

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km202-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

20-Pin PDIP/SSOP/SOIC	RA5 1 20 VDD RA0 2 19 VSs RA1 3 18 RB15 RB0 4 17 RB14 RB1 5 RB12 RA2 6 9 16 RA3 8 00 VDC RA4 10 11 RB7
-----------------------	--

Dia		Pin Features										
Pin	PIC24F08KM101	PIC24FVKM08KM101										
1	MCLR/Vpp/RA5											
2	PGEC2/CVREF+/VREF+/AN0/CN2/RA0											
3	PGED2/CVREF-/VREF-/AN1/CN3/RA1											
4	PGED1/AN2/CTCMP/ULPWU/C1IND/OC2A/CN4/RB0											
5	PGEC1/AN3/C1INC/CTED12/CN5/RB1											
6	AN4/U1RX/TCKIB/CTED13/CN6/RB2											
7	OSCI/CLKI/AN13/C1INB/CN30/RA2											
8	OSCO/CLKO/AN14/C1INA/CN29/RA3											
9	PGED3/SOSCI/AN15/CLCINA/CN1/RB4											
10	PGEC3/SOSCO/SCLKI/AN16/PWRLCLK/CLCINB/CN0/	RA4										
11	AN19/U1TX/CTED1/INT0/CN23/RB7	AN19/U1TX/IC1/OC1A/CTED1/INT0/CN23/RB7										
12	AN20/SCL1/U1CTS/OC1B/CTED10/CN22/RB8											
13	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/CLC10/CTED4	/CN21/RB9										
14	IC1/OC1A/INT2/CN8/RA6	VCAP OR VDDCORE										
15	AN12/HLVDIN/SCK1/OC1C/CTED2/CN14/RB12	AN12/HLVDIN/SCK1/OC1C/CTED2/INT2/CN14/RB12										
16	AN11/SDO1/OCFB/OC1D/CTPLS/CN13/RB13											
17	CVREF/AN10/SDI1/C1OUT/OCFA/CTED5/INT1/CN12/RE	814										
18	AN9/REFO/SS1/TCKIA/CTED6/CN11/RB15											
19	Vss/AVss											
20	Vdd/AVdd											

TABLE 1-2: DEVICE FEATURES FOR THE PIC24F16KM104 FAMILY

				1
Features	PIC24F16KM104	PIC24F16KM102	PIC24F08KM102	PIC24F08KM101
Operating Frequency		DC-3	2 MHz	
Program Memory (bytes)	16K	16K	8K	8K
Program Memory (instructions)	5632	5632	2816	2816
Data Memory (bytes)		10	24	
Data EEPROM Memory (bytes)		5	12	
Interrupt Sources (soft vectors/NMI traps)		25 (2	21/4)	
Voltage Range		1.8-	3.6V	
I/O Ports	PORTA<11:0> PORTB<15:0> PORTC<9:0>	PORTA PORTB		PORTA<6:0> PORTB<15:12,9:7, 4,2:0>
Total I/O Pins	38	24	ŀ	18
Timers	(One 16-bit timer, t		5 Ps with up to tv	vo 16/32 timers each)
Capture/Compare/PWM modules MCCP SCCP			1	
Serial Communications MSSP UART			1	
Input Change Notification Interrupt	37	23	}	17
12-Bit Analog-to-Digital Module (input channels)	22	19)	16
Analog Comparators			1	
8-Bit Digital-to-Analog Converters		_	_	
Operational Amplifiers		-	_	
Charge Time Measurement Unit (CTMU)		Y	es	
Real-Time Clock and Calendar (RTCC)		-	_	
Configurable Logic Cell (CLC)			1	
Resets (and delays)				, Illegal Opcode, tion Word Mismatch
Instruction Set	76 Base Inst	ructions, Multiple	e Addressing N	Iode Variations
Packages	44-Pin QFN/TQFP, 48-Pin UQFN	28-F SPDIP/SSOP		20-Pin SOIC/SSOP/PDIP

TABLE 4-6: TIMER1 REGISTER MAP

			-	-														
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	100h								Time	er1 Register								xxxx
PR1	102h								Timer1	Period Regis	ster							FFFF
T1CON	104h	TON	—	TSIDL	_	_	_	TECS1	TECS0	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
Lanandi			le ave a a d					and the second										

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-7: CLC1-2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CLC1CONL	122h	LCEN	—	_	—	INTP	INTN	—	—	LCOE	LCOUT	LCPOL	—	_	MODE2	MODE1	MODE0	0000
CLC1CONH	124h	_	_		_	_	_	_	_	_	_	_	_	G4POL	G3POL	G2POL	G1POL	0000
CLC1SEL	126h	_	DS42	DS41	DS40		DS32	DS31	DS30	—	DS22	DS21	DS20	_	DS12	DS11	DS10	0000
CLC1GLSL	12Ah	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	0000
CLC1GLSH	12Ch	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	0000
CLC2CONL ⁽¹⁾	12Eh	LCEN	_	-	_	INTP	INTN	_	_	LCOE	LCOUT	LCPOL	_	_	MODE2	MODE1	MODE0	0000
CLC2CONH ⁽¹⁾	130h	—	—	_	—	_	_	—	_	_	_	_	—	G4POL	G3POL	G2POL	G1POL	0000
CLC2SEL ⁽¹⁾	132h	—	DS42	DS41	DS40	_	DS32	DS31	DS30	_	DS22	DS21	DS20	—	DS12	DS11	DS10	0000
CLC2GLSL ⁽¹⁾	136h	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	0000
CLC2GLSH ⁽¹⁾	138h	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	0000

Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-21: PORTA REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ^(4,5)	Bit 10 ^(4,5)	Bit 9 ^(4,5)	Bit 8 ^(4,5)	Bit 7 ⁽⁴⁾	Bit 6 ⁽³⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	2C0h		_	_	_	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	0FDF ⁽¹⁾
PORTA	2C2h	_	—	—		RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	2C4h	_	—	—		LATA11	LATA10	LATA9	LATA8	LATA7	LATA6	_	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	2C6h	_	_	_	_	ODA11	ODA10	ODA9	ODA8	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are only available when MCLRE (FPOR<7>) = 0.

3: These bits are not implemented in FV devices.

4: These bits are not implemented in 20-pin devices.

5: These bits are not implemented in 28-pin devices.

TABLE 4-22: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2	Bit 1	Bit 0	All Resets
TRISB	2C8h	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	_{FFFF} (1)
PORTB	2CAh	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	2CCh	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	2CEh	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

TABLE 4-23: PORTC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ^(2,3)	Bit 8 ^(2,3)	Bit 7 ^(2,3)	Bit 6 ^(2,3)	Bit 5 ^(2,3)	Bit 4 ^(2,3)	Bit 3 ^(2,3)	Bit 2 ^(2,3)	Bit 1 ^(2,3)	Bit 0 ^(2,3)	All Resets
TRISC	2D0h	_	_		_	—	_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF ⁽¹⁾
PORTC	2D2h	—	_	_	-	—	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATTC	2D4h	—	_	_	-	—	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	2D6h	_	_	—	-	—	_	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

6.4.1 ERASE DATA EEPROM

The data EEPROM can be fully erased, or can be partially erased, at three different sizes: one word, four words or eight words. The bits, NVMOP<1:0> (NVMCON<1:0>), decide the number of words to be erased. To erase partially from the data EEPROM, the following sequence must be followed:

- 1. Configure NVMCON to erase the required number of words: one, four or eight.
- 2. Load TBLPAG and WREG with the EEPROM address to be erased.
- 3. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 4. Write the key sequence to NVMKEY.
- 5. Set the WR bit to begin the erase cycle.
- 6. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical erase sequence is provided in Example 6-2. This example shows how to do a one-word erase. Similarly, a four-word erase and an eight-word erase can be done. This example uses C library procedures to manage the Table Pointer (builtin_tblpage and builtin_tbloffset) and the Erase Page Pointer (builtin_tblwt1). The memory unlock sequence (builtin_write_NVM) also sets the WR bit to initiate the operation and returns control when complete.

EXAMPLE 6-2: SINGLE-WORD ERASE

```
int __attribute__ ((space(eedata))) eeData = 0x1234;
/*_____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the erase
_____
*/
   unsigned int offset;
   // Set up NVMCON to erase one word of data EEPROM
   NVMCON = 0 \times 4058;
   // Set up a pointer to the EEPROM location to be erased
   TBLPAG = __builtin_tblpage(&eeData); // Initialize EE Data page pointer
   offset = __builtin_tbloffset(&eeData);
                                           // Initizlize lower word of address
   __builtin_tblwtl(offset, 0);
                                           // Write EEPROM data to write latch
   asm volatile ("disi #5");
                                            // Disable Interrupts For 5 Instructions
   __builtin_write_NVM();
                                            // Issue Unlock Sequence & Start Write Cycle
   while(NVMCONbits.WR=1);
                                            // Optional: Poll WR bit to wait for
                                            // write sequence to complete
```

8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Interrupt Controller, refer to the *"PIC24F Family Reference Manual"*, **"Interrupts"** (DS39707).

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU. It has the following features:

- Up to Eight Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with up to 118 Vectors
- Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Alternate Interrupt Vector Table (AIVT) for Debug Support
- Fixed Interrupt Entry and Return Latencies

8.1 Interrupt Vector Table (IVT)

The IVT is shown in Figure 8-1. The IVT resides in the program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of eight non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FV16KM204 family devices implement non-maskable traps and unique interrupts; these are summarized in Table 8-1.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE (AIVT)

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception, because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the Program Counter (PC) to zero. The microcontroller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects the program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	U-0
—	—	—	—	—	—	CCT5IF	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	_		_		_
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	Unimplemented: Read as '0'
bit 9	CCT5IF: Capture/Compare 5 Timer Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

bit 8-0 Unimplemented: Read as '0'

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIF	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	—	—	—	—	BCL2IF	SSP2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-3	Unimplemented: Read as '0'
bit 2	BCL2IF: MSSP2 I ² C [™] Bus Collision Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SSP2IF: MSSP2 SPI/I ² C Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

10.2.2 IDLE MODE

Idle mode includes these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.3.1 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. When a true POR occurs, the entire device is reset.

10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

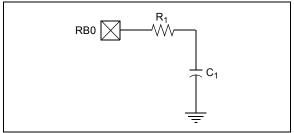
- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RB0.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source.


See Example 10-2 for initializing the ULPWU module.

EXAMPLE 10-2: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//********
// 1. Charge the capacitor on RBO
TRISBbits.TRISB0 = 0;
  LATBbits.LATB0 = 1;
  for(i = 0; i < 10000; i++) Nop();</pre>
//2. Stop Charging the capacitor
   on RBO
11
//*******************************
  TRISBbits.TRISB0 = 1;
//3. Enable ULPWU Interrupt
IFS5bits.ULPWUIF = 0;
IEC5bits.ULPWUIE = 1;
IPC21bits.ULPWUIP = 0x7;
//*********************************
//4. Enable the Ultra Low Power
11
   Wakeup module and allow
11
  capacitor discharge
ULPWCONbits.ULPEN = 1;
  ULPWCONbit.ULPSINK = 1;
//5. Enter Sleep Mode
 11
  Sleep();
//for sleep, execution will
//resume here
```

A series resistor, between RB0 and the external capacitor provides overcurrent protection for the AN2/ULPWU/RB0 pin and enables software calibration of the time-out (see Figure 10-1).

FIGURE 10-1: SERIES RESISTOR

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

REGISTER 10-1: ULPWCON: ULPWU CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
ULPEN		ULPSIDL	_	—	_	_	ULPSINK			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_	—		—	_	_	—			
bit 7	·	· · ·					bit 0			
Legend:										
R = Readable bit W = Writable bit U =					U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	ULPEN: ULF	PWU Module En	able bit							
	1 = Module i									
	0 = Module i	s disabled								
bit 14	Unimpleme	nted: Read as '0	,							
bit 13	ULPSIDL: U	LPWU Stop in Ic	lle Select bit							
		nues module ope			Idle mode					
	0 = Continue	es module operat	tion in Idle mod	e						
bit 12-9	Unimpleme	nted: Read as '0	,							
bit 8	ULPSINK: U	ILPWU Current S	Sink Enable bit							
	1 = Current	sink is enabled								
	0 = Current s	sink is disabled								
bit 7-0	Unimpleme	nted: Read as '0	3							

11.2.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation, and a read operation of the same port. Typically, this instruction would be a NOP.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC24FXXXXX family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 37 external signals (CN0 through CN36) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the CN module. The CNEN1 and CNEN3 registers contain the interrupt enable control bits for each of the CNx input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CNx pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately using the CNPU1 and CNPU3 registers, which contain the control bits for each of the CNx pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately using the CNPD1 and CNPD3 registers, which contain the control bits for each of the CNx pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to Vss by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on Change Notification (CN) pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0; MOV W0, TRISB;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP ;	//Delay 1 cycle
BTSS PORTB, #13;	//Next Instruction
<pre>Equivalent `C' Code TRISB = 0xFF00; NOP(); if(PORTBbits.RB13 == 1) { }</pre>	<pre>//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs //Delay 1 cycle // execute following code if PORTB pin 13 is set.</pre>

REGISTER 14-3: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—		—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit 0

Legend:				
R = Read	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimple	mented: Read as '0'		
bit 7	WCOL: \	Vrite Collision Detect bit		
		•	while it is still transmitting the	previous word (must be cleared in
	softw 0 = No c	,		
bit 6			Port Receive Overflow Indicate	or bit(1)
bit 0	SPI Slav			
			SPxBUF register is still holding	g the previous data. In case of over-
				ave mode. The user must read the
	0 = No c		g data, to avoid setting overflo	w (must be cleared in software).
bit 5		Master Synchronous Serial F	Port Enable bit(2)	
DIL 5		•	ures SCKx, SDOx, SDIx and	SSx as serial nort nins
			jures these pins as I/O port pi	· ·
bit 4	CKP: Clo	ock Polarity Select bit		
	1 = Idle s	state for clock is a high level		
		state for clock is a low level		
bit 3-0	SSPM<3	:0>: Master Synchronous Se	rial Port Mode Select bits ⁽³⁾	
		SPI Master mode, Clock = Fo		
			x pin; <u>SSx</u> pin control is disabl (x pin; <u>SSx</u> pin control is enab	ed, \overline{SSx} can be used as an I/O pin
		SPI Master mode, Clock = TM		
		SPI Master mode, Clock = Fo	•	
		PI Master mode, Clock = Fo		
	0000 = 5	SPI Master mode, Clock = Fo	SC/2	
Note 1:	In Master mo	de, the overflow bit is not set	t since each new reception (a	nd transmission) is initiated by
	writing to the	SSPxBUF register.		

- 2: When enabled, these pins must be properly configured as inputs or outputs.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I^2C^{TM} mode only.

REGISTER 14-7: SSPxCON3: MSSPx CONTROL REGISTER 3 (I²C[™] MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_	—		—	—		—		
bit 15							bit		
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ACKTIM ⁽¹⁾	PCIE	SCIE	BOEN	SDAHT	SBCDE	E AHEN D			
bit 7							bit (
1									
Legend: R = Readable	, hit	M = Mritable k			opted bit read				
R = Readable -n = Value at		W = Writable t '1' = Bit is set	אנ	0 = Unimpien		read as '0' x = Bit is unknown			
	FUR	I – DILIS SEL			areu	X - DILISUIK	nown		
bit 15-8	Unimplemen	ted: Read as '0	3						
bit 7	-	knowledge Time							
	1 = Indicates	the I ² C bus is ir	an Acknowlee				the SCLx cloc		
		knowledge seq		d on the 9 th risii	ng edge of the	SCLx clock			
bit 6		ondition Interrup							
		nterrupt on dete ction interrupts							
bit 5	•	ondition Interru							
		nterrupt on dete		t or Restart cor	dition				
		ction interrupts							
bit 4	BOEN: Buffer	r Overwrite Ena	ble bit						
	I ² C Master m								
	This bit is igno I ² C Slave mo								
		F is updated and	d an ACK is ge	enerated for a re	eceived addres	s/data byte, igr	noring the stat		
	of the SS	SPOV bit only if	the BF bit = 0				•		
L:1 0		F is only update		IV is clear					
bit 3		x Hold Time Se of 300 ns hold t		ofter the folling					
		of 100 ns hold t							
bit 2		ve Mode Bus Co		-	-				
	1 = Enables s	ave bus collision	on interrupts						
		s collision interru	•						
bit 1		ess Hold Enable	-	• •					
		g the 8th falling N1 register will				ddress byte;	CKP bit of the		
		holding is disab							
bit 0	DHEN: Data	Hold Enable bit	(Slave mode of	only)					
		g the 8th falling	-		lata byte; slave	hardware clea	ars the CKP bi		
		SPxCON1 regist ding is disabled	er and SCLx is	s held low					
Note 1: Th		fect in Slave mo							

2: The ACKTIM status bit is active only when the AHEN bit or DHEN bit is set.

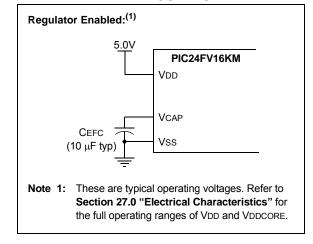
NOTES:

25.2 On-Chip Voltage Regulator

All of the PIC24FXXXXX family devices power their core digital logic at a nominal 3.0V. This may create an issue for designs that are required to operate at a higher typical voltage, as high as 5.0V. To simplify system design, all devices in the "FV" family incorporate an on-chip regulator that allows the device core to run at 3.0V, while the I/O is powered by VDD at a higher voltage.

The regulator is always enabled and provides power to the core from the other VDD pins. A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 25-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Section 27.1 "DC Characteristics" and discussed in detail in Section 2.0 "Guidelines for Getting Started with 16-Bit Microcontrollers".

In all of the "F" family of devices, the regulator is disabled. Instead, the core logic is directly powered from VDD. "F" devices operate at a lower range of VDD voltage, from 1.8V-3.6V.


25.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION

For all PIC24FXXXXX devices, the on-chip regulator provides a constant voltage of 3.0V nominal to the digital core logic. The regulator can provide this level from a VDD of about 3.2V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 3.2V. In order to prevent "brown out" conditions when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD with a typical voltage drop of 150 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip High/Low-Voltage Detect (HLVD) module can be used. The HLVD trip point should be configured so that if VDD drops close to the minimum voltage for the operating frequency of the device, the HLVD Interrupt Flag, HLVDIF (IFS4<8>), will occur. This can be used to generate an interrupt and put the application into a low-power operational mode or trigger an orderly shutdown. Refer to **Section 27.1 "DC Characteristics"** for the specifications detailing the maximum operating speed based on the applied VDD voltage.

FIGURE 25-1:

CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR

25.2.2 VOLTAGE REGULATOR START-UP TIME

For PIC24FXXXX family devices, it takes a short time, designated as TPM, for the regulator to generate a stable output. During this time, code execution is disabled. TPM is applied every time the device resumes operation after any power-down, including Sleep mode. TPM is specified in Section 27.2 "AC Characteristics and Timing Parameters".

25.3 Watchdog Timer (WDT)

For the PIC24FXXXXX family of devices, the WDT is driven by the LPRC Oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT Time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the Configuration bits, WDTPS<3:0> (FWDT<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranges from 1 ms to 131 seconds can be achieved.

26.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

26.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

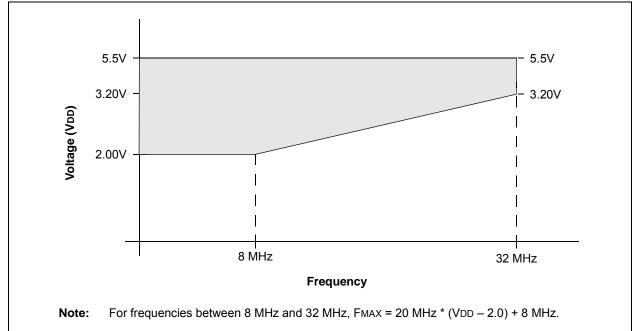
The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

26.8 MPLAB ICD 3 In-Circuit Debugger System

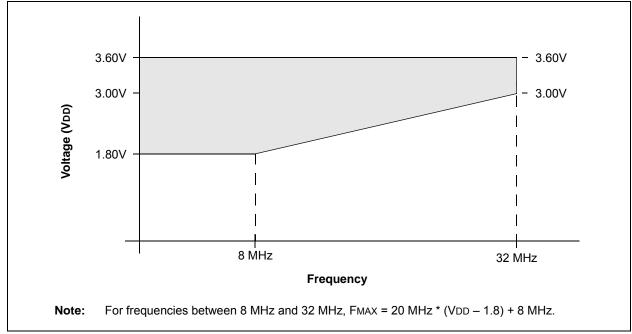
The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.


26.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

26.10 MPLAB PM3 Device Programmer


The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

27.1 DC Characteristics

FIGURE 27-2: PIC24F16KM204 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

TABLE 27-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
$\begin{array}{l} \mbox{Power Dissipation} \\ \mbox{Internal Chip Power Dissipation:} \\ \mbox{PINT} = \mbox{VDD } x \ (\mbox{IDD} - \Sigma \ \mbox{IOH}) \\ \mbox{I/O Pin Power Dissipation:} \\ \mbox{PI/O} = \Sigma \ (\{\mbox{VDD} - \mbox{VOH} \} \ x \ \mbox{IOH}) + \Sigma \ (\mbox{VOL } x \ \mbox{IOL}) \end{array}$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJA			W

TABLE 27-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 20-Pin PDIP	θJA	62.4	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60		°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θJA	108	-	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71	_	°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	75	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	80.2	_	°C/W	1
Package Thermal Resistance, 20-Pin QFN	θJA	43	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN	θJA	32	_	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29	_	°C/W	1
Package Thermal Resistance, 44-Pin TQFP	θJA	40	_	°C/W	1
Package Thermal Resistance, 48-Pin UQFN	θJA	41	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

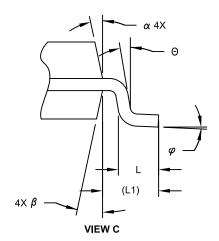
TABLE 27-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

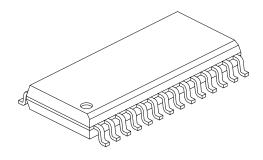
DC CHARACTERISTICS		Standard Operating Conditions				s: 1.8V to 3.6V (PIC24F16KMXXX) 2.0V to 5.5V (PIC24FV16KMXXX) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DC10	Vdd	Supply Voltage	1.8	—	3.6	V	For PIC24F devices	
			2.0	_	5.5	V	For PIC24FV devices	
DC12 VDR	RAM Data Retention Voltage ⁽²⁾	1.6	_	—	V	For PIC24F devices		
		1.8	—	—	V	For PIC24FV devices		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	0.7	V		
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

Param. No. Symbol		Characteristic		Min	Max	Units	Conditions	
100	Тнідн	Clock High Time	100 kHz mode	4.0	-	μS	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	-	μS	Must operate at a minimum of 10 MHz	
			MSSPx module	1.5 TCY		_		
101 Tı	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	Must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Must operate at a minimum of 10 MHz	
			MSSPx module	1.5 TCY	—	_		
102	TR	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns		
			400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF	
103 TF SDAx and SCLx Fall T	TF	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns		
		400 kHz mode	20 + 0.1 CB	300	ns	CB is specified to be from 10 to 400 pF		
90 Tsu:sta	TSU:STA	A Start Condition Setup Time	100 kHz mode	4.7		μS	Only relevant for Repeated	
			400 kHz mode	0.6	_	μS	Start condition	
91 T⊦	THD:STA	D:STA Start Condition Hold Time	100 kHz mode	4.0	—	μS	After this period, the first clock	
			400 kHz mode	0.6	—	μS	pulse is generated	
106	06 THD:DAT Data Input Hold Time 100 kHz mo	100 kHz mode	0	—	ns			
			400 kHz mode	0	0.9	μS		
107 Tsu:r	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)	
			400 kHz mode	100	—	ns		
92 Ts	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS		
			400 kHz mode	0.6	—	μS		
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)	
			400 kHz mode	—	—	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free before	
			400 kHz mode	1.3	—	μS	a new transmission can start	
D102	Св	Bus Capacitive Loading		—	400	pF		


TABLE 27-34: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)


Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension Lim		MIN	NOM	MAX			
Number of Pins			28				
Pitch	е		1.27 BSC				
Overall Height	A	-	-	2.65			
Molded Package Thickness	A2	2.05	-	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E		10.30 BSC				
Molded Package Width	E1	7.50 BSC					
Overall Length	D		17.90 BSC				
Chamfer (Optional)	h	0.25	-	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1		1.40 REF				
Lead Angle	Θ	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.18	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

INDEX

1	•
r	١

A/D	
Buffer Data Formats	. 225
Control Registers	. 212
AD1CHITH/L	. 212
AD1CHS	. 212
AD1CON1	. 212
AD1CON2	. 212
AD1CON3	. 212
AD1CON5	. 212
AD1CSSH/L	. 212
AD1CTMENH/L	. 212
Sampling Requirements	. 223
Transfer Function	. 224
AC Characteristics	
8-Bit DAC Specifications	. 296
A/D Conversion Requirements	. 295
A/D Module Specifications	. 294
Capacitive Loading Requirements on	
Output Pins	. 279
CLKO and I/O Requirements	. 282
External Clock Requirements	. 280
Internal RC Accuracy	. 281
Internal RC Oscillator Specifications	. 281
Load Conditions and Requirements	. 279
PLL Clock Specification	. 281
Reset, Watchdog Timer. Oscillator Start-up Timer,	
Power-up Timer, Brown-out Reset	
Requirements	. 284
Temperature and Voltage Specifications	. 279
Assembler	
MPASM Assembler	. 262

В

Block Diagrams	
12-Bit A/D Converter	210
12-Bit A/D Converter Analog Input Model	223
16-Bit Timer1	
32-Bit Timer Mode	146
Accessing Program Memory with	
Table Instructions	65
CALL Stack Frame	63
CLCx Input Source Selection	
CLCx Logic Function Combinatorial Options	196
CLCx Module	195
Comparator Voltage Reference	239
Comparator x Module	
Conceptual MCCPx/SCCPx Modules	143
CPU Programmer's Model	37
CTMU Connections, Internal Configuration for	
Capacitance Measurement	242
CTMU Connections, Internal Configuration for	
Pulse Delay Generation	243
CTMU Connections, Internal Configuration for	
Time Measurement	
Data Access from Program Space Address Gen 64	eration
Data EEPROM Addressing with TBLPAG and	
NVM Registers	75
Dual 16-Bit Timer Mode	145
High/Low-Voltage Detect (HLVD)	207
Individual Comparator Configurations	236
Input Capture x Module	148

MCLR Pin Connections Example	30
MSSPx (I ² C Master Mode)	161
MSSPx (I ² C Mode)	161
MSSPx (SPI Mode)	160
On-Chip Voltage Regulator Connections	257
Output Compare x Module	147
PIC24F CPU Core	36
PIC24FXXXXX Family (General)	19
PSV Operation	
Recommended Minimum Connections	29
Reset System	79
RTCC Module	
Series Resistor	132
Shared I/O Port Structure	137
Simplified Single DACx Module	229
Simplified UARTx	173
Single Operational Amplifier	233
SPI Master/Slave Connection	160
Suggested Oscillator Circuit Placement	33
System Clock	
Table Register Addressing	67
Timer Clock Generator	144
Watchdog Timer (WDT)	258
Brown-out Reset	
Trip Points	

С

C Compilers	
MPLAB XC Compilers 2	262
Capture/Compare/PWM/Timer	
Auxiliary Output 1	
General Purpose Timer 1	45
Input Capture Mode 1	
Output Compare Mode 1	47
Synchronization Sources 1	53
Time Base Generator 1	
Capture/Compare/PWM/Timer (MCCP, SCCP) 1	43
Charge Time Measurement Unit. See CTMU.	
CLC	
Control Registers 1	98
Code Examples	
Assembly Code Sequence for Clock Switching 1	
C Code Power-Saving Entry 1	
C Code Sequence for Clock Switching 1	28
Data EEPROM Bulk Erase	77
Data EEPROM Unlock Sequence	73
Erasing a Program Memory Row,	
Assembly Language	
Erasing a Program Memory Row, C Language	
I/O Port Write/Read 1	40
Initiating a Programming Sequence,	
Assembly Language	72
Initiating a Programming Sequence, C Language	72
Loading the Write Buffers, Assembly Language	71
Loading the Write Buffers, C Language	71
Reading Data EEPROM Using	
TBLRD Command	
Setting the RTCWREN Bit in 'C' 1	82
Setting the RTCWREN Bit in Assembly 1	82
Single-Word Erase	76
Single-Word Write to Data EEPROM	77
Ultra Low-Power Wake-up Initialization 1	32
Code Protection	259
Comparator 2	235