E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km202-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: DEVICE FEATURES FOR THE PIC24F16KM104 FAMILY

Features	PIC24F16KM104	PIC24F16KM102	PIC24F08KM102	PIC24F08KM101		
Operating Frequency		DC-3	2 MHz			
Program Memory (bytes)	16K	16K	8K	8K		
Program Memory (instructions)	5632	5632	2816	2816		
Data Memory (bytes)		10)24			
Data EEPROM Memory (bytes)		5	12			
Interrupt Sources (soft vectors/NMI traps)		25 (21/4)			
Voltage Range		1.8-	-3.6V			
I/O Ports	PORTA<11:0> PORTB<15:0> PORTC<9:0>	PORTA PORTB	<7:0> <15:0>	PORTA<6:0> PORTB<15:12,9:7, 4,2:0>		
Total I/O Pins	38	24	1	18		
Timers	(One 16-bit timer, t	wo MCCPs/SCC	5 Ps with up to tw	vo 16/32 timers each)		
Capture/Compare/PWM modules MCCP SCCP			1			
Serial Communications MSSP UART	1					
Input Change Notification Interrupt	37	23	3	17		
12-Bit Analog-to-Digital Module (input channels)	22	19	9	16		
Analog Comparators			1			
8-Bit Digital-to-Analog Converters	_					
Operational Amplifiers	_					
Charge Time Measurement Unit (CTMU)	Yes					
Real-Time Clock and Calendar (RTCC)						
Configurable Logic Cell (CLC)			1			
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)					
Instruction Set	76 Base Inst	tructions, Multiple	e Addressing N	lode Variations		
Packages	44-Pin QFN/TQFP, 48-Pin UQFN	28-F SPDIP/SSOF	Pin P/SOIC/QFN	20-Pin SOIC/SSOP/PDIP		

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F			FV							
			Pin Numb	er				Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
C1OUT	17	25	22	14	15	17	25	22	14	15	0	_	Comparator 1 Output
C2INA	_	5	2	22	24	_	5	2	22	24	Ι	ANA	Comparator 2 Input A (+)
C2INB	_	4	1	21	23	—	4	1	21	23	Ι	ANA	Comparator 2 Input B (-)
C2INC	—	7	4	24	26	—	7	4	24	26	Ι	ANA	Comparator 2 Input C (+)
C2IND	—	6	3	23	25	—	6	3	23	25	Ι	ANA	Comparator 2 Input D (-)
C2OUT	_	20	17	7	7	_	16	13	43	47	0	_	Comparator 2 Output
C3INA	—	26	23	15	16	—	26	23	15	16	Ι	ANA	Comparator 3 Input A (+)
C3INB	_	25	22	14	15	_	25	22	14	15	Ι	ANA	Comparator 3 Input B (-)
C3INC	_	2	27	19	21	_	2	27	19	21	Ι	ANA	Comparator 3 Input C (+)
C3IND	_	4	1	21	23	_	4	1	21	23	Ι	ANA	Comparator 3 Input D (-)
C3OUT	_	17	14	44	48	_	17	14	44	48	0		Comparator 3 Output
CLC10	13	18	15	1	1	13	18	15	1	1	0	_	CLC 1 Output
CLC2O	—	19	16	6	6	—	19	16	6	6	0	_	CLC 2 Output
CLCINA	9	14	11	41	45	9	14	11	41	45	Ι	ST	CLC External Input A
CLCINB	10	15	12	42	46	10	15	12	42	46	Ι	ST	CLC External Input B
CLKI	7	9	6	30	33	7	9	6	30	33	Ι	ANA	Primary Clock Input
CLKO	8	10	7	31	34	8	10	7	31	34	0	_	System Clock Output
CN0	10	12	9	34	37	10	12	9	34	37	I	ST	Interrupt-on-Change Inputs
CN1	9	11	8	33	36	9	11	8	33	36	I	ST	Interrupt-on-Change Inputs
CN2	2	2	27	19	21	2	2	27	19	21	I	ST	Interrupt-on-Change Inputs
CN3	3	3	28	20	22	3	3	28	20	22	I	ST	Interrupt-on-Change Inputs
CN4	4	4	1	21	23	4	4	1	21	23	I	ST	Interrupt-on-Change Inputs
CN5	5	5	2	22	24	5	5	2	22	24	I	ST	Interrupt-on-Change Inputs
CN6	6	6	3	23	25	6	6	3	23	25	I	ST	Interrupt-on-Change Inputs
CN7	_	7	4	24	26	_	7	4	24	26	I	ST	Interrupt-on-Change Inputs
CN8	14	20	17	7	7	_	_	_	—	_	I	ST	Interrupt-on-Change Inputs
CN9	—	19	16	6	6	—	19	16	6	6	Ι	ST	Interrupt-on-Change Inputs
CN10		—	_	27	29		—	_	27	29	Ι	ST	Interrupt-on-Change Inputs
CN11	18	26	23	15	16	18	26	23	15	16	Ι	ST	Interrupt-on-Change Inputs
CN12	17	25	22	14	15	17	25	22	14	15	1	ST	Interrupt-on-Change Inputs

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

4.2.5 SOFTWARE STACK

In addition to its use as a working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer. The pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as depicted in Figure 4-4.

For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing
	will concatenate the SRL register to the
	MSB of the PC prior to the push.

The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation.

Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 0DF6 in RAM, initialize the SPLIM with the value, 0DF4.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the Special Function Register (SFR) space.

Note: A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit-wide program space and 16-bit-wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Apart from the normal execution, the PIC24F architecture provides two methods by which the program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the Data Space, PSV

Table instructions allow an application to read or write small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word (lsw) of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit (MSb) of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility Page Address register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike the table operations, this limits remapping operations strictly to the user memory area.

See Table 4-35 and Figure 4-5 to know how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a Data Space word.

R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY		—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0
bit 7	•	·		-			bit 0
Legend:		HC = Hardware	Clearable bit	U = Unimple	mented bit, re	ead as '0'	
R = Readable	bit	W = Writable bit		S = Settable	Only bit		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
L							
bit 15	WR: Write Co	ontrol bit (program	or erase)				
-	1 = Initiates	a data EEPROM e	erase or write cv	cle (can be set	, but not clea	red in softwar	e)
	0 = Write cyc	cle is complete (cle	eared automatica	ally by hardwa	re)		,
bit 14	WREN: Write	e Enable bit (erase	or program)				
	1 = Enables a	an erase or progra	im operation				
	0 = No opera	tion allowed (devi	ce clears this bit	on completion	of the write/e	erase operatio	n)
bit 13	WRERR: Fla	sh Error Flag bit					
	1 = A write	operation is prem	naturely termina	ted (any MCL	R or WDT F	Reset during	programming
	operation	n)					
1.11.40	0 = The write		eted successfully	/			
bit 12	PGMONLY: H	Program Only Ena	ble bit				
	1 = VVrite ope	eration is executed	d without erasing	g target addres	s(es) first		
	Write operation	ons are preceded	automatically by	an erase of th	e target addr	ess(es).	
bit 11-7	Unimplemen	ited: Read as '0'				().	
bit 6	ERASE: Fras	se Operation Sele	ct bit				
2.1. 0	1 = Performs	s an erase operatio	on when WR is s	set			
	0 = Performs	a write operation	when WR is set	t			
bit 5-0	NVMOP<5:0	Programming C	peration Comm	and Byte bits			
	Erase Operat	tions (when ERAS	<u>E bit is '1'):</u>	-			
	011010 = Era	ase 8 words					
	011001 = Era	ase 4 words					
	011000 = Er	ase 1 word					
		ase entire udid EE		o') .			
	r_{10}	rite 1 word	II ERAJE DILIS (<u>. j.</u>			

REGISTER 6-1: NVMCON: NONVOLATILE MEMORY CONTROL REGISTER

REGISTER 8-17: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	—	—	—	—	—	ULPWUIE
bit 7							bit 0
Legend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 8-18: IEC6: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	CLC2IE	CLC1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 CLC2IE: Configurable Logic Cell 2 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

bit 0 CLC1IE: Configurable Logic Cell 1 Interrupt Enable bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
_	_	_	_	_	BCL2IP2	BCL2IP1	BCL2IP0	
bit 15					•		bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
	SSP2IP2	SSP2IP1	SSP2IP0	—	—	_	—	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-11	Unimplemen	ted: Read as ')'					
bit 10-8	BCL2IP<2:0>	<mark>.:</mark> MSSP2 I ² C™	Bus Collision	Interrupt Priori	ty bits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)				
	•							
	•							
	001 = Interru	pt is Priority 1						
	000 = Interru	pt source is dis	abled					
bit 7	Unimplemen	ted: Read as ')'					
bit 6-4	SSP2IP<2:0>	: MSSP2 SPI/I	² C Event Inter	rupt Priority bits	6			
	111 = Interru	pt is Priority 7 (highest priority	r interrupt)				
	•							
	•							
	001 = Interru	pt is Priority 1						
	000 = Interru	pt source is dis	abled					
bit 3-0	Unimplemen	Unimplemented: Read as '0'						

REGISTER 8-28: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

10.4 Voltage Regulator-Based Power-Saving Features

The PIC24FV16KM204 family series devices have a voltage regulator that has the ability to alter functionality to provide power savings. The on-chip regulator is made up of two basic modules: the Voltage Regulator (VREG) and the Retention Regulator (RETREG). With the combination of VREG and RETREG, the following power modes are available:

10.4.1 RUN MODE

In Run mode, the main VREG is providing a regulated voltage with enough current to supply a device running at full speed and the device is not in Sleep mode. The RETREG may or may not be running, but is unused.

10.4.2 SLEEP MODE

In Sleep mode, the device is in Sleep and the main VREG is providing a regulated voltage to the core. By default, in Sleep mode, the regulator enters a low-power standby state which consumes reduced quiescent current. The PMSLP bit (RCON<8>) controls the regulator state in Sleep mode. If the PMSLP bit is set, the program Flash memory will stay powered on during Sleep mode and the regulator will stay in its full-power mode.

10.4.3 RETENTION REGULATOR

The Retention Regulator, sometimes referred to as the low-voltage regulator, is designed to provide power to the core at a lower voltage than the standard voltage regulator, while consuming significantly lower quiescent current. Refer to **Section 27.0** "Electrical Characteristics" for the voltage output range of the RETREG. This regulator is only used in Sleep mode, and has limited output current to maintain the RAM and provide power for limited peripherals, such as the WDT, while the device is in Sleep. It is controlled by the RETCFG Configuration bit (FPOR<2>) and in firmware by the RETEN bit (RCON<12>). RETCFG must be programmed (= 0) and the RETEN bit must be set (= 1) for the Retention Regulator to be enabled.

10.4.4 RETENTION SLEEP MODE

In Retention Sleep mode, the device is in Sleep and all regulated voltage is provided solely by the RETREG, while the main VREG is disabled. Consequently, this mode provides the lowest Sleep power consumption, but has a trade-off of a longer wake-up time. The low-voltage Sleep wake-up time is longer than Sleep mode due to the extra time required to re-enable the VREG and raise the VDDCORE supply rail back to normal regulated levels.

Note: The PIC24F16KM204 family devices do not have any internal voltage regulation, and therefore, do not support Retention Sleep mode.

TABLE 10-1: VOLTAGE REGULATION CONFIGURATION SETTINGS FOR PIC24FXXXXX FAMILY DEVICES

RETCFG Bit (FPOR<2>)	RETEN Bit (RCON<12>	PMSLP Bit (RCON<8>)	Power Mode During Sleep	Description
0	0	1	Sleep	VREG mode (normal) is unchanged during Sleep.
				RETREG is unused.
0	0	0	Sleep	VREG goes to Low-Power Standby mode during Sleep.
			(Standby)	RETREG is unused.
0	1	0	Retention	VREG is off during Sleep.
			Sleep	RETREG is enabled and provides Sleep voltage regulation.
1	x	1	Sleep	VREG mode (normal) is unchanged during Sleep.
				RETREG is disabled at all times.
1	x	0	Sleep	VREG goes to Low-Power Standby mode during Sleep.
			(Standby)	RETREG is disabled at all times.

REGISTER 17-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

bit 2-0 MODE<2:0>: CLCx Mode bits

- 111 = Cell is a 1-input transparent latch with S and R
- 110 = Cell is a JK flip-flop with R
- 101 = Cell is a 2-input D flip-flop with R
- 100 = Cell is a 1-input D flip-flop with S and R
- 011 = Cell is an SR latch
- 010 = Cell is a 4-input AND
- 001 = Cell is an OR-XOR
- 000 = Cell is a AND-OR

REGISTER 17-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	G4POL	G3POL	G2POL	G1POL	
bit 7 bit 0								

Legend:

Logona.					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-4	Unimplemented: Read as '0'
bit 3	G4POL: Gate 4 Polarity Control bit
	1 = The output of Channel 4 logic is inverted when applied to the logic cell0 = The output of Channel 4 logic is not inverted
bit 2	G3POL: Gate 3 Polarity Control bit
	1 = The output of Channel 3 logic is inverted when applied to the logic cell0 = The output of Channel 3 logic is not inverted
bit 1	G2POL: Gate 2 Polarity Control bit
	1 = The output of Channel 2 logic is inverted when applied to the logic cell0 = The output of Channel 2 logic is not inverted
bit 0	G1POL: Gate 1 Polarity Control bit
	 1 = The output of Channel 1 logic is inverted when applied to the logic cell 0 = The output of Channel 1 logic is not inverted

REGISTER 17-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

- bit 6-4 DS2<2:0>: Data Selection MUX 2 Signal Selection bits
 - 111 = MCCP2 Compare Event Flag (CCP2IF)
 - 110 = MCCP1 Compare Event Flag (CCP1IF)
 - 101 = Digital logic low
 - 100 = A/D end of conversion event
 - For CLC1:
 - 011 = UART1 TX
 - 010 = Comparator 1 output
 - 001 = CLC2 output
 - 000 = CLCINB I/O pin
 - For CLC2:
 - 011 = UART2 TX
 - 010 = Comparator 1 output
 - 001 = CLC1 output
 - 000 = CLCINB I/O pin
- bit 3 Unimplemented: Read as '0'
- bit 2-0 DS1<2:0>: Data Selection MUX 1 Signal Selection bits
 - 111 = SCCP5 Compare Event Flag (CCP5IF)
 - 110 = SCCP4 Compare Event Flag (CCP4IF)
 - 101 = Digital logic low
 - 100 = 8 MHz FRC clock source
 - 011 = LPRC clock source
 - 010 = SOSC clock source
 - 001 = System clock (TCY)
 - 000 = CLCINA I/O pin

REGISTER 17-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)

bit 3	G1D2T: Gate 1 Data Source 2 True Enable bit
	 1 = The Data Source 2 inverted signal is enabled for Gate 1 0 = The Data Source 2 inverted signal is disabled for Gate 1
bit 2	G1D2N: Gate 1 Data Source 2 Negated Enable bit
	 1 = The Data Source 2 inverted signal is enabled for Gate 1 0 = The Data Source 2 inverted signal is disabled for Gate 1
bit 1	G1D1T: Gate 1 Data Source 1 True Enable bit
	 1 = The Data Source 1 inverted signal is enabled for Gate 1 0 = The Data Source 1 inverted signal is disabled for Gate 1
bit 0	G1D1N: Gate 1 Data Source 1 Negated Enable bit
	 1 = The Data Source 1 inverted signal is enabled for Gate 1 0 = The Data Source 1 inverted signal is disabled for Gate 1

19.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter with Threshold Detect, refer to the "PIC24F Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739).

The PIC24F 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 100 ksps
- Up to 32 Analog Input Channels (internal and external)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed-Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in some PIC24 devices. Both modules are Successive Approximation Register (SAR) converters at their cores, surrounded by a range of hardware features for flexible configuration. This version of the module extends functionality by providing 12-bit resolution, a wider range of automatic sampling options and tighter integration with other analog modules, such as the CTMU, and a configurable results buffer. There is a legacy 10-bit mode on this A/D to allow the option to run with lower resolution in order to obtain higher throughput. This module also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results.

A simplified block diagram for the module is illustrated in Figure 19-1.

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ADON	_	ADSIDL	_	_	MODE12	FORM1	FORM0
bit 15							bit 8
L							
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC
SSRC3	SSRC2	SSRC1	SSRC0		ASAM	SAMP	DONE
bit 7						•	bit 0
Legend:		C = Clearable	bit	U = Unimplem	nented bit, read	l as '0'	
R = Readable	e bit	W = Writable b	bit	HSC = Hardw	are Settable/C	learable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	ADON: A/D O 1 = A/D Conv 0 = A/D Conv	perating Mode verter is operation verter is off	bit ng				
bit 14	Unimplement	ted: Read as 'o	3				
bit 13	ADSIDL: A/D	Stop in Idle Mo	de bit				
	1 = Discontin 0 = Continues	ues module op s module opera	eration when o tion in Idle mo	device enters Id	le mode		
bit 12-11	Unimplement	ted: Read as '0	,				
bit 10	MODE12: 12-	Bit A/D Operati	on Mode bit				
	1 = 12-bit A/E 0 = 10-bit A/E) operation) operation					
bit 9-8	FORM<1:0>:	Data Output Fo	ormat bits (see	the following for	ormats)		
	 11 = Fractiona 10 = Absolute 01 = Decimal 00 = Absolute 	al result, signed fractional resu result, signed, decimal result	I, left justified It, unsigned, le right justified , unsigned, rig	eft justified ht justified			
bit 7-4	SSRC<3:0>: 3	Sample Clock S	Source Select	bits			
	1111 = Reser	ved					
	•						
	•						
	 1101 = Reserved 1100 = CLC2 event ends sampling and starts conversion 1011 = SCCP4 Compare Event (CCP4IF) ends sampling and starts conversion 1000 = MCCP3 Compare Event (CCP3IF) ends sampling and starts conversion 1001 = MCCP2 Compare Event (CCP2IF) ends sampling and starts conversion 1000 = CLC1 event ends sampling and starts conversion 0111 = Internal counter ends sampling and starts conversion (auto-convert) 0110 = TMR1 Sleep mode Trigger event ends sampling and starts conversion 1001 = TMR1 event ends sampling and starts conversion 0100 = CTMU event ends sampling and starts conversion 0111 = SCCP5 Compare Event (CCP5IF) ends sampling and starts conversion 0011 = INT0 event ends sampling and starts conversion 0001 = INT0 event ends sampling and starts conversion 0001 = Clearing the Sample bit ends sampling and starts conversion 						

REGISTER 19-1: AD1CON1: A/DA/D CONTROL REGISTER 1

Note 1: This version of the TMR1 Trigger allows A/D conversions to be triggered from TMR1 while the device is operating in Sleep mode. The SSRC<3:0> = 0101 option allows conversions to be triggered in Run or Idle modes only.

REGISTE	R 19-2: AD1C	ON2: A/D CO	NTROL RE	EGISTER 2					
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0		
PVCFG	1 PVCFG0	NVCFG0	_	BUFREGEN	CSCNA	—	_		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
BUFS ⁽¹) SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM ⁽¹⁾	ALTS		
bit 7	ł	ł ł		- I		ι ι	bit 0		
Legend:									
R = Reada	able bit	W = Writable b	it	U = Unimpleme	ented bit, rea	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkno	own		
bit 15-14	PVCFG<1:0> 11 = 4 * Inter 10 = 2 * Inter 01 = External 00 = AVDD	: A/D Converter nal V _{BG} (2) nal V _{BG} (3) VREF+	Positive Vol	tage Reference C	onfiguration	bits			
bit 13	NVCFG0: A/D 1 = External V 0 = AVss) Converter Neg VREF-	ative Voltage	e Reference Confi	iguration bits				
bit 12	Unimplement	ted: Read as '0'							
bit 11	BUFREGEN:	BUFREGEN: A/D Buffer Register Enable bit							
	1 = Conversio 0 = A/D resul	on result is loade	ed into a buf d as a FIFO	fer location detern	nined by the	converted chanr	nel		
bit 10	CSCNA: Scar	n Input Selectior	ns for CH0+	S/H Input for MUX	A Setting bi	it			
	1 = Scans inp 0 = Does not	outs scan inputs							
bit 9-8	Unimplement	ted: Read as '0'							
bit 7	BUFS: A/D B	uffer Fill Status b	oit ⁽¹⁾						
	1 = A/D is filli 0 = A/D is filli	ing the upper ha ing the lower hal	If of the buff f of the buffe	er; user should ac er; user should ac	cess data in cess data in t	the lower half the upper half			
bit 6-2	SMPI<4:0>:	nterrupt Sample	Rate Select	bits					
	11111 = Inte 11110 = Inte •	rrupts at the cor rrupts at the cor	npletion of th npletion of th	ne conversion for a ne conversion for a	each 32nd sa each 31st sa	ample mple			
	00001 = Inte 00000 = Inte	rrupts at the con rrupts at the con	npletion of th npletion of th	ne conversion for one conversion for o	every other s each sample	ample			
bit 1	BUFM: A/D B	uffer Fill Mode S	Select bit ⁽¹⁾						
	1 = Starts fillin interrupt (0 = Starts filli interrupts	ng the buffer at a (Split Buffer moo ing the buffer a s (FIFO mode)	iddress, AD(le) it address,	C1BUF0, on the fir ADC1BUF0, and	st interrupt a each seque	nd ADC1BUF(x/ ential address o	2) on the next n successive		
bit 0	ALTS: Alterna	ate Input Sample	Mode Sele	ct bit					
	1 = Uses cha 0 = Always us	innel input selec ses channel inpi	ts for Sampl ut selects for	e A on the first sa r Sample A	mple and Sa	mple B on the n	ext sample		
Note 1:	This is only applic used when BUFM	able when the b	uffer is used	l in FIFO mode (B	UFREGEN =	0). In addition,	BUFS is only		
2: 3:	PIC24FV16KMXX Reference setting	X devices only. will not be withi	Reference s	setting will not be void on for VDD below 2	within specifi 2.3V.	cation for VDD be	elow 4.5V.		

REGISTER 19-8: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH WORD)	U
--	----------

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	CSS30	CSS29	CSS28	CSS27	CSS26	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20 ⁽²⁾	CSS19 ⁽²⁾	CSS18	CSS17	CSS16
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

'0'	
	'0'

- bit 14-10CSS<30:26>: A/D Input Scan Selection bits1 = Includes the corresponding channel for input scan0 = Skips the channel for input scanbit 9-8Unimplemented: Read as '0'bit 7-0CSS<23:16>: A/D Input Scan Selection bits⁽²⁾1 = Includes the corresponding channel for input scan0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<20:19> bits are not implemented in 20-pin devices.

REGISTER 19-9: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8 ^(2,3)
bit 15	•		•	•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7 ^(2,3)	CSS6 ^(2,3)	CSS5 ⁽²⁾	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSS<15:0>: A/D Input Scan Selection bits^(2,3)

1 = Includes the corresponding ANx input for scan

- 0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<8:5> bits are not implemented in 20-pin devices.
 - 3: The CSS<8:6> bits are not implemented in 28-pin devices.

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
AMPEN	<u> </u>	AMPSIDL	AMPSLP	—	—	—	_
bit 15						1	bit 8
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPDSE	L —	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	AMPEN: Op 1 = Module 0 = Module	Amp x Control I is enabled is disabled	Module Enable	e bit			
bit 14	Unimpleme	nted: Read as '0)'				
bit 13	AMPSIDL: C	Op Amp x Periph	eral Stop in Id	lle Mode bit			
	1 = Disconti	nues module op	eration when	device enters Id	le mode		
hit 12		es mouule opera	allon in fule file	Due Sloop Modo bi	+		
DIL 12		p Amp x Penphe as module opera		vice enters Slee	ı n mode		
	0 = Disconti	nues module opera	eration in Slee	ep mode	pinioue		
bit 11-8	Unimpleme	nted: Read as '0)'				
bit 7	SPDSEL: Op	o Amp x Power/S	Speed Select I	bit			
	1 = Higher p 0 = Lower p	ower and bandw ower and bandw	vidth (faster re vidth (slower re	esponse time) esponse time)			
bit 6	Unimpleme	nted: Read as 'o)'	. ,			
bit 5-3	NINSEL<2:0	>: Negative Op	Amp Input Se	lect bits			
	111 = Reser	ved; do not use					
	110 = Reser	ved; do not use					
	101 = Op an	np negative inpu	it is connected	to the op amp	output (voltage	e follower)	
	011 = Reser	ved; do not use					
	010 = Op an	np negative inpu	it is connected	to the OAxIND	pin		
	001 = Op an	np negative inpu	it is connected	to the OAxINB	pin		
bit 2.0		np negative inpu		1 10 AVSS			
DIL Z-U	FINSEL<2.0	>. Positive Op P	is connected	to the output of	the A/D input r	multiplever	
	110 = Reser	ved; do not use				nditiplexei	
	101 = Op an	np positive input	is connected	to the DAC1 ou	tput for OA1 (E	DAC2 output for	OA2)
	100 = Reser	ved; do not use					
	010 = Op an	np positive input	is connected	to the OAxINC	pin		
	001 = Op an	np positive input	is connected	to the OAxINA	pin		
	000 = Op an	np positive input	is connected	to AVss			
Note 1:	This register is a	vailable only on	PIC24F(V)16	KM2XX devices			

REGISTER 21-1: AMPxCON: OP AMP x CONTROL REGISTER⁽¹⁾

REGISTER 25-9: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R	R	R	R
_	—	—	—	REV3	REV2	REV1	REV0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Minor Revision Identifier bits

26.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

26.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

26.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

TABLE 27-24: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating	Operating temperatu	Condition re	s: 1.8V to 2.0V to -40°C ≤ -40°C ≤	3.6V (PIC24F16KM204) 5.5V (PIC24FV16KM204) TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TIOR	Port Output Rise Time	_	10	25	ns	
DO32	TIOF	Port Output Fall Time	—	10	25	ns	
DI35	TINP	INTx Pin High or Low Time (output)	20	_	—	ns	
DI40	Trbp	CNx High or Low Time (input)	2	—	_	Тсү	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
300	TRESP	Response Time ^{*(1)}	_	150	400	ns	
301	Тмс2оv	Comparator Mode Change to Output Valid [*]	—	—	10	μS	

TABLE 27-26: COMPARATOR TIMING REQUIREMENTS

Parameters are characterized but not tested.

*

Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 27-27: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time ⁽¹⁾			10	μS	

Note 1: Settling time is measured while CVRSS = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

FIGURE 27-10: CAPTURE/COMPARE/PWM TIMINGS (MCCPx, SCCPx MODULES)

TABLE 27-28: CAPTURE/COMPARE/PWM REQUIREMENTS (MCCPx, SCCPx MODULES)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
50	TCLKL	CCPx Time Base Clock Source Low Time	TCY/2		ns	
51	ТсікН	CCPx Time Base Clock Source High Time	TCY/2		ns	
52	TCLK	CCPx Time Base Clock Source Period	Тсү		ns	
53	TccL	CCPx Capture or Gating Input Low Time	TCLK	—	ns	
54	ТссН	CCPx Capture or Gating Input High Time	TCLK	_	ns	
55	TCCP	CCPx Capture or Gating Input Period	2 * Tclk/N	—	ns	N = Prescale Value (1, 4 or 16)

	21-31.		Standard Onera	ting Ca	nditions: 1 9\/++	2 6\//	
AC CHARACTERISTICS			Operating temperature1.0° to 3.0° (FIC24F Torkin204) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
		•	Device S	Supply	•	•	•
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 1.8	_	Lesser of: VDD + 0.3 or 3.6	V	PIC24FXXKMXXX devices
			Greater of: VDD – 0.3 or 2.0		Lesser of: VDD + 0.3 or 5.5	V	PIC24FVXXKMXXX devices
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V	
			Reference	e Input	S		
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V	
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD – 1.7	V	
AD07	Vref	Absolute Reference Voltage	AVss – 0.3		AVDD + 0.3	V	
AD08	IVREF	Reference Voltage Input Current	_	1.25	_	mA	
AD09	Zvref	Reference Input Impedance	—	10k	—	Ω	
	•		Analog	Input			
AD10	VINH-VINL	Full-Scale Input Span	VREFL		VREFH	V	(Note 2)
AD11	Vin	Absolute Input Voltage	AVss - 0.3	_	AVDD + 0.3	V	
AD12	VINL	Absolute VINL Input Voltage	AVss – 0.3		AVDD/2	V	
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	_	1k	Ω	12-bit
			A/D Acc	uracy			
AD20b	NR	Resolution	—	12	—	bits	
AD21b	INL	Integral Nonlinearity	—	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD22b	DNL	Differential Nonlinearity	—	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD23b	Gerr	Gain Error	—	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD24b	EOFF	Offset Error	_	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD25b		Monotonicity ⁽¹⁾	—	—	_		Guaranteed
				-			

TABLE 27-37: A/D MODULE SPECIFICATIONS

 $\label{eq:Note_1:} \textbf{Note_1:} \quad \text{The A/D conversion result never decreases with an increase in the input voltage.}$

2: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.