

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

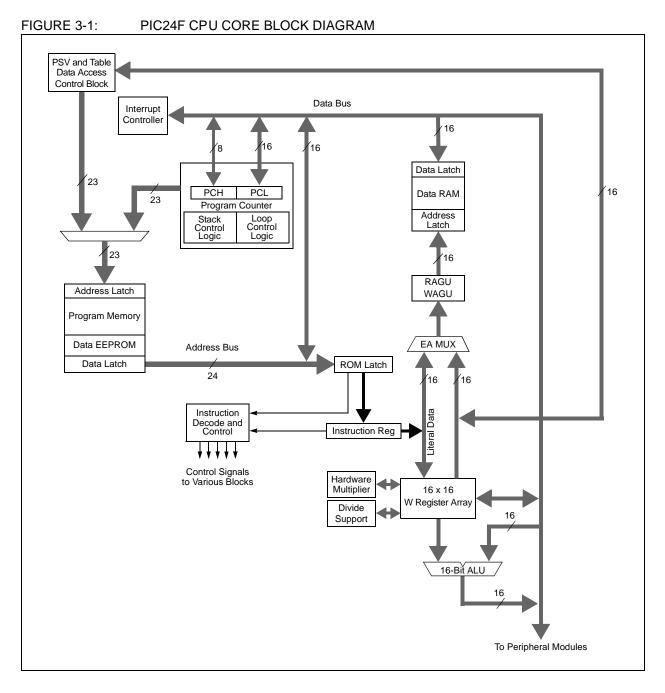
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km102-i-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PINOUT DESCRIPTION (CONTINUED)	FV	Pin Number	20-Pin 28-Pin 28-Pin 28-Pin 28-Pin 28-Pin 28-Pin 28-Din 28	12 17 14 44 48 I/O 12C MSSP1 I ² C Clock	13 18 15 1 1 1/0 12C MSSP1 1 ² C Data	- 7 4 24 26 I/O I2C MSSP2 I ² C Clock	- 6 3 23 25 I/O I2C MSSP2 I ² C Data	10 12 9 34 37 I ST Secondary Clock Digital Input	9 11 8 33 36 I ANA Secondary Oscillator Input	10 12 9 34 37 I ANA Secondary Oscillator Output	13 18 15 1 1 1 ST Timer1 Digital Input Cock	18 26 23 15 16 1 ST MCCP/SCCP Time Base Clock Input A	6 6 3 23 25 I ST MCCP/SCCP Time Base Clock Input B	12 17 14 44 48 I ST UART1 Clear-To-Send Input	13 18 15 1 1 0 — UART1 Request-To-Send Output	13 18 15 1 1 0 — UART1 16x Baud Rate Clock Output	6 6 3 2 2 I ST UART1 Receive	11 16 13 3 3 0 — UART1 Transmit	12 9 34 37 1 ST UART2 Clear-To-Send Input	11 8 33 36 0 UART2 Request-To-Send Output	13 18 15 1 1 0 — UART2 16x Baud Rate Clock Output	- 5 2 2 24 I ST UART2 Receive	4 1 21 23 0 - UART2 Transmit	4 4 1 21 23 I ANA Ultra Low-Power Wake-up Input	14 20 17 7 P – Regulator External Filter Capacitor Connection	20 28 25 17,28,28 18,30,30 P — Device Positive Supply Voltage	14 20 17 7 P – Microcontroller Core Supply Voltage	1 1 26 18 19 P — High-Voltage Programming Pin	2 2 2 27 19 21 I ANA A/D Reference Voltage Positive Input	3 3 3 28 20 22 I ANA A/D Reference Voltage Negative Input	19 27 24 16,29,29 17,31,31 P — Device Ground Return Voltage	ANA = Analog level input/outbut, ST = Schmitt Trigger input buffer, I ² C TM = I ² C/SMBus input buffer
UT DESC			48-Pin PD JQFN SSC	48 1	1	26 –	- 25	37 1		37 1	1		25 6	48 1	1	1	2 6		37 –	36 –		24 –	- 23	23 23	-	18,30,30 2	-	19 1	21 21	22	7,31,31 1	gger input bu
		-	44-Pin QFN/ LU TQFP	44	-	24	23	34	33	34	1	15	23	44	1	1	2	3	34	33	-	22	21	21		17,28,28 18		18	19	20	16,29,29 17	= Schmitt Tri
204 FAN	н	Pin Number	28-Pin QFN	14	15	4	3	6	8	6	15	23	3	14	15	15	3	13	6	8	15	2	1	1		25		26	27	28	24	output, ST
PIC24FV16KM204 FAMILY		ш	28-Pin PDIP/ SSOP/ SOIC	17	18	7	9	12	11	12	18	26	6	17	18	18	6	16	12	11	18	5	4	4		28		1	2	3	27	evel input/
PIC24F			20-Pin PDIP/ SSOP/ SOIC	12	13		Ι	10	6	10	13	18	9	12	13	13	9	11		I	13			4		20		1	2	3	19	= Analog Iu
TABLE 1-5:			Function	SCL1	SDA1	SCL2	SDA2	SCLKI	SOSCI	sosco	T1CK	TCKIA	TCKIB	UICTS	UIRTS	U1BCLK	U1RX	U1TX	U2CTS	UZRTS	U2BCLK	U2RX	U2TX	ULPWU	VCAP	VDD	VDDCORE	νрр	VREF+	VREF-	Vss	Leaend: ANA :

0 Ò (5

PIC24FV16KM204 FAMILY

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	Repeat Loop Counter Register
CORCON	CPU Control Register

TABLE 4-10: MCCP3 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets					
CCP3CON1L ⁽¹⁾	188h	CCPON		CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000					
CCP3CON1H ⁽¹⁾	18Ah	OPSSRC	RTRGEN	_	_	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000					
CCP3CON2L ⁽¹⁾	18Ch	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000					
CCP3CON2H ⁽¹⁾	18Eh	OENSYNC	_	OCFEN	OCEEN	OCDEN	OCCEN	OCBEN	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0	0100					
CCP3CON3L ⁽¹⁾	190h	_	_		_			_	—			DT5	DT4	DT3	DT2	DT1	DT0	0000					
CCP3CON3H ⁽¹⁾	192h	OETRIG	OSCNT2	OSCNT1	OSCNT0		OUTM2	OUTM1	OUTM0			POLACE	POLBDF	PSSACE1	PSSACE0	PSSBDF1	PSSBDF0	0000					
CCP3STAT ⁽¹⁾	194h	_	_		_			_	—	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000					
CCP3TMRL ⁽¹⁾	198h							MCCF	P3 Time Bas	se Register	Low Word							0000					
CCP3TMRH ⁽¹⁾	19Ah							MCCF	23 Time Bas	se Register	High Word							0000					
CCP3PRL ⁽¹⁾	19Ch							MCCP3 1	Time Base F	Period Regis	ster Low Wor	d						FFFF					
CCP3PRH ⁽¹⁾	19Eh							МССРЗ Т	ïme Base P	eriod Regis	ter High Wor	d						FFFF					
CCP3RAL ⁽¹⁾	1A0h							Οι	utput Compa	are 3 Data V	Vord A							0000					
CCP3RBL ⁽¹⁾	1A4h							Ou	utput Compa	are 3 Data V	Vord B							0000					
CCP3BUFL ⁽¹⁾	1A8h							Input	Capture 3 [Data Buffer I	Low Word							0000					
CCP3BUFH ⁽¹⁾	1AAh							Input	Capture 3 D	Data Buffer H	Input Capture 3 Data Buffer High Word 0000												

 $\label{eq:legend: Legend: Legend: u = unknown, u = unkn$

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-11: SCCP4 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP4CON1L ⁽¹⁾	1ACh	CCPON	_	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP4CON1H ⁽¹⁾	1AEh	OPSSRC	RTRGEN	_	_	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP4CON2L ⁽¹⁾	1B0h	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP4CON2H ⁽¹⁾	1B2h	OENSYNC	_	_	_	_	_	_	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP4CON3H ⁽¹⁾	1B6h	OETRIG	OSCNT2	OSCNT1	OSCNT0	_	_	_	_	_	_	POLACE	_	PSSACE1	PSSACE0	_	_	0000
CCP4STATL ⁽¹⁾	1B8h	_	_	_	_	_	_	_	_	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP4TMRL ⁽¹⁾	1BCh							SCCP	1 Time Base	Register Lo	w Word							0000
CCP4TMRH ⁽¹⁾	1BEh							SCCP4	Time Base	Register Hi	gh Word							0000
CCP4PRL ⁽¹⁾	1C0h							SCCP4 Ti	me Base Pe	riod Registe	r Low Word							FFFF
CCP4PRH ⁽¹⁾	1C2h							SCCP4 Tir	ne Base Pe	riod Registe	r High Word							FFFF
CCP4RAL ⁽¹⁾	1C4h							Out	put Compa	re 4 Data Wo	ord A							0000
CCP4RBL ⁽¹⁾	1C8h							Out	put Compai	re 4 Data Wo	ord B							0000
CCP4BUFL ⁽¹⁾	1CCh		Input Capture 4 Data Buffer Low Word 000													0000		
CCP4BUFH ⁽¹⁾	1CEh							Input C	apture 4 Da	ata Buffer Hig	gh Word							0000

PIC24FV16KM204 FAMILY

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	U-0
_	—	—	—	—	—	CCT5IF	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—			—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	Unimplemented: Read as '0'
bit 9	CCT5IF: Capture/Compare 5 Timer Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 8-0	Unimplemented: Read as '0'

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIF	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	—	—	—	—	BCL2IF	SSP2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 13-3	Unimplemented: Read as '0'
bit 2	BCL2IF: MSSP2 I ² C [™] Bus Collision Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	SSP2IF: MSSP2 SPI/I ² C Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS
—	—	—	—	—	—	—	ULPWUIF
bit 7							bit 0

Legend:	HS = Hardware Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIF: Ultra Low-Power Wake-up Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 8-11: IFS6: INTERR UPT FLAG STATUS REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS
—	—	—	—	—	—	CLC2IF	CLC1IF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 CLC2IF: Configurable Logic Cell 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 0 CLC1IF: Configurable Logic Cell 1 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 8-17: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	_				_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	—				ULPWUIE
bit 7							bit 0
Legend:							

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 8-18: IEC6: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	CLC2IE	CLC1IE
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-2 Unimplemented: Read as '0'

bit 1 CLC2IE: Configurable Logic Cell 2 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

bit 0 CLC1IE: Configurable Logic Cell 1 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—		—	—	—	—	_			
oit 15							bit			
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
SMP	CKE	D/A	P ⁽¹⁾	S ⁽¹⁾	R/W	UA	BF			
bit 7							bit			
Legend:										
R = Reada	ıble bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value		'1' = Bit is set		U = Unimplemented bit, rea '0' = Bit is cleared		x = Bit is unknown				
bit 15-8	•	ited: Read as ')'							
bit 7		Rate Control bit								
		Slave mode: e control is disat	oled for Standa	rd Speed mode	e (100 kHz and	1 MHz)				
		e control is enab				/				
bit 6	CKE: SMBu	s Select bit								
		Slave mode:								
		1 = Enables SMBus-specific inputs 0 = Disables SMBus-specific inputs								
bit 5	D/A: Data/A	•								
	<u>In Master mo</u> Reserved.									
	In Slave mod	de:								
		s that the last by s that the last by								
bit 4	P: Stop bit ⁽¹⁾	1								
		s that a Stop bit I was not detected		cted last						
bit 3	S: Start bit ⁽¹⁾)								
		s that a Start bit was not detected		cted last						
bit 2	R/W: Read/	Write Information	n bit							
	In Slave mod	<u>de:</u> ⁽²⁾								
	1 = Read 0 = Write									
	In Master me	ode ^{.(3)}								
	1 = Transmit	is in progress								
	0 = Transmit	is not in progre	SS							
bit 1	•	Address bit (10-		• ·						
		s that the user no does not need t		the address in	the SSPxADI	D register				
	This bit is cleare									
		This bit holds the R/\overline{W} bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or not ACK bit.								
		Ring this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.								

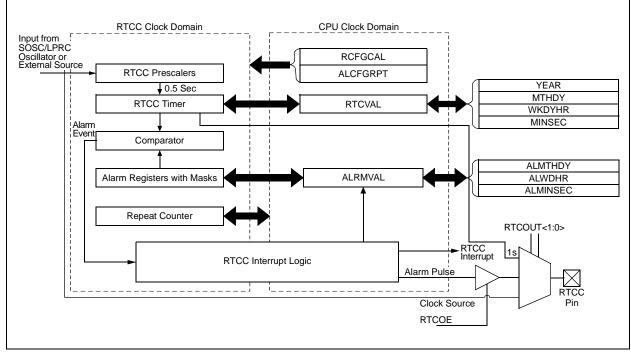
REGISTE	R 14-4: SSP	CON1: MSSP	X CONTROL	REGISTER	I (I ² C™ MOE	DE)					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	<u> </u>										
bit 15							bit 8				
D AM 0	D 444 a		D 444 0	54440	D /11/0	D 444 o	D 444 o				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾				
bit 7							bit 0				
Legend:											
R = Reada	able bit	W = Writable b	oit	U = Unimplem	nented bit, read	as '0'					
-n = Value at POR (1' = Bit is set (0' = Bit is cleared						x = Bit is unkn	iown				
bit 15-8	Unimplemen	ted: Read as '0	,								
bit 7	WCOL: Write	e Collision Detec	t bit								
	In Master Tra	ansmit mode:									
		to the SSPxBU				nditions were r	not valid for a				
	0 = No collis	ssion to be starte		eared in Soltwar	e)						
	In Slave Trai	nsmit mode:									
		PxBUF register i	s written while	e it is still transm	itting the previo	ous word (mus	t be cleared in				
		software) 0 = No collision									
		node (Master or	Slave modes)								
	This is a "do		<u>olavo modooj</u>	<u>.</u>							
bit 6	SSPOV: Ma	ster Synchronou	s Serial Port F	Receive Overflov	w Indicator bit						
	<u>In Receive m</u>										
	-	s received while t	he SSPxBUF	register is still h	olding the prev	ious byte (mus	t be cleared in				
	software 0 = No over										
	In Transmit r										
		n't care" bit in Tra	ansmit mode.								
bit 5	SSPEN: Ma	SSPEN: Master Synchronous Serial Port Enable bit ⁽¹⁾									
		the serial port ar				e serial port pi	ns				
L:1. 4		the serial port a	-	these pins as I/	O port pins						
bit 4		Release Control	DIT								
	In Slave mod 1 = Releases										
		ock low (clock sti	etch), used to	ensure data se	etup time						
	In Master mo										
	Unused in th				(2)						
bit 3-0	-	Master Synchro									
		Slave mode, 10-l Slave mode, 7-bi									
		Firmware Contro				labioa					
	$1000 = I^2 C I$	Master mode, Cl	ock = Fosc/(2								
		Slave mode, 10-l Slave mode, 7-bi									
	0110 = 103		1 2001622								
Note 1:	When enabled, t		-	-	-						
2:	Bit combinations	not specifically			-		-				

3: SSPxADD values of 0, 1 or 2 are not supported when the Baud Rate Generator is used with I^2C mode.

16.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "PIC24F Family Reference Manual", "Real-Time Clock and Calendar (RTCC)" (DS39696).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.


Key features of the RTCC module are:

- · Operates in Sleep and Retention Sleep modes
- Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- Alarm repeat with decrementing counter
- Alarm with indefinite repeat chime
- Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- Optimized for long term battery operation
- User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
- Optimized for long term battery operation
- · Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake-up external devices without CPU intervention (external power control)
- · Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- Runs from any one of the following:
 - External Real-Time Clock of 32.768 kHz
 - Internal 31.25 kHz LPRC Clock
 - 50 Hz or 60 Hz External Input

16.1 RTCC Source Clock

The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.

FIGURE 16-1: RTCC BLOCK DIAGRAM

16.3 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value, loaded into the lower half of RCFGCAL, is multiplied by four and will be either added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- 3. a) If the oscillator is faster than ideal (negative result from Step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from Step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

EQUATION 16-1:

(Ideal Free	(Ideal Frequency – Measured Frequency) *						
60 = Clock	ks per Minute						
†	Ideal Frequency = 32,768 Hz						

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse, except when SECONDS = 00, 15, 30 or 45. This is due to the auto-adjust of the RTCC at 15 second intervals.

Note: It is up to the user to include, in the error value, the initial error of the crystal: drift due to temperature and drift due to crystal aging.

16.4 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options are available

16.4.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 16-2, the interval selection of the alarm is configured through the AMASKx bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPTx bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled, and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

16.4.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a Trigger clock to other peripherals.

Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	_	_			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0			
bit 7							bit (
Legend: R = Readab	le hit	W = Writable I	ait	U = Unimplem	ented hit read	as 'O'				
-n = Value a		1' = Bit is set	JIL	$0^{\circ} = \text{Bit is clear}$, Bit is unknown				
bit 15-8	Unimplement	ed: Read as '0)'							
bit 7	CVREN: Comparator Voltage Reference Enable bit									
	1 = CVREF circuit is powered on									
bit 6	0 = CVREF circuit is powered down									
DILO		CVROE: Comparator VREF Output Enable bit 1 = CVREF voltage level is output on the CVREF pin								
	1 - (VDEE vc	0 = CVREF voltage level is disconnected from the CVREF pin								
			sconnected fr	om the CVREF p	oin					
bit 5	0 = CVREF vo				in					
bit 5	0 = CVREF vo CVRSS: Com 1 = Compara	oltage level is d parator VREF S tor reference so	ource Selectio ource, CVRSR0	on bit C = VREF+ – VRE	F-					
	0 = CVREF vo CVRSS: Com 1 = Compara 0 = Compara	oltage level is d parator VREF S tor reference so tor reference so	ource Selectic ource, CVRSR ource, CVRSR	on bit C = VREF+ – VRE C = AVDD – AVS	:F- S					
bit 5 bit 4-0	0 = CVREF vo CVRSS: Com 1 = Compara 0 = Compara CVR<4:0>: C	Ditage level is d parator VREF S tor reference so tor reference so omparator VRE	ource Selectic ource, CVRSR ource, CVRSR	on bit C = VREF+ – VRE	:F- S					
	0 = CVREF vo CVRSS: Com 1 = Compara 0 = Compara CVR<4:0>: C <u>When CVRSS</u>	bltage level is d parator VREF S tor reference so tor reference so omparator VRE S = 1:	ource Selectic ource, CVRSR ource, CVRSR F Value Select	on bit C = VREF+ – VRE C = AVDD – AVSt tion 0 ≤ CVR<4:	:F- S					
	0 = CVREF vo CVRSS: Com 1 = Compara 0 = Compara CVR<4:0>: C <u>When CVRSS</u>	bltage level is d parator VREF S tor reference so tor reference so omparator VRE S = 1: (F-) + (CVR<4:0	ource Selectic ource, CVRSR ource, CVRSR F Value Select	on bit C = VREF+ – VRE C = AVDD – AVSt tion 0 ≤ CVR<4:	:F- S					

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0			
bit 7		TT KIIVIJ		TIKIMI	TERIMU	IRINGI	bit (
Legend:										
R = Readable	e bit	W = Writable b	oit	U = Unimple	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown			
bit 15		TMU Enable bit								
DIL 15	1 = Module i									
	0 = Module i									
bit 14	Unimplement	ted: Read as '0	,							
bit 13	CTMUSIDL:	CTMU Stop in Ic	lle Mode bit							
	1 = Discontinues module operation when device enters Idle mode									
		es module opera		ode						
bit 12	TGEN: Time Generation Enable bit									
		edge delay gene edge delay gen								
bit 11	EDGEN: Edge Enable bit									
	1 = Edges a 0 = Edges a	re not blocked re blocked								
bit 10	EDGSEQEN: Edge Sequence Enable bit									
	-	event must occur	-	2 event can o	ccur					
L:1.0	-	sequence is nee		. '4						
bit 9	IDISSEN: Analog Current Source Control bit 1 = Analog current source output is grounded									
	0 = Analog current source output is not grounded									
bit 8	CTTRIG: CTMU Trigger Control bit									
		output is enabled output is disabled								
bit 7-2		Current Source								
	011111 = Ma	aximum positive	change from	nominal currer	nt					
	011110									
	•									
	•									
		inimum positive o								
		ominal current ou inimum negative								
	•									
	•									
	100010	aximum negative	obones fre	nominal auro						

REGISTER 24-1: CTMUCON1L: CTMU CONTROL 1 LOW REGISTER

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000

Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631

Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512

Fax: 91-20-2566-1513 Japan - Osaka Tel: 81-6-6152-7160

Fax: 81-6-6152-9310 Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857

Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820