

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-><F

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km102-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		N	lemory	1						Pe	riphe	rals					
Device	Pins	Flash Program (bytes)	SRAM (bytes)	EE Data (bytes)	Voltage Range (V)	16-Bit Timer	16-Bit MCCP/SCCP	MSSP	UART	12-Bit A/D Channels	8-Bit DAC	Op Amp	Comparators	CTMU	RTCC	CLC	ICD BRKPT
						5V	Devic	es									
PIC24FV16KM204	44	16K	2K	512	2.0-5.5	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24FV16KM202	28	16K	2K	512	2.0-5.5	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24FV08KM204	44	8K	2K	512	2.0-5.5	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24FV08KM202	28	8K	2K	512	2.0-5.5	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24FV16KM104	44	16K	1K	512	2.0-5.5	1	1/1	1	1	22	—	_	1	Yes	_	1	3
PIC24FV16KM102	28	16K	1K	512	2.0-5.5	1	1/1	1	1	19	_	_	1	Yes	_	1	3
PIC24FV08KM102	28	8K	1K	512	2.0-5.5	1	1/1	1	1	19	_	_	1	Yes	_	1	3
PIC24FV08KM101	20	8K	1K	512	2.0-5.5	1	1/1	1	1	16	_	-	1	Yes	_	1	3
						3V	Devic	es									
PIC24F16KM204	44	16K	2K	512	1.8-3.6	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24F16KM202	28	16K	2K	512	1.8-3.6	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24F08KM204	44	8K	2K	512	1.8-3.6	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24F08KM202	28	8K	2K	512	1.8-3.6	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24F16KM104	44	16K	1K	512	1.8-3.6	1	1/1	1	1	22	_	—	1	Yes	—	1	3
PIC24F16KM102	28	16K	1K	512	1.8-3.6	1	1/1	1	1	19	_	_	1	Yes	_	1	3
PIC24F08KM102	28	8K	1K	512	1.8-3.6	1	1/1	1	1	19	—	—	1	Yes	—	1	3
PIC24F08KM101	20	8K	1K	512	1.8-3.6	1	1/1	1	1	16			1	Yes	_	1	3

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	29
3.0	CPU	35
4.0	Memory Organization	41
5.0	Flash Program Memory	67
6.0	Data EEPROM Memory	73
7.0	Resets	79
8.0	Interrupt Controller	85
9.0	Oscillator Configuration	. 121
10.0	Power-Saving Features	. 131
11.0	I/O Ports	. 137
12.0	Timer1	
13.0	Capture/Compare/PWM/Timer Modules (MCCP and SCCP)	. 143
14.0	Master Synchronous Serial Port (MSSP)	
15.0	Universal Asynchronous Receiver Transmitter (UART)	. 173
16.0	Real-Time Clock and Calendar (RTCC)	. 181
17.0	Configurable Logic Cell (CLC)	. 195
18.0	High/Low-Voltage Detect (HLVD)	. 207
	12-Bit A/D Converter with Threshold Detect	
20.0	8-Bit Digital-to-Analog Converter (DAC)	. 229
21.0	Dual Operational Amplifier Module	. 233
22.0	Comparator Module	
23.0	Comparator Voltage Reference	. 239
24.0	Charge Time Measurement Unit (CTMU)	. 241
25.0	Special Features	. 249
26.0	Development Support	. 261
27.0	Electrical Characteristics	. 265
28.0	Packaging Information	. 297
Appe	ndix A: Revision History	. 325
Index	· · · · · · · · · · · · · · · · · · ·	327
	/icrochip Web Site	
Custo	omer Change Notification Service	. 333
Custo	omer Support	. 333
Produ	uct Identification System	. 335

TABLE 4-29:	COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	630h	CMIDL	_	—	—		C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT	—	_	_	—	—	C3OUT ⁽¹⁾	C2OUT ⁽¹⁾	C1OUT	0000
CVRCON	632h	—	_	_	_	_	_	_	_	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	634h	CON	COE	CPOL	CLPWR		_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF1	CREF0	—	CCH1	CCH0	0000
CM2CON ⁽¹⁾	636h	CON	COE	CPOL	CLPWR		—	CEVT	COUT	EVPOL1	EVPOL0	_	CREF1 ⁽¹⁾	CREF0	—	CCH1	CCH0	0000
CM3CON ⁽¹⁾	638h	CON	COE	CPOL	CLPWR		—	CEVT	COUT	EVPOL1	EVPOL0	_	CREF1 ⁽¹⁾	CREF0	—	CCH1	CCH0	0000

 $\label{eq:legend: second condition, u = unchanged, --= unimplemented, q = value depends on condition, r = reserved.$

Note 1: These registers and bits are available only on PIC24F(V)16KM2XX devices.

TABLE 4-30: BAND GAP BUFFER CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BUFCON0	670h		_		_		_	_		_					_	BUFREF1	BUFREF0	0001

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-31: CLOCK CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	740h	TRAPR	IOPUWR	SBOREN	RETEN			СМ	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	742h	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	_	CF	SOSCDRV	SOSCEN	OSWEN	(Note 2)
CLKDIV	744h	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	0100
OSCTUN	748h	_	_	_	_	_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	74Eh	ROEN	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	—	—	—	_	_	0000
HLVDCON	756h	HLVDEN	—	HLSIDL	_	_	—	_	_	VDIR	BGVST	IRVST	_	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: RCON register Reset values are dependent on the type of Reset.

2: OSCCON register Reset values are dependent on Configuration fuses and by type of Reset.

TABLE 4-32: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	760h	WR	WREN	WRERR	PGMONLY			_		_	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMKEY	766h	—			_		_			NVMKEY7	NVMKEY6	NVMKEY5	NVMKEY4	NVMKEY3	NVMKEY2	NVMKEY1	NVMKEY0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-33: ULTRA LOW-POWER WAKE-UP REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ULPWCON	768h	ULPEN		ULPSIDL	_	_	_	—	ULPSINK	—		—	_	_	_			0000

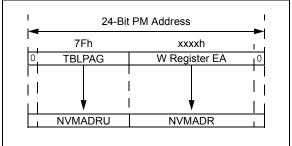
Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-34: PMD REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	770h	_	_		_	T1MD		_	_	SSP1MD	U2MD ⁽¹⁾	U1MD	_	_	_	_	ADCMD	0000
PMD2	772h		_	_	_		_	_	_	_	-	_	CCP5MD ⁽¹⁾	CCP4MD ⁽¹⁾	CCP3MD ⁽¹⁾	CCP2MD	CCP1MD	0000
PMD3	774h		_		_		CMPMD	RTCCMD	_	_	DAC1MD ⁽¹⁾	_	_	_	_	SSP2MD ⁽¹⁾	_	0000
PMD4	776h		_		_		_	_	_	_	ULPWUMD	_	_	REFOMD	CTMUMD	HLVDMD	_	0000
PMD6	77Ah		_		_		_	_	_	_	-	AMP1MD ⁽¹⁾	DAC2MD ⁽¹⁾	AMP2MD ⁽¹⁾	_	_	_	0000
PMD8	77Eh	_	_	—	_	_	-	_	_	_	_	_	—	CLC2MD ⁽¹⁾	CLC1MD	_	_	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: These bits are available only on PIC24F(V)16KM2XX devices.


6.3 NVM Address Register

As with Flash program memory, the NVM Address registers, NVMADRU and NVMADR, form the 24-bit Effective Address (EA) of the selected row or word for data EEPROM operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. These registers are not mapped into the Special Function Register (SFR) space; instead, they directly capture the EA<23:0> of the last Table Write instruction that has been executed and select the data EEPROM row to erase. Figure 6-1 depicts the program memory EA that is formed for programming and erase operations.

Like program memory operations, the Least Significant bit (LSb) of NVMADR is restricted to even addresses. This is because any given address in the data EEPROM space consists of only the lower word of the program memory width; the upper word, including the uppermost "phantom byte", are unavailable. This means that the LSb of a data EEPROM address will always be '0'.

Similarly, the Most Significant bit (MSb) of NVMADRU is always '0', since all addresses lie in the user program space.

FIGURE 6-1: DATA EEPROM ADDRESSING WITH TBLPAG AND NVM ADDRESS REGISTERS

6.4 Data EEPROM Operations

The EEPROM block is accessed using Table Read and Write operations, similar to those used for program memory. The TBLWTH and TBLRDH instructions are not required for data EEPROM operations since the memory is only 16 bits wide (data on the lower address is valid only). The following programming operations can be performed on the data EEPROM:

- · Erase one, four or eight words
- Bulk erase the entire data EEPROM
- Write one word
- Read one word

Note 1: Unexpected results will be obtained if the user attempts to read the EEPROM while a programming or erase operation is underway.

2: The XC16 C compiler includes library procedures to automatically perform the Table Read and Table Write operations, manage the Table Pointer and write buffers, and unlock and initiate memory write sequences. This eliminates the need to create assembler macros or time critical routines in C for each application.

The library procedures are used in the code examples detailed in the following sections. General descriptions of each process are provided for users who are not using the XC16 compiler libraries.

R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0	R/W-0, HS
NVMIF	—	AD1IF	U1TXIF	U1RXIF	_	—	CCT2IF
bit 15							bit
R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS
CCT1IF	CCP4IF	CCP3IF		T1IF	CCP2IF	CCP1IF	INTOIF
bit 7							bit
Legend:		HS = Hardwa	re Settable bit				
R = Readable	bit	W = Writable		U = Unimplem	ented bit. read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15		Interrupt Flag					
		equest has occ					
		equest has not					
bit 14	-	ted: Read as '					
bit 13			-	Flag Status bit			
		equest has occ equest has not					
bit 12	-	-	Interrupt Flag	Status bit			
		equest has occ		Status bit			
	•	equest has not					
bit 11	-	-	terrupt Flag St	atus bit			
		equest has occ					
		equest has not					
bit 10-9	Unimplement	ted: Read as '	כ'				
bit 8	CCT2IF: Capt	ture/Compare 2	2 Timer Interrup	ot Flag Status b	it		
	1 = Interrupt r	equest has occ	curred				
	-	equest has not					
bit 7	-		-	ot Flag Status b	it		
		equest has occ					
		equest has not					
bit 6	-	-		ot Flag Status b	oit		
		equest has occ					
bit 5	•	equest has not		at Elag Status h	.;+		
DIUS	-	equest has occ		pt Flag Status b	11		
		equest has oct					
bit 4		ted: Read as '					
bit 3	-	Interrupt Flag S					
		equest has occ					
	•	equest has not					
bit 2	CCP2IF: Cap	ture/Compare 2	2 Event Interru	ot Flag Status b	oit		
	1 = Interrupt r	equest has occ	curred	-			
	0 = Interrupt r	equest has not	occurred				
bit 1	CCP1IF: Cap	ture/Compare	1 Event Interru	ot Flag Status b	bit		
		equest has occ					
	-	equest has not					
	INTOIL Evitor		Elaa Statua hit				
bit 0		nal Interrupt 0 equest has occ	-				

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	U2TXIP2	U2TXIP1	U2TXIP0		U2RXIP2	U2RXIP1	U2RXIP0
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	INT2IP2	INT2IP1	INT2IP0	_	CCT4IP2	CCT4IP1	CCT4IP0
bit 7							bit
Legend: R = Readat	ole hit	W = Writable	hit	II = Unimple	mented bit, read	1 as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
bit 15	Unimplemen	ted: Read as 'o)'				
bit 14-12		: UART2 Trans					
	111 = Interru	pt is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1 pt source is dis	abled				
bit 11		ted: Read as '					
bit 10-8	-	: UART2 Rece		Priority bits			
		pt is Priority 7 (
	•	· · · ·	• • •				
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as 'o					
)'				
bit 6-4		External Interr	upt 2 Priority b				
	111 = Interru		upt 2 Priority b				
		External Interr	upt 2 Priority b				
	111 = Interru • •	External Interr pt is Priority 7(upt 2 Priority b				
	111 = Interru • • 001 = Interru	External Interr pt is Priority 7(pt is Priority 1	upt 2 Priority t highest priority				
bit 6-4	111 = Interru • • 001 = Interru 000 = Interru	External Interr pt is Priority 7(pt is Priority 1 pt source is dis	upt 2 Priority b highest priority abled				
bit 6-4 bit 3	111 = Interru • • 001 = Interru 000 = Interru Unimplemen	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(upt 2 Priority b highest priority abled)'	v interrupt)	av hits		
	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(-: Capture/Com	upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	y bits		
bit 6-4 bit 3	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	y bits		
bit 6-4 bit 3	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as '(-: Capture/Com	upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	y bits		
bit 6-4 bit 3	111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen CCT4IP<2:0>	External Interr pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' •: Capture/Com pt is Priority 7 (upt 2 Priority b highest priority abled o' pare 4 Timer I	[,] interrupt) nterrupt Priorit	ty bits		

REGISTER 8-26: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-6	Unimplement	ted: Read as 'd)'					
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits ⁽¹⁾					
		ximum frequen	cy deviation					
	011110							
	•							
	•							
	000001							
	000000 = Ce	nter frequency,	oscillator is ru	nning at factory	calibrated free	quency		
	111111							
	•							
	•							
	100001							
		nimum frequen	cv deviation					

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

10.2.2 IDLE MODE

Idle mode includes these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.3.1 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. When a true POR occurs, the entire device is reset.

10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

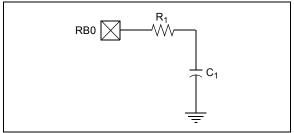
- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RB0.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source.


See Example 10-2 for initializing the ULPWU module.

EXAMPLE 10-2: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//********
// 1. Charge the capacitor on RBO
TRISBbits.TRISB0 = 0;
  LATBbits.LATB0 = 1;
  for(i = 0; i < 10000; i++) Nop();</pre>
//2. Stop Charging the capacitor
   on RBO
11
//*******************************
  TRISBbits.TRISB0 = 1;
//3. Enable ULPWU Interrupt
IFS5bits.ULPWUIF = 0;
IEC5bits.ULPWUIE = 1;
IPC21bits.ULPWUIP = 0x7;
//*********************************
//4. Enable the Ultra Low Power
11
   Wakeup module and allow
11
  capacitor discharge
ULPWCONbits.ULPEN = 1;
  ULPWCONbit.ULPSINK = 1;
//5. Enter Sleep Mode
 11
  Sleep();
//for sleep, execution will
//resume here
```

A series resistor, between RB0 and the external capacitor provides overcurrent protection for the AN2/ULPWU/RB0 pin and enables software calibration of the time-out (see Figure 10-1).

FIGURE 10-1: SERIES RESISTOR

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

NOTES:

REGISTER 13-5: CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS ⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	DT5	DT4	DT3	DT2	DT1	DT0
bit 7					•		bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-6	Unimplemen	ted: Read as 'd)'				
bit 5-0	DT<5:0>: CC	Px Dead-Time	Select bits				
	111111 — Incert CO dood time delay, pariedo between complementary output signals						

111111 = Insert 63 dead-time delay periods between complementary output signals
 11110 = Insert 62 dead-time delay periods between complementary output signals
 000010 = Insert 2 dead-time delay periods between complementary output signals
 000001 = Insert 1 dead-time delay period between complementary output signals
 000001 = Dead-time logic is disabled

Note 1: This register is implemented in MCCPx modules only.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	CSS30	CSS29	CSS28	CSS27	CSS26	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20 ⁽²⁾	CSS19 ⁽²⁾	CSS18	CSS17	CSS16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 14-10CSS<30:26>: A/D Input Scan Selection bits1 = Includes the corresponding channel for input scan0 = Skips the channel for input scanbit 9-8Unimplemented: Read as '0'bit 7-0CSS<23:16>: A/D Input Scan Selection bits⁽²⁾1 = Includes the corresponding channel for input scan0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<20:19> bits are not implemented in 20-pin devices.

REGISTER 19-9: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8 ^(2,3)
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS6 ^(2,3)	CSS5 ⁽²⁾	CSS4	CSS3	CSS2	CSS1	CSS0
						bit 0
	R/W-0	CSS14 CSS13 R/W-0 R/W-0	CSS14 CSS13 CSS12 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 R/W-0 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 CSS10 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 CSS10 CSS9 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSS<15:0>: A/D Input Scan Selection bits^(2,3)

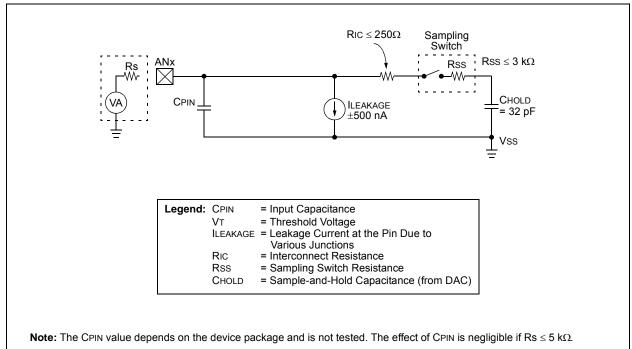
1 = Includes the corresponding ANx input for scan

- 0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<8:5> bits are not implemented in 20-pin devices.
 - 3: The CSS<8:6> bits are not implemented in 28-pin devices.

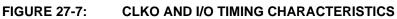
19.2 A/D Sampling Requirements

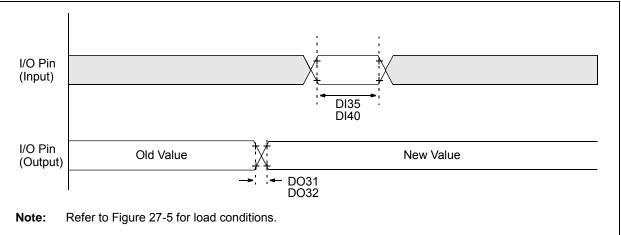
The analog input model of the 12-bit A/D Converter is shown in Figure 19-2. The total sampling time for the A/D is a function of the holding capacitor charge time.

For the A/D Converter to meet its specified accuracy, the Charge Holding Capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The Source Impedance (Rs), the Interconnect Impedance (Rsc) and the Internal Sampling Switch Impedance (Rss) combine to directly affect the time required to charge CHOLD. The combined impedance of the analog sources must, therefore, be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the A/D Converter, the maximum recommended source impedance, Rs, is $2.5 \text{ k}\Omega$. After the analog input channel is selected (changed), this sampling function


must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.

At least 1 TAD time period should be allowed between conversions for the sample time. For more details, see **Section 27.0 "Electrical Characteristics"**.


EQUATION 19-1: A/D CONVERSION CLOCK PERIOD


$$TAD = TCY (ADCS + 1)$$

 $ADCS = \frac{TAD}{TCY} - 1$

Note: Based on Tcy = 2/Fosc; Doze mode and PLL are disabled.

FIGURE 19-2: 12-BIT A/D CONVERTER ANALOG INPUT MODEL

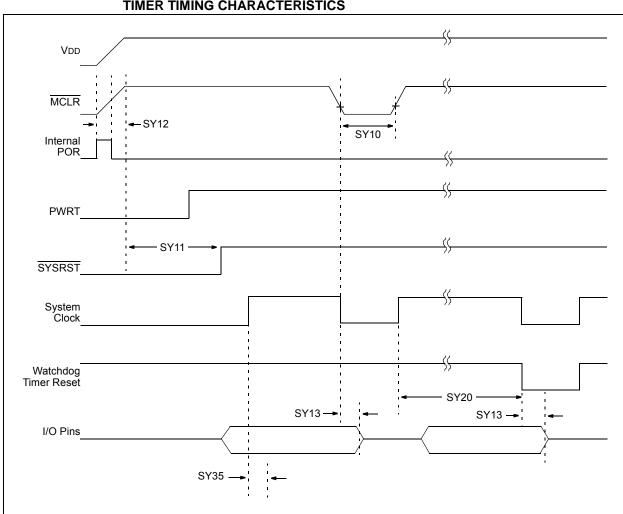


TABLE 27-24: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS				Operating		2.0V to -40°C ≤	3.6V (PIC24F16KM204) 5.5V (PIC24FV16KM204) TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TIOR	Port Output Rise Time	_	10	25	ns	
DO32	TIOF	Port Output Fall Time	—	10	25	ns	
DI35	Tinp	INTx Pin High or Low Time (output)	20	_	_	ns	
DI40	Trbp	CNx High or Low Time (input)	2	_	_	Тсү	

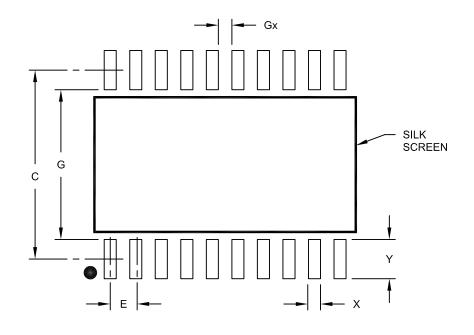

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 27-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

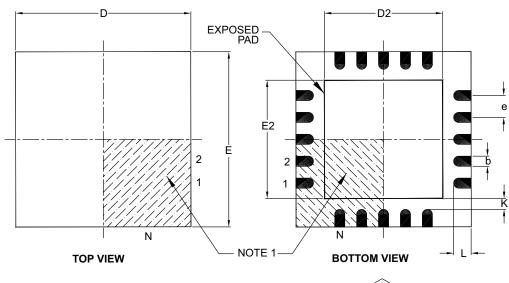
20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

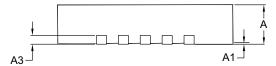
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

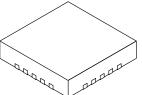
RECOMMENDED LAND PATTERN

	N	ILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)	Х			0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


Microchip Technology Drawing No. C04-2094A

20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

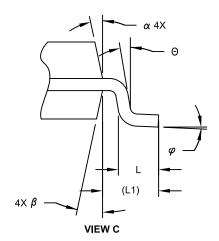
	Units	MILLIMETERS		
Dimensi	on Limits	MIN	NOM	MAX
Number of Pins	N		20	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E	4.00 BSC		
Exposed Pad Width	E2	2.60	2.70	2.80
Overall Length	D		4.00 BSC	
Exposed Pad Length	D2	2.60	2.70	2.80
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	_

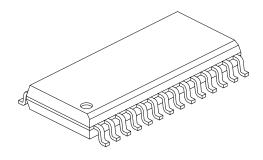
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

NOTES:

NOTES: