

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km202-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral Features

- High-Current Sink/Source, 18 mA/18 mA All Ports
- Independent Ultra Low-Power, 32 kHz Timer Oscillator
- Up to Two Master Synchronous Serial Ports (MSSPs) with SPI and I²C™ modes:

In SPI mode:

- User-configurable SCKx and SDOx pin outputs
- Daisy-chaining of SPI slave devices

In I²C mode:

- Serial clock synchronization (clock stretching)
- Bus collision detection and will arbitrate accordingly
- Support for 16-bit read/write interface
- Up to Two Enhanced Addressable UARTs:
 - LIN/J2602 bus support (auto-wake-up, Auto-Baud Detect, Break character support)
 - High and low speed (SCI)
 - IrDA[®] mode (hardware encoder/decoder function)
- Two External Interrupt Pins
- Hardware Real-Time Clock and Calendar (RTCC)
- Configurable Reference Clock Output (REFO)
- Two Configurable Logic Cells (CLC)
- Up to Two Single Output Capture/Compare/PWM (SCCP) modules and up to Three Multiple Output Capture/Compare/PWM (MCCP) modules

Special Microcontroller Features

- Wide Operating Voltage Range Options:
 - 1.8V to 3.6V (PIC24F devices)
 - 2.0V to 5.0V (PIC24FV devices)
- Selectable Power Management modes:
 - Idle: CPU shuts down, allowing for significant power reduction
 - Sleep: CPU and peripherals shut down for substantial power reduction and fast wake-up
 - Retention Sleep mode: PIC24FV devices can enter Sleep mode, employing the Retention Regulator, further reducing power consumption
 - Doze: CPU can run at a lower frequency than peripherals, a user-programmable feature
 - Alternate Clock modes allow on-the-fly switching to a lower clock speed for selective power reduction
- · Fail-Safe Clock Monitor:
 - Detects clock failure and switches to on-chip, low-power RC Oscillator
- Ultra Low-Power Wake-up Pin Provides an External Trigger for Wake from Sleep
- 10,000 Erase/Write Cycle Endurance Flash Program Memory, Typical
- 100,000 Erase/Write Cycle Endurance Data EEPROM, Typical
- Flash and Data EEPROM Data Retention: 20 Years Minimum
- Self-Programmable under Software Control
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its Own On-Chip RC Oscillator for Reliable Operation
- On-Chip Regulator for 5V Operation
- Selectable Windowed WDT Feature
- Selectable Oscillator Options including:
 4x Phase Locked Loop (PLL)
- 8 MHz (FRC) Internal RC Oscillator:
 - HS/EC, High-Speed Crystal/Resonator Oscillator or External Clock
- In-Circuit Serial Programming™ (ICSP™) and In-Circuit Emulation (ICE) via Two Pins
- In-Circuit Debugging
- Programmable High/Low-Voltage Detect (HLVD) module
- Programmable Brown-out Reset (BOR):
 - Software enable feature
 - Configurable shutdown in Sleep
 - Auto-configures power mode and sensitivity based on device operating speed
 - LPBOR available for re-arming of the POR

DETIGETERTOREOTO										
Features	PIC24FV16KM204	PIC24FV08KM204	PIC24FV16KM202	PIC24FV08KM202						
Operating Frequency		DC-3	2 MHz							
Program Memory (bytes)	16K	8K	16K	8K						
Program Memory (instructions)	5632	2816	5632	2816						
Data Memory (bytes)		20)48							
Data EEPROM Memory (bytes)		5	12							
Interrupt Sources (soft vectors/NMI traps)		40 (36/4)							
Voltage Range		2.0-	-5.5V							
I/O Ports	PORTA<1 PORTB< PORTC	1:7,5:0> <15:0> <9:0>	POF POF	RTA<7,5:0> RTB<15:0>						
Total I/O Pins	37			23						
Timers	(One 16-bit timer, f	, ive MCCPs/SCC	11 Ps with up to tv	vo 16/32 timers each)						
Capture/Compare/PWM modules MCCP SCCP	3 2									
Serial Communications MSSP UART			2 2							
Input Change Notification Interrupt	36			22						
12-Bit Analog-to-Digital Module (input channels)	22			19						
Analog Comparators			3							
8-Bit Digital-to-Analog Converters			2							
Operational Amplifiers			2							
Charge Time Measurement Unit (CTMU)		Y	<i>ï</i> es							
Real-Time Clock and Calendar (RTCC)		Y	es							
Configurable Logic Cell (CLC)			2							
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)									
Instruction Set	76 Base Inst	ructions, Multiple	e Addressing N	lode Variations						
Packages	44-Pin QFI 48-Pin U	N/TQFP, JQFN	SPDIP/S	28-Pin SOP/SOIC/QFN						

TABLE 1-3: DEVICE FEATURES FOR THE PIC24FV16KM204 FAMILY

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator (refer to for **Section 9.0 "Oscillator Configuration**" details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals, in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 2-5: SU

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

TABLE 4-6: TIMER1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	100h	00h Timer1 Register															xxxx	
PR1	102h	Timer1 Period Register														FFFF		
T1CON	104h	TON	TON – TSIDL – – – TECS1 TECS0 – TGATE TCKPS1 TCKPS0 – TSYNC TCS – 0000													0000		

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-7: CLC1-2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CLC1CONL	122h	LCEN	—	—	—	INTP	INTN	—	—	LCOE	LCOUT	LCPOL	—	—	MODE2	MODE1	MODE0	0000
CLC1CONH	124h	—	_	—	_		_	—	—		—		—	G4POL	G3POL	G2POL	G1POL	0000
CLC1SEL	126h	—	DS42	DS41	DS40		DS32	DS31	DS30		DS22	DS21	DS20	—	DS12	DS11	DS10	0000
CLC1GLSL	12Ah	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	0000
CLC1GLSH	12Ch	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	0000
CLC2CONL ⁽¹⁾	12Eh	LCEN	—	—	—	INTP	INTN	—	_	LCOE	LCOUT	LCPOL	_	—	MODE2	MODE1	MODE0	0000
CLC2CONH ⁽¹⁾	130h	—	_	—	_		_	—	—		—		—	G4POL	G3POL	G2POL	G1POL	0000
CLC2SEL ⁽¹⁾	132h	—	DS42	DS41	DS40		DS32	DS31	DS30		DS22	DS21	DS20	—	DS12	DS11	DS10	0000
CLC2GLSL ⁽¹⁾	136h	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	0000
CLC2GLSH(1)	138h	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	0000

Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-11: SCCP4 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP4CON1L ⁽¹⁾	1ACh	CCPON	—	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP4CON1H ⁽¹⁾	1AEh	OPSSRC	RTRGEN	—	—	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP4CON2L ⁽¹⁾	1B0h	PWMRSEN	ASDGM	—	SSDG			—	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP4CON2H ⁽¹⁾	1B2h	OENSYNC	_	—	—			—	OCAEN	ICGSM1	ICGSM0	—	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP4CON3H ⁽¹⁾	1B6h	OETRIG	OSCNT2	OSCNT1	OSCNT0	_	_	_	_	_	_	POLACE	_	PSSACE1	PSSACE0	_	-	0000
CCP4STATL ⁽¹⁾	1B8h	—	_	_	_	_	_	_	_	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP4TMRL ⁽¹⁾	1BCh		SCCP4 Time Base Register Low Word															0000
CCP4TMRH ⁽¹⁾	1BEh		SCCP4 Time Base Register High Word 0															0000
CCP4PRL ⁽¹⁾	1C0h							SCCP4 Ti	me Base Pe	eriod Registe	er Low Word							FFFF
CCP4PRH ⁽¹⁾	1C2h							SCCP4 Tir	ne Base Pe	riod Registe	r High Word							FFFF
CCP4RAL ⁽¹⁾	1C4h							Ou	tput Compa	re 4 Data Wo	ord A							0000
CCP4RBL ⁽¹⁾	1C8h							Ou	tput Compa	re 4 Data Wo	ord B							0000
CCP4BUFL ⁽¹⁾	1CCh							Input 0	Capture 4 D	ata Buffer Lo	w Word							0000
CCP4BUFH ⁽¹⁾	1CEh							Input C	Capture 4 Da	ata Buffer Hi	gh Word							0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-21: PORTA REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ^(4,5)	Bit 10 ^(4,5)	Bit 9 ^(4,5)	Bit 8 ^(4,5)	Bit 7 ⁽⁴⁾	Bit 6 ⁽³⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	2C0h	_	—	_	_	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	0FDF ⁽¹⁾
PORTA	2C2h	_	_	_	_	RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	2C4h	_	_	_	_	LATA11	LATA10	LATA9	LATA8	LATA7	LATA6		LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	2C6h	_	_	_	-	ODA11	ODA10	ODA9	ODA8	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are only available when MCLRE (FPOR<7>) = 0.

3: These bits are not implemented in FV devices.

4: These bits are not implemented in 20-pin devices.

5: These bits are not implemented in 28-pin devices.

TABLE 4-22: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2	Bit 1	Bit 0	All Resets
TRISB	2C8h	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	_{FFFF} (1)
PORTB	2CAh	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	2CCh	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	2CEh	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

TABLE 4-23: PORTC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ^(2,3)	Bit 8 ^(2,3)	Bit 7 ^(2,3)	Bit 6 ^(2,3)	Bit 5 ^(2,3)	Bit 4 ^(2,3)	Bit 3 ^(2,3)	Bit 2 ^(2,3)	Bit 1 ^(2,3)	Bit 0 ^(2,3)	All Resets
TRISC	2D0h	—	_		_		_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF ⁽¹⁾
PORTC	2D2h	_	_	_		—		RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATTC	2D4h	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	2D6h	_	_	_	_	_	_	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access		Progra	n Space A	ddress				
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0		PC<22:1>		0			
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>				
(Byte/Word Read/Write)		02	xxx xxxx	xxx		xxx			
	Configuration	TB	LPAG<7:0>		Data EA<15:0>				
		1:	xxx xxxx	XXX		xxx			
Program Space Visibility	User	0	PSVPAG<7:	0>(2)	Data EA<14:	:0>(1)			
(Block Remap/Read)		0	XXXX XXX	κx	xxx xxxx xxx	x xxxx			

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on the PIC24F16KM family.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Flash programming, refer to the "PIC24F Family Reference Manual", "Program Memory" (DS39715).

The PIC24FV16KM204 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 1.8V.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FXXXXX device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear/Program Mode Entry Voltage (MCLR/VPP). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or custom firmware to be programmed. Run-Time Self-Programming (RTSP) is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 32 instructions (96 bytes) at a time, and erase program memory in blocks of 32, 64 and 128 instructions (96,192 and 384 bytes) at a time.

The NVMOP<1:0> (NVMCON<1:0>) bits decide the erase block size.

5.1 Table Instructions and Flash Programming

Regardless of the method used, Flash memory programming is done with the Table Read and Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as depicted in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

REGISTER 7-1:

RCON: RESET CONTROL REGISTER⁽¹⁾

				11.0	11.0									
			K/W-U	0-0	U-0	K/W-0	K/W-U							
IRAPR	IOPUVR	SBOREN	RETEN"			CM	PIVISLP							
DIL 15							DILO							
R/W-0, HS	6 R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS							
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR							
bit 7		•				·	bit 0							
r														
Legend:		HS = Hardwar	e Settable bit											
R = Reada	ible bit	W = Writable b	bit	U = Unimplen	nented bit, read	as '0'								
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own							
1.1.45														
DIT 15		Reset Flag bit	occurred											
	1 = A Trap Co 0 = A Trap Co	onflict Reset has	s not occurred											
bit 14	IOPUWR: Illeg	gal Opcode or l	Jninitialized W	Access Reset	Flag bit									
	1 = An illegal	opcode detecti	on, an illegal a	ddress mode o	or Uninitialized V	V register used	as an Address							
	Pointer ca	aused a Reset	vitialized W/ Da	aat haa nat aa	ourrod									
hit 12		fluere Enclose		set has not oc	curred									
DIL 13	1 = BOR is tu	rned on in softw	are	K DIL										
	0 = BOR is turned off in software													
bit 12	RETEN: Rete	ntion Sleep Mo	de ⁽³⁾											
	1 = Regulate 0 = Regulate	d voltage supply d voltage supply	y provided by t y provided by t	he Retention F he main Voltag	Regulator (RETF ge Regulator (VF	REG) during Sle REG) during Sle	ep ep							
bit 11-10	Unimplement	ted: Read as '0	,											
bit 9	CM: Configura	ation Word Misr	match Reset F	lag bit										
	1 = A Configu 0 = A Configu	ration Word Mis	smatch Reset	has occurred has not occurre	ed									
bit 8	PMSLP: Prog	ram Memory Po	ower During S	leep bit										
	1 = Program 0 = Program Standby r	memory bias vo memory bias v mode	oltage remains /oltage is pow	powered durir vered down du	ng Sleep Iring Sleep and	the voltage re	gulator enters							
bit 7	EXTR: Extern	al Reset (MCLF	R) Pin bit											
	1 = A Master	Clear (pin) Res	et has occurre	d										
	0 = A Master	Clear (pin) Res	et has not occi	urred										
DIT 6		re RESET (Instru	UCTION) Flag bit	[
	1 - A RESET I 0 = A RESET I	instruction has i	not been executed	uted										
bit 5	SWDTEN: So	ftware Enable/[Disable of WD	Г bit ⁽²⁾										
	1 = WDT is er 0 = WDT is di	nabled sabled												
Note 1:	All of the Reset s	status bits may l Reset.	be set or cleare	ed in software.	Setting one of th	nese bits in soft	ware does not							
2:	If the FWDTEN<	<1:0> Configura bit setting.	tion bits are '1	1' (unprogrami	med), the WDT i	is always enabl	ed regardless							

3: This is implemented on PIC24FV16KMXXX parts only; not used on PIC24F16KMXXX devices.

FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLE

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:		HS = Hardware Settable bi	t	
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	NSTDIS: Inte	errupt Nesting Disable bit		
1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled				
bit 14-5	Unimplemen	nted: Read as '0'		
bit 4	MATHERR: A	Arithmetic Error Trap Status I	bit	
	1 = Overflow 0 = Overflow	trap has occurred trap has not occurred		
bit 3	ADDRERR: /	Address Error Trap Status bit	t	
	1 = Address 0 = Address	error trap has occurred error trap has not occurred		
bit 2	STKERR: Sta	ack Error Trap Status bit		
	1 = Stack erro 0 = Stack erro	or trap has occurred or trap has not occurred		
bit 1	OSCFAIL: O	scillator Failure Trap Status I	bit	
	1 = Oscillator 0 = Oscillator	r failure trap has occurred r failure trap has not occurred	t	
bit 0	Unimplemen	nted: Read as '0'		

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	_		_		CCP5IP2	CCP5IP1	CCP5IP0
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	_	—		_	INT1IP2	INT1IP1	INT1IP0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-8	CCP5IP<2:0>	: Capture/Con	npare 5 Event I	nterrupt Priority	y bits		
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interrup	ot source is dis	abled				
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2-0	INT1IP<2:0>:	External Intern	upt 1 Priority b	oits			
	111 = Interrup	ot is Priority 7(highest priority	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
	000 = Interru	ot source is dis	abled				

REGISTER 8-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

REGISTER 11-2: ANSB: PORTB ANALOG SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	R/W-1	R/W-1
ANSB15	ANSB14	ANSB13	ANSB12	—	—	ANSB9	ANSB8
bit 15							bit 8

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSB7	ANSB6 ⁽¹⁾	ANSB5 ⁽¹⁾	ANSB4	ANSB3 ⁽¹⁾	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 **ANSB<15:12>:** Analog Select Control bits 1 = Digital input buffer is not active (use for analog input)

- 0 = Digital input buffer is active
- bit 11-10 Unimplemented: Read as '0'
- bit 9-0 ANSB<9:0>: Analog Select Control bits⁽¹⁾
 - 1 = Digital input buffer is not active (use for analog input)
 - 0 = Digital input buffer is active
- Note 1: The ANSB<6:5,3> bits are not available on 20-pin devices.

REGISTER 11-3: ANSC: PORTC ANALOG SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_					—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—	—	—	—	—	ANSC2 ^(1,2)	ANSC1 ^(1,2)	ANSC0 ^(1,2)
bit 7							bit 0
Legend:							

Logonal					
R = Readable bit	W = Writable bit	/ = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-3 Unimplemented: Read as '0'

bit 2-0 ANSC<2:0>: Analog Select Control bits^(1,2)

- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

NOTES:

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER (CONTINUED)

- bit 7-5 **CH0NA<2:0>:** Sample A Channel 0 Negative Input Select bits The same definitions as for CHONB<2:0>.
- bit 4-0 **CH0SA<4:0>:** Sample A Channel 0 Positive Input Select bits The same definitions as for CHONA<4:0>.
- Note 1: This is implemented on 44-pin devices only.
 - 2: This is implemented on 28-pin and 44-pin devices only.
 - 3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH23	CHH22	CHH21	CHH20 ⁽²⁾	CHH19 ⁽²⁾	CHH18	CHH17	CHH16
bit 7							bit 0

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-8 **Unimplemented:** Read as '0'.

bit 7-0 CHH<23:16>: A/D Compare Hit bits⁽²⁾

If CM<1:0> = 11:

1 = A/D Result Buffer x has been written with data or a match has occurred

0 = A/D Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

2: The CHH<20:19> bits are not implemented in 20-pin devices.

REGISTER 25-2: FGS: GENERAL SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/C-1	R/C-1
—	—	—	—	_	—	GCP	GWRP
bit 7							bit 0

Legend:			
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'
bit 1	GCP: General Segment Code Flash Code Protection bit
	1 = No protection0 = Standard security is enabled
bit 0	GWRP: General Segment Code Flash Write Protection bit
	 1 = General Segment may be written 0 = General Segment is write-protected

REGISTER 25-3: FOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

R/P-1	R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1
IESO	LPRCSEL	SOSCSRC	—	—	FNOSC2	FNOSC1	FNOSC0
bit 7							bit 0

Legend:						
R = Reada	able bit	P = Programmable bit	U = Unimplemented bit, read as '0'			
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		
bit 7	IESO: Int	ernal External Switchover bit				
	1 = Intern	-up is enabled)				
	0 = Interr	al External Switchover mode is	s disabled (Two-Speed Star	t-up is disabled)		
bit 6 LPRCSEL: Internal LPRC Oscillator Power Select bit						

- 1 = High-Power/High-Accuracy mode0 = Low-Power/Low-Accuracy mode
- bit 5 **SOSCSRC:** Secondary Oscillator Clock Source Configuration bit
 - 1 = SOSC analog crystal function is available on the SOSCI/SOSCO pins
 - 0 = SOSC crystal is disabled; digital SCLKI function is selected on the SOSCO pin
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 FNOSC<2:0>: Oscillator Selection bits
 - 000 = Fast RC Oscillator (FRC)
 - 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCDIV+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)
 - 011 = Primary Oscillator with PLL module (HS+PLL, EC+PLL)
 - 100 = Secondary Oscillator (SOSC)
 - 101 = Low-Power RC Oscillator (LPRC)
 - 110 = 500 kHz Low-Power FRC Oscillator with Divide-by-N (LPFRCDIV)
 - 111 = 8 MHz FRC Oscillator with Divide-by-N (FRCDIV)

REGISTER 25-7: FICD: IN-CIRCUIT DEBUGGER CONFIGURATION REGISTER

R/P-1	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1	
DEBUG		—	_	_	_	FICD1	FICD0	
bit 7							bit 0	
Legend:								
R = Readab	le bit	P = Programn	nable bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 7	DEBUG: Back	ground Debugg	er Enable bit					
	1 = Background debugger is disabled 0 = Background debugger functions are enabled							
bit 6-2	Unimplemented: Read as '0'							
bit 1-0	FICD<1:0:>: ICD Pin Select bits							
	 11 = PGEC1/PGED1 are used for programming and debugging the device 10 = PGEC2/PGED2 are used for programming and debugging the device 01 = PGEC3/PGED3 are used for programming and debugging the device 00 = Reserved; do not use 							

TABLE 27-38: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS			Standard Operating Conditions: Operating temperature				: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended				
Param No.	Sym	Characteristic	Min.	Тур	Max.	Units	Conditions				
-			Clock P	aramete	rs						
AD50	Tad	A/D Clock Period	600	—	—	ns	Tcy = 75 ns, AD1CON3 in default state				
AD51	TRC	A/D Internal RC Oscillator Period		1.67	—	μs					
	Conversion Rate										
AD55	Τςονν	Conversion Time	—	12 14		Tad Tad	10-bit results 12-bit results				
AD56	FCNV	Throughput Rate			100	ksps					
AD57	TSAMP	Sample Time		1	—	TAD					
AD58	TACQ	Acquisition Time	750	—	—	ns	(Note 2)				
AD59	Tswc	Switching Time from Convert to Sample	—	—	(Note 3)						
AD60 TDIS Discharge Time		12	—	—	TAD						
			Clock P	aramete	rs						
AD61 TPSS Sample Start Delay from Setting Sample bit (SAMP)		2	_	3	TAD						

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

- 2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).
- 3: On the following cycle of the device clock.

AC CHARACTERISTICS			Standard Operating Conditions:1.8V to 3.6V (PIC24F16KM204)2.0V to 5.5V (PIC24FV16KM204)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Sym	Characteristic	Min.	Тур	Max.	Units	Comments
		Resolution	8	—	_	bits	
		DACREF<1:0> Input Voltage Range	AVss + 1.8	—	AVDD	V	
		Differential Linearity Error (DNL)	—	—	±0.5	LSb	
		Integral Linearity Error (INL)	—	—	±1.5	LSb	
		Offset Error	—	—	±0.5	LSb	
		Gain Error	—	—	±3.0	LSb	
	Monotonicity		—	—	—	—	(Note 1)
		Output Voltage Range	AVss + 50	AVss + 5 to AVpp – 5	AVDD - 50	mV	0.5V input overdrive, no output loading
		Slew Rate	—	5	_	V/µs	
		Settling Time	—	10	—	μs	

TABLE 27-39: 8-BIT DIGITAL-TO-ANALOG CONVERTER SPECIFICATIONS

Note 1: DAC output voltage never decreases with an increase in the data code.