

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km102t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

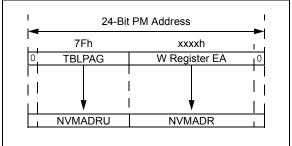
			F					FV					
		I	Pin Numb	ber			I	Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
SCL1	12	17	14	44	48	12	17	14	44	48	I/O	I2C	MSSP1 I ² C Clock
SDA1	13	18	15	1	1	13	18	15	1	1	I/O	I2C	MSSP1 I ² C Data
SCL2	_	7	4	24	26	_	7	4	24	26	I/O	I2C	MSSP2 I ² C Clock
SDA2	_	6	3	23	25	_	6	3	23	25	I/O	I2C	MSSP2 I ² C Data
SCLKI	10	12	9	34	37	10	12	9	34	37	Ι	ST	Secondary Clock Digital Input
SOSCI	9	11	8	33	36	9	11	8	33	36	Ι	ANA	Secondary Oscillator Input
SOSCO	10	12	9	34	37	10	12	9	34	37	Ι	ANA	Secondary Oscillator Output
T1CK	13	18	15	1	1	13	18	15	1	1	Ι	ST	Timer1 Digital Input Cock
TCKIA	18	26	23	15	16	18	26	23	15	16	Ι	ST	MCCP/SCCP Time Base Clock Input A
TCKIB	6	6	3	23	25	6	6	3	23	25	Ι	ST	MCCP/SCCP Time Base Clock Input B
U1CTS	12	17	14	44	48	12	17	14	44	48	Ι	ST	UART1 Clear-To-Send Input
U1RTS	13	18	15	1	1	13	18	15	1	1	0	_	UART1 Request-To-Send Output
U1BCLK	13	18	15	1	1	13	18	15	1	1	0	—	UART1 16x Baud Rate Clock Output
U1RX	6	6	3	2	2	6	6	3	2	2	Ι	ST	UART1 Receive
U1TX	11	16	13	3	3	11	16	13	3	3	0	_	UART1 Transmit
U2CTS	_	12	9	34	37	_	12	9	34	37	I	ST	UART2 Clear-To-Send Input
U2RTS	_	11	8	33	36	_	11	8	33	36	0	_	UART2 Request-To-Send Output
U2BCLK	13	18	15	1	1	13	18	15	1	1	0	_	UART2 16x Baud Rate Clock Output
U2RX	_	5	2	22	24	—	5	2	22	24	Ι	ST	UART2 Receive
U2TX	_	4	1	21	23	—	4	1	21	23	0	_	UART2 Transmit
ULPWU	4	4	1	21	23	4	4	1	21	23	Ι	ANA	Ultra Low-Power Wake-up Input
VCAP	_	_		—	_	14	20	17	7	7	Р	—	Regulator External Filter Capacitor Connection
Vdd	20	28	25	17,28,28	18,30,30	20	28	25	17,28,28	18,30,30	Р	—	Device Positive Supply Voltage
VDDCORE	_	_	_	—	_	14	20	17	7	7	Р	—	Microcontroller Core Supply Voltage
Vpp	1	1	26	18	19	1	1	26	18	19	Р	—	High-Voltage Programming Pin
VREF+	2	2	27	19	21	2	2	27	19	21	I	ANA	A/D Reference Voltage Positive Input
VREF-	3	3	28	20	22	3	3	28	20	22	Ι	ANA	A/D Reference Voltage Negative Input
Vss	19	27	24	16,29,29	17,31,31	19	27	24	16,29,29	17,31,31	Р	—	Device Ground Return Voltage

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, I²C[™] = I²C/SMBus input buffer

TABLE 4-3:CPU CORE REGISTERS MAP

TABLE	4-3.	UP		KE KEGI	STERS													
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0h	WREG0 0											0000					
WREG1	2h								W	/REG1								0000
WREG2	4h	WREG2										0000						
WREG3	6h	WREG3 0										0000						
WREG4	8h		WREG4 0										0000					
WREG5	Ah								W	/REG5								0000
WREG6	Ch								W	/REG6								0000
WREG7	Eh								W	/REG7								0000
WREG8	10h								W	/REG8								0000
WREG9	12h								W	/REG9								0000
WREG10	14h								W	REG10								0000
WREG11	16h								W	REG11								0000
WREG12	18h								W	REG12								0000
WREG13	1Ah								W	REG13								0000
WREG14	1Ch								W	REG14								0000
WREG15	1Eh								W	REG15								0800
SPLIM	20h								SPLI	V Register								xxxx
PCL	2Eh								PCL	Register								0000
PCH	30h	_				—	—		—	PCH7	PCH6	PCH5	PCH4	PCH3	PCH2	PCH1	PCH0	0000
TBLPAG	32h	_				—	—		—	TBLPAG7	TBLPAG6	TBLPAG5	TBLPAG4	TBLPAG3	TBLPAG2	TBLPAG1	TBLPAG0	0000
PSVPAG	34h	_				-	—	_	_	PSVPAG7	PSVPAG6	PSVPAG5	PSVPAG4	PSVPAG3	PSVPAG2	PSVPAG1	PSVPAG0	0000
RCOUNT	36h	RCOUNT Register x								xxxx								
SR	42h	DC IPL2 IPL1 IPL0 RA N OV Z C 00									0000							
CORCON	44h	_		_		-	—	_	—	—	—	_	_	IPL3	PSV	_	—	0000
DISICNT	52h	_	-	DISICNT13	DISICNT12	DISICNT11	DISICNT10	DISICNT9	DISICNT8	DISICNT7	DISICNT6	DISICNT5	DISICNT4	DISICNT3	DISICNT2	DISICNT1	DISICNT0	xxxx

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.


6.3 NVM Address Register

As with Flash program memory, the NVM Address registers, NVMADRU and NVMADR, form the 24-bit Effective Address (EA) of the selected row or word for data EEPROM operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. These registers are not mapped into the Special Function Register (SFR) space; instead, they directly capture the EA<23:0> of the last Table Write instruction that has been executed and select the data EEPROM row to erase. Figure 6-1 depicts the program memory EA that is formed for programming and erase operations.

Like program memory operations, the Least Significant bit (LSb) of NVMADR is restricted to even addresses. This is because any given address in the data EEPROM space consists of only the lower word of the program memory width; the upper word, including the uppermost "phantom byte", are unavailable. This means that the LSb of a data EEPROM address will always be '0'.

Similarly, the Most Significant bit (MSb) of NVMADRU is always '0', since all addresses lie in the user program space.

FIGURE 6-1: DATA EEPROM ADDRESSING WITH TBLPAG AND NVM ADDRESS REGISTERS

6.4 Data EEPROM Operations

The EEPROM block is accessed using Table Read and Write operations, similar to those used for program memory. The TBLWTH and TBLRDH instructions are not required for data EEPROM operations since the memory is only 16 bits wide (data on the lower address is valid only). The following programming operations can be performed on the data EEPROM:

- · Erase one, four or eight words
- Bulk erase the entire data EEPROM
- Write one word
- Read one word

Note 1: Unexpected results will be obtained if the user attempts to read the EEPROM while a programming or erase operation is underway.

2: The XC16 C compiler includes library procedures to automatically perform the Table Read and Table Write operations, manage the Table Pointer and write buffers, and unlock and initiate memory write sequences. This eliminates the need to create assembler macros or time critical routines in C for each application.

The library procedures are used in the code examples detailed in the following sections. General descriptions of each process are provided for users who are not using the XC16 compiler libraries.

7.0 RESETS

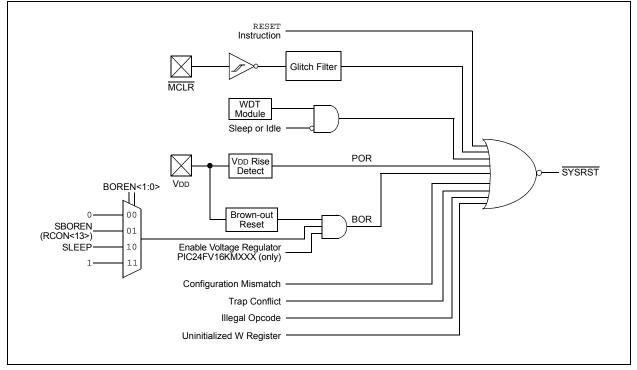
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Resets, refer to the "PIC24F Family Reference Manual", "Reset with Programmable Brown-out Reset" (DS39728).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- · POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- LPBOR: Low-Power BOR
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on Power-on Reset (POR) and unchanged by all other Resets.


Note: Refer to the specific peripheral or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A Power-on Reset will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer (WDT) and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM

REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	_	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS
—	—	—	_	—	_	—	ULPWUIF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIF: Ultra Low-Power Wake-up Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 8-11: IFS6: INTERRUPT FLAG STATUS REGISTER 6

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS
—	—	—	—	—	—	CLC2IF	CLC1IF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 CLC2IF: Configurable Logic Cell 2 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

bit 0 CLC1IF: Configurable Logic Cell 1 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 8-17: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	ULPWUIE
bit 7							bit 0
Legend:							

Logena.					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 8-18: IEC6: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	_	CLC2IE	CLC1IE
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-2 Unimplemented: Read as '0'

bit 1 CLC2IE: Configurable Logic Cell 2 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

bit 0 CLC1IE: Configurable Logic Cell 1 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources.

The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC Oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately $\pm 5.25\%$. Each bit increment or decrement changes the factory calibrated frequency of the FRC Oscillator by a fixed amount.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	R/W-0 ⁽³⁾	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	SOSCDRV	SOSCEN	OSWEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
HS = Hardware Settable bit	CO = Clearable Only bit	SO = Settable Only bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits
	 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV) 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL) 000 = 8 MHz FRC Oscillator (FRC)
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽¹⁾
	 111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV) 110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV) 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC) 011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL) 010 = Primary Oscillator (XT, HS, EC) 001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL) 000 = 8 MHz FRC Oscillator (FRC)
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.
2:	This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

3: When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ROEN	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0				
bit 15							bit				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
			_	_		_					
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown				
bit 15	1 = Reference	ence Oscillator e Oscillator is e e Oscillator is d	nabled on the								
bit 14	Unimplemented: Read as '0'										
bit 13	ROSSLP: Reference Oscillator Output Stop in Sleep bit										
	 1 = Reference Oscillator continues to run in Sleep 0 = Reference Oscillator is disabled in Sleep 										
bit 12	ROSEL: Reference Oscillator Source Select bit										
	1 = Primary (0 = System c	Oscillator is use clock is used as	d as the base the base cloc	clock ⁽¹⁾ k; base clock re	flects any cloc	k switching of t	he device				
bit 11-8	1111 = Base 1110 = Base 1101 = Base 1100 = Base	Reference Osi clock value divi clock value divi clock value divi clock value divi clock value divi clock value divi	ded by 32,768 ded by 16,384 ded by 8,192 ded by 4,096 ded by 2,048	3							
	1001 = Base 1000 = Base 0111 = Base 0110 = Base 0101 = Base 0100 = Base 0011 = Base 0010 = Base	clock value divi clock value divi	ded by 512 ded by 256 ded by 128 ded by 64 ded by 32 ded by 16 ded by 8 ded by 4								

REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Note 1: The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, "Power-Saving Features with VBAT" (DS30622).
 This FRM describes some features which

are not implemented in this device. Sections related to the VBAT pin and Deep Sleep do not apply to the PIC24FV16KM204 family.

The PIC24FV16KM204 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The 'C' syntax of the $\ensuremath{\mathtt{PWRSAV}}$ instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT or RTCC with LPRC as the clock source is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification on the I/O ports or peripherals that use an External Clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: 'C' POWER-SAVING ENTRY

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
OENSYNC		OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN				
bit 15							bit				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0				
bit 7						1	bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15	1 = Update b	Dutput Enable S by output enable by output enable	e bits occurs or	n the next Time	Base Reset or	rollover					
bit 14	Unimplemen	ted: Read as ')'								
bit 13-8	1 = OCx pin 0 = OCx pin		the CCPx moded by the CCP	dule and produc		compare or PWI e to the port log					
bit 7-6	ICGSM<1:0>: Input Capture Gating Source Mode Control bits										
	01 = One-Sh 00 = Level-Se	ot mode: Falling ot mode: Rising	edge from gat A high level fr	ting source ena om gating sour	bles future cap	pture events (IC oture events (IC future capture	DIS = 0)				
bit 5	Unimplemen	ted: Read as ')'								
bit 4-3	AUXOUT<1:0	0>: Auxiliary Oເ	tput Signal on	Event Selectio	n bits						
	10 = Signal c	pture or output output is defined ise rollover eve d	l by module op)					
bit 2-0	111 = Unuse 110 = CLC2 101 = CLC1 100 = Unuse 011 = Comp 010 = Comp 001 = Comp	output output		3							

REGISTER 13-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

Note 1: OCFEN through OCBEN (bits<13:9>) are implemented in MCCPx modules only.

15.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated 16-bit Baud Rate Generator (BRG). The UxBRG register controls the period of a free-running, 16-bit timer. Equation 15-1 provides the formula for computation of the baud rate with BRGH = 0.

EQUATION 15-1: UARTX BAUD RATE WITH BRGH = $0^{(1)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ $UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$ Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

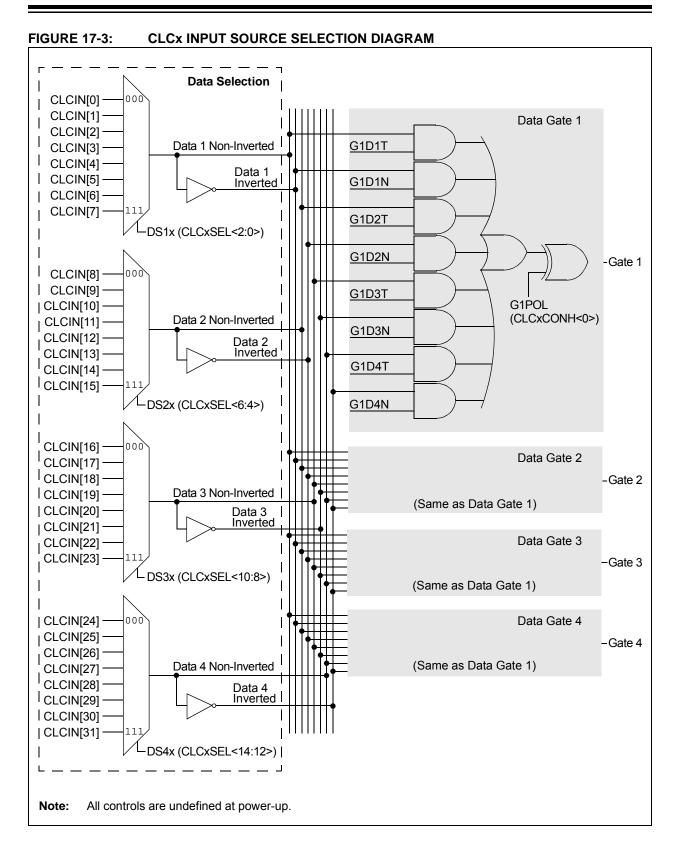
Example 15-1 provides the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 15-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 15-2: UARTx BAUD RATE WITH BRGH = $1^{(1)}$


	Ba	ud Rate =	$\frac{FCY}{4 \bullet (UxBRG + 1)}$	
	Ux	BRG =	FCY 4 • Baud Rate	- 1
Note	1:		n Fcy = Fosc/2; D are disabled.	oze mode

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 15-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate	=	FCY/(16 (UxBRG + 1))
Solving for UxBRG va	lue	:
UxBRG UxBRG	=	((FCY/Desired Baud Rate)/16) – 1 ((4000000/9600)/16) – 1
UxBRG		25
Calculated Baud Rate		4000000/(16 (25 + 1)) 9615
Error		(Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate (9615 – 9600)/9600
	=	0.16%
Note 1: Based on	Fc	Y = FOSC/2; Doze mode and PLL are disabled.

REGISTER 17-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N				
bit 7							bit 0				
Logondy											
Legend: R = Readable	, bit	W = Writable	oit	II – Unimplor	nented bit, read	d ac '0'					
-n = Value at		'1' = Bit is set	JIL	'0' = Bit is cle		x = Bit is unkr					
	FOR	i – Dit is set			areu		IOWIT				
bit 15	G4D4T: Gate	4 Data Source	4 True Enable	e bit							
	G4D4T: Gate 4 Data Source 4 True Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 4										
	 a The Data Source 4 inverted signal is disabled for Gate 4 a The Data Source 4 inverted signal is disabled for Gate 4 										
bit 14	G4D4N: Gate	e 4 Data Source	4 Negated Er	nable bit							
		Source 4 inver									
		Source 4 inver	•		e 4						
bit 13	G4D3T: Gate 4 Data Source 3 True Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 4										
		Source 3 inver Source 3 inver									
bit 12			•								
	G4D3N: Gate 4 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 4										
		Source 3 inver	•								
bit 11	G4D2T: Gate	4 Data Source	2 True Enable	e bit							
		Source 2 inver									
hit 10		Source 2 inver	-		94						
bit 10	G4D2N: Gate 4 Data Source 2 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 4										
		Source 2 inver									
bit 9		4 Data Source	•								
	1 = The Data	Source 1 inver	ted signal is ei	nabled for Gate	e 4						
	0 = The Data	Source 1 inver	ted signal is di	sabled for Gate	e 4						
bit 8	G4D1N: Gate	e 4 Data Source	1 Negated Er	nable bit							
		Source 1 inver									
hit 7		Source 1 inver	-		9 4						
bit 7		3 Data Source			. 2						
		Source 4 inver Source 4 inver									
bit 6		e 3 Data Source	-								
		Source 4 inver	-		93						
	0 = The Data	Source 4 inver	ted signal is di	sabled for Gate	e 3						
bit 5	G3D3T: Gate	3 Data Source	3 True Enable	e bit							
		Source 3 inver									
1.11.4		Source 3 inver	-		93						
bit 4	G3D3N: Gate	e 3 Data Source	3 Negated Er	hable bit							
		Source 3 inver									

REGISTER 19-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8 ^(2,3)	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CHH7 ^(2,3)	CHH6 ^(2,3)	CHH5 ⁽²⁾	CHH4	CHH3	CHH2	CHH1	CHH0	
bit 7					·		bit 0	
Legend:								
R = Readable	e bit	W = Writable b	pit	U = Unimpler	nented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
bit 15-0	CHH<15:0>:	A/D Compare H	lit bits ^(2,3)					
	<u>If CM<1:0> =</u>	<u>11:</u>						
	1 = A/D Res	ult Buffer x has	been written	with data or a m	atch has occur	red		

0 = A/D Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

1 = A match has occurred on A/D Result Channel x

0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

2: The CHH<8:5> bits are not implemented in 20-pin devices.

3: The CHH<8:6> bits are not implemented in 28-pin devices.

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS (CONTINUED)

- bit 2 Unimplemented: Read as '0'
- bit 1-0 **CCH<1:0>:** Comparator x Channel Select bits
 - 11 = Inverting input of the comparator connects to BGBUF1⁽¹⁾
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CxINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin
- **Note 1:** BGBUF1 voltage is configured by BUFREF1<1:0> (BUFCON0<1:0>).
 - 2: If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

REGISTER 22-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
CMIDL	—	—	—	—	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	C3OUT ⁽¹⁾	C2OUT ⁽¹⁾	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	CMIDL: Comparator x Stop in Idle Mode bit
	 1 = Comparator interrupts are disabled in Idle mode; enabled comparators remain operational 0 = Continues operation of all enabled comparators in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).
Note 1:	Comparator 2 and Comparator 3 are only available on PIC24F(V)16KM2XX devices.

NOTES:

AC CH	ARACTER	ISTICS	Standard Operating Cond Operating temperature		$\begin{array}{l} \mbox{holdstar} \mbox{holdstar} 1.8V \mbox{ to } 3.6V \mbox{ (PIC24F16KM204)} \\ \mbox{ 2.0V \mbox{ to } 5.5V \mbox{ (PIC24FV16KM204)} \\ \mbox{ -40^{\circ}C} \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ \mbox{ -40^{\circ}C} \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$			
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Device S	Supply				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 1.8	ĺ	Lesser of: VDD + 0.3 or 3.6	V	PIC24FXXKMXXX devices	
			Greater of: VDD – 0.3 or 2.0		Lesser of: VDD + 0.3 or 5.5	V	PIC24FVXXKMXXX devices	
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V		
			Reference	e Input	S			
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V		
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 1.7	V		
AD07	Vref	Absolute Reference Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD08	IVREF	Reference Voltage Input Current	—	1.25	—	mA		
AD09	Zvref	Reference Input Impedance	—	10k	—	Ω		
	•		Analog	Input				
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)	
AD11	VIN	Absolute Input Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD12	VINL	Absolute Vın∟ Input Voltage	AVss – 0.3	_	AVDD/2	V		
AD17	RIN	Recommended Impedance of Analog Voltage Source			1k	Ω	12-bit	
	-		A/D Acc	uracy				
AD20b	NR	Resolution	_	12	—	bits		
AD21b	INL	Integral Nonlinearity	—	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD22b	DNL	Differential Nonlinearity		±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD23b	Gerr	Gain Error	_	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD24b	EOFF	Offset Error	_	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD25b		Monotonicity ⁽¹⁾	—	_	_	_	Guaranteed	

TABLE 27-37: A/D MODULE SPECIFICATIONS

 $\label{eq:Note_1:} \textbf{Note_1:} \quad \text{The A/D conversion result never decreases with an increase in the input voltage.}$

2: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.

Comparator Voltage Reference	239
Configuring	239
Configurable Logic Cell (CLC)	195
Configuration Bits	
CPU	
ALU	39
Control Registers	38
Core Registers	36
Programmer's Model	35
CTMU	
Measuring Capacitance	241
Measuring Time	242
Pulse Generation and Delay	243
Customer Change Notification Service	332
Customer Notification Service	332
Customer Support	332
D	

Data EEPROM Memory73 Erasing76 Operations75 Programming Reading Data EEPROM78 Single-Word Write77 Programming Control Registers NVMADR(U)75 NVMKEY73 Data Memory SFR Space44 Data Space **DC** Characteristics I/O Pin Input Specifications274 Operating Current (IDD)270 Operational Amplifier278 Power-Down Current (IPD)272 Program Memory275 Demo/Development Boards, Evaluation and **Device Features** PIC24F16KM104 Family16 PIC24F16KM204 Family15 PIC24FV16KM104 Family18 PIC24FV16KM204 Family17

Device Overview	13
Core Features	13
Other Special Features	
Pinout Description	
Dual Operational Amplifier	233
E	
Electrical Characteristics	
Absolute Maximum Ratings	
Thermal Operating Conditions	
Thermal Packaging	
Equations	
A/D Conversion Clock Period	
UARTx Baud Rate with BRGH = 0	
UARTx Baud Rate with BRGH = 1	
Errata	
Examples	174
Baud Rate Error Calculation (BRGH = 0)	
F	
Flash Program Memory	
Control Registers	68
Enhanced ICSP Operation	68
Programming Algorithm	
Programming Operations	
RTSP Operation	
Table Instructions	67
G	
Getting Started Guidelines	
External Oscillator Pins	
ICSP Pins	
Master Clear (MCLR) Pin	30
Power Supply Pins	30
Unused I/Os	
Voltage Regulator Pin (VCAP)	
Н	
High/Low-Voltage Detect (HLVD)	207
•	
I/O Ports	100
Analog Port Pins Configuration Analog Selection Registers	
Input Change Notification	
Open-Drain Configuration	
Parallel (PIO)	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	
Inter-Integrated Circuit. See I ² C.	
Internet Address	332
Interrupts	
Alternate Interrupt Vector Table (AIVT)	
Control and Status Registers	
Implemented Vectors	
Interrupt Vector Table (IVT)	
Reset Sequence Setup Procedures	
Trap Vectors	
Vector Table	

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820