positive		,			
		annel 0 positive					
		annel 0 positive annel 0 positive					
		annel 0 positive					
		annel 0 positive					
Note 1: T	his is implement		•				
	his is implement	-	-	es only			
Z . 1				So only.			

3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER

DS30003030B-page 218

TABLE 19-2:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
12-BIT FRACTIONAL FORMATS

VIN/VREF	12-Bit Output Code	16-Bit Fractional Format Equivalent Decimal Value		16-Bit Signed Fractional Fo Equivalent Decimal Val				
+4095/4096	0 1111 1111 1111	1111 1111 1111 0000	0.999	0111 1111 1111 1000	0.999			
+4094/4096	0 1111 1111 1110	1111 1111 1110 0000	0.998	0111 1111 1110 1000	0.998			
•••								
+1/4096	0 0000 0000 0001	0000 0000 0001 0000	0.001	0000 0000 0000 1000	0.001			
0/4096	0 0000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000			
-1/4096	1 0111 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1111 1000	-0.001			
		•••						
-4095/4096	1 0000 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0000 1000	-0.999			
-4096/4096	1 0000 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000			

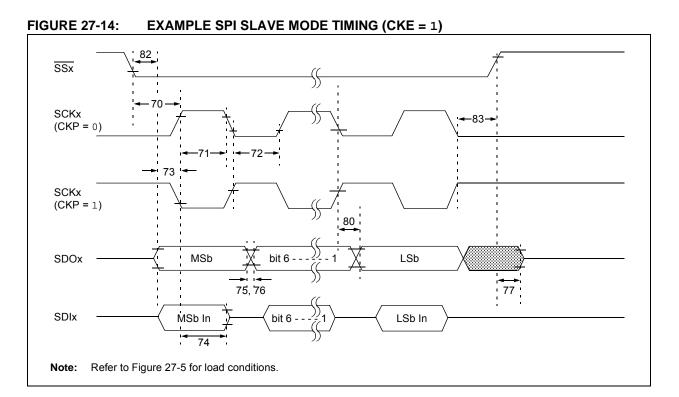
FIGURE 19-5: A/D OUTPUT DATA FORMATS (10-BIT)

RAM Contents:							d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Read to Bus:																I
Integer	0	0	0	0	0	0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Signed Integer	s0	s0	s0	s0	s0	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Fractional (1.15)	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0	0
Signed Fractional (1.15)	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0
	L	I						1								

TABLE 19-3:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
10-BIT INTEGER FORMATS

VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Integer Format/ Equivalent Decimal Value	16-Bit Signed Integer Forn Equivalent Decimal Valu				
+1023/1024	011 1111 1111	0000 0011 1111 1111	1023	0000 0001 1111 1111	1023		
+1022/1024	011 1111 1110	0000 0011 1111 1110	1022	0000 0001 1111 1110	1022		
	• • •						
+1/1024	000 0000 0001	0000 0000 0000 0001	1	0000 0000 0000 0001	1		
0/1024	000 0000 0000	0000 0000 0000 0000	0	0000 0000 0000 0000	0		
-1/1024	101 1111 1111	0000 0000 0000 0000	0	1111 1111 1111 1111	-1		
		•••					
-1023/1024	100 0000 0001	0000 0000 0000 0000	0	1111 1110 0000 0001	-1023		
-1024/1024	100 0000 0000	0000 0000 0000 0000	0	1111 1110 0000 0000	-1024		

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	= Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is u			x = Bit is unkn	own		
bit 15	CTMUEN: C	TMU Enable bit					
	1 = Module						
	0 = Module		,				
bit 14	-	nted: Read as '0					
bit 13		CTMU Stop in lo nues module op		dovido optoro l	dlo modo		
		es module opera					
bit 12		Generation Ena					
	1 = Enables	edge delay gen	eration				
	0 = Disables	s edge delay ger	eration				
bit 11	EDGEN: Edg	ge Enable bit					
	1 = Edges a 0 = Edges a	re not blocked re blocked					
bit 10	EDGSEQEN	: Edge Sequenc	e Enable bit				
		event must occu e sequence is ne		2 event can o	ccur		
bit 9	IDISSEN: Ar	nalog Current So	urce Control I	oit			
		current source of current source of					
bit 8	CTTRIG: CT	MU Trigger Con	trol bit				
	00	output is enabled output is disable					
bit 7-2	ITRIM<5:0>:	Current Source	Trim bits				
	011111 = M 011110	aximum positive	change from	nominal currer	nt		
	•						
	•						
	000000 = N	inimum positive ominal current or inimum negative	utput specified	d by IRNG<1:0	>		
	•						
	•						
	• 100010						
		aximum negative					


REGISTER 24-1: CTMUCON1L: CTMU CONTROL 1 LOW REGISTER

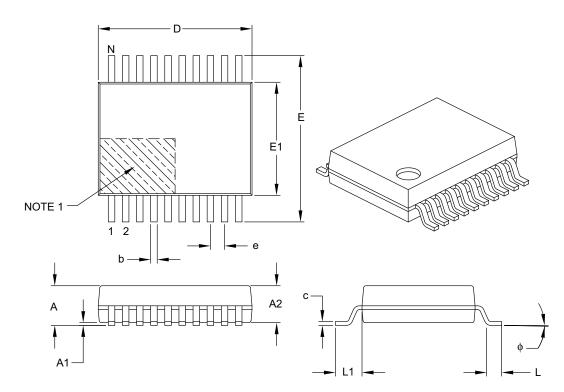
REGISTER 25-9: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	_	_			_	_	
bit 23							bit 16	
							J	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R	R	R	R	
—	—	—	—	REV3	REV2	REV1	REV0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	e bit U = Unimplemented bit, read as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Minor Revision Identifier bits

TABLE 27-32: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)


Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	3 Тсү		ns		
70A	TssL2WB	SSx to Write to SSPxBUF		3 TCY	_	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	—	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the First	Clock Edge of Byte 2	1.5 Tcy + 40	—	ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SC	Kx Edge	40	_	ns	
75	TDOR	SDOx Data Output Rise Time			25	ns	
76	TDOF	SDOx Data Output Fall Time			25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impeda	ance	10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx	Edge	—	50	ns	
82	TssL2DoV	SDOx Data Output Valid After SSx	_	50	ns		
83	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge		1.5 Tcy + 40	_	ns	
	FSCK	SCKx Frequency		—	10	MHz	

Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

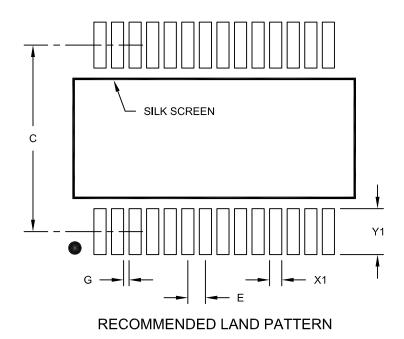
	Units	MILLIMETERS				
Dimensio	n Limits	MIN	NOM	MAX		
Number of Pins	Ν		20			
Pitch	е		0.65 BSC			
Overall Height	А	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	_	_		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	6.90	7.20	7.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1		1.25 REF			
Lead Thickness	С	0.09	_	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

APPENDIX A: REVISION HISTORY

Revision A (February 2013)

Original data sheet for the PIC24FV16KM204 family of devices.

Revision B (July 2013)

Updates all references to PGCx and PGDx pin functions throughout the document to PGECx and PGEDx.

Updates **Section 4.0** "**Memory Organization**" to change bit 12 in the following registers to reserved ("r" designation):

- CCP1CON1L (Table 4-8)
- CCP2CON1L (Table 4-9)
- CCP3CON1L (Table 4-10)
- CCP4CON1L (Table 4-11)
- CCP5CON1L (Table 4-12)

Updates Section 13.0 "Capture/Compare/PWM/ Timer Modules (MCCP and SCCP)":

- Replaces bit 12 of CCPxCON1L (CCPSLP) and its description with a reserved bit
- Removes references to asynchronous operation in Sleep mode (and in other occurrences throughout the document)
- Modifies Section 13.1 "Time Base Generator" to add synchronous operation limitations; adds Table 13-1 to list valid clock options for all operating modes
- Removes the system clock as a time base input option
- Removes external input sources, comparators and CTMU as synchronization sources in Table 13-6; clarifies that other selected sources must be synchronous

Removes the input buffer from the band gap reference input in Figure 20-1.

Adds BUFCON0 register description (Register 20-2) to Section 20.0 "8-Bit Digital-to-Analog Converter (DAC)".

Changes references to internal band gap voltages (VBG, VBG/2 and BGBUF0) in Section 20.0 "8-Bit Digital-to-Analog Converter (DAC)" and Section 22.0 "Comparator Module" to BGBUF1.

Adds minimum VDD conditions for VBG specification in Table 27-15 (Internal Voltage Regulator Specifications).

Other minor typographical corrections throughout the document.