

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km202-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

20-Pin PDIP/SSOP/SOIC	RA5 1 20 VDD RA0 2 19 Vss RA1 3 18 RB15 RB0 4 17 RB14 RB1 5 16 RB13 RB2 6 15 RB12 RA2 7 74 14 RA3 8 13 RB9 RB4 9 12 RB8 RA4 10 11 RB7
-----------------------	---

	Pir	Features
PIN	PIC24F08KM101	PIC24FVKM08KM101
1	MCLR/Vpp/RA5	
2	PGEC2/CVREF+/VREF+/AN0/CN2/RA0	
3	PGED2/CVREF-/VREF-/AN1/CN3/RA1	
4	PGED1/AN2/CTCMP/ULPWU/C1IND/OC2A/CN4/RB0	
5	PGEC1/AN3/C1INC/CTED12/CN5/RB1	
6	AN4/U1RX/TCKIB/CTED13/CN6/RB2	
7	OSCI/CLKI/AN13/C1INB/CN30/RA2	
8	OSCO/CLKO/AN14/C1INA/CN29/RA3	
9	PGED3/SOSCI/AN15/CLCINA/CN1/RB4	
10	PGEC3/SOSCO/SCLKI/AN16/PWRLCLK/CLCINB/CN0/RA4	
11	AN19/U1TX/CTED1/INT0/CN23/RB7	AN19/U1TX/IC1/OC1A/CTED1/INT0/CN23/RB7
12	AN20/SCL1/U1CTS/OC1B/CTED10/CN22/RB8	
13	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/CLC10/CTED4/CN2	1/RB9
14	IC1/OC1A/INT2/CN8/RA6	VCAP OR VDDCORE
15	AN12/HLVDIN/SCK1/OC1C/CTED2/CN14/RB12	AN12/HLVDIN/SCK1/OC1C/CTED2/INT2/CN14/RB12
16	AN11/SDO1/OCFB/OC1D/CTPLS/CN13/RB13	
17	CVREF/AN10/SDI1/C1OUT/OCFA/CTED5/INT1/CN12/RB14	
18	AN9/REFO/SS1/TCKIA/CTED6/CN11/RB15	
19	Vss/AVss	
20	Vdd/AVdd	

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F					FV					
			Pin Numb	er				Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
C1OUT	17	25	22	14	15	17	25	22	14	15	0	_	Comparator 1 Output
C2INA	_	5	2	22	24	_	5	2	22	24	Ι	ANA	Comparator 2 Input A (+)
C2INB	_	4	1	21	23	_	4	1	21	23	Ι	ANA	Comparator 2 Input B (-)
C2INC	_	7	4	24	26	_	7	4	24	26	Ι	ANA	Comparator 2 Input C (+)
C2IND	_	6	3	23	25	_	6	3	23	25	Ι	ANA	Comparator 2 Input D (-)
C2OUT	_	20	17	7	7	_	16	13	43	47	0	_	Comparator 2 Output
C3INA	_	26	23	15	16	_	26	23	15	16	Ι	ANA	Comparator 3 Input A (+)
C3INB	_	25	22	14	15	_	25	22	14	15	Ι	ANA	Comparator 3 Input B (-)
C3INC	_	2	27	19	21	_	2	27	19	21	Ι	ANA	Comparator 3 Input C (+)
C3IND	_	4	1	21	23	_	4	1	21	23	Ι	ANA	Comparator 3 Input D (-)
C3OUT	_	17	14	44	48	_	17	14	44	48	0		Comparator 3 Output
CLC10	13	18	15	1	1	13	18	15	1	1	0	_	CLC 1 Output
CLC2O	—	19	16	6	6	—	19	16	6	6	0	_	CLC 2 Output
CLCINA	9	14	11	41	45	9	14	11	41	45	Ι	ST	CLC External Input A
CLCINB	10	15	12	42	46	10	15	12	42	46	Ι	ST	CLC External Input B
CLKI	7	9	6	30	33	7	9	6	30	33	Ι	ANA	Primary Clock Input
CLKO	8	10	7	31	34	8	10	7	31	34	0	_	System Clock Output
CN0	10	12	9	34	37	10	12	9	34	37	I	ST	Interrupt-on-Change Inputs
CN1	9	11	8	33	36	9	11	8	33	36	I	ST	Interrupt-on-Change Inputs
CN2	2	2	27	19	21	2	2	27	19	21	I	ST	Interrupt-on-Change Inputs
CN3	3	3	28	20	22	3	3	28	20	22	I	ST	Interrupt-on-Change Inputs
CN4	4	4	1	21	23	4	4	1	21	23	I	ST	Interrupt-on-Change Inputs
CN5	5	5	2	22	24	5	5	2	22	24	I	ST	Interrupt-on-Change Inputs
CN6	6	6	3	23	25	6	6	3	23	25	I	ST	Interrupt-on-Change Inputs
CN7	_	7	4	24	26	_	7	4	24	26	I	ST	Interrupt-on-Change Inputs
CN8	14	20	17	7	7	_	_	_	—	_	I	ST	Interrupt-on-Change Inputs
CN9	—	19	16	6	6	—	19	16	6	6	Ι	ST	Interrupt-on-Change Inputs
CN10		—	_	27	29		—	_	27	29	Ι	ST	Interrupt-on-Change Inputs
CN11	18	26	23	15	16	18	26	23	15	16	Ι	ST	Interrupt-on-Change Inputs
CN12	17	25	22	14	15	17	25	22	14	15	1	ST	Interrupt-on-Change Inputs

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

							-		-		-		
			F					FV					
			Pin Numb	ber				Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
CN13	16	24	21	11	12	16	24	21	11	12	I	ST	Interrupt-on-Change Inputs
CN14	15	23	20	10	11	15	23	20	10	11	Ι	ST	Interrupt-on-Change Inputs
CN15	_	22	19	9	10	_	22	19	9	10	Ι	ST	Interrupt-on-Change Inputs
CN16	_	21	18	8	9	_	21	18	8	9	Ι	ST	Interrupt-on-Change Inputs
CN17	_	_	_	3	3	—	_	—	3	3	I	ST	Interrupt-on-Change Inputs
CN18	_	_	_	2	2	—	_	—	2	2	I	ST	Interrupt-on-Change Inputs
CN19	_	—	—	5	5	_	—	—	5	5	Ι	ST	Interrupt-on-Change Inputs
CN20	_	—	—	4	4	_	—	—	4	4	Ι	ST	Interrupt-on-Change Inputs
CN21	13	18	15	1	1	13	18	15	1	1	Ι	ST	Interrupt-on-Change Inputs
CN22	12	17	14	44	48	12	17	14	44	48	Ι	ST	Interrupt-on-Change Inputs
CN23	11	16	13	43	47	11	16	13	43	47	Ι	ST	Interrupt-on-Change Inputs
CN24	_	15	12	42	46	_	15	12	42	46	Ι	ST	Interrupt-on-Change Inputs
CN25	_	_	_	37	40	_	_	_	37	40	Ι	ST	Interrupt-on-Change Inputs
CN26	_	_	_	38	41	_	_	_	38	41	Ι	ST	Interrupt-on-Change Inputs
CN27	_	14	11	41	45	_	14	11	41	45	I	ST	Interrupt-on-Change Inputs
CN28	_	_	_	36	39	_	_	_	36	39	Ι	ST	Interrupt-on-Change Inputs
CN29	8	10	7	31	34	8	10	7	31	34	Ι	ST	Interrupt-on-Change Inputs
CN30	7	9	6	30	33	7	9	6	30	33	Ι	ST	Interrupt-on-Change Inputs
CN31	_	—	_	26	28	—	—	—	26	28	Ι	ST	Interrupt-on-Change Inputs
CN32	_	—	_	25	27	—	—	—	25	27	Ι	ST	Interrupt-on-Change Inputs
CN33	_	—	_	32	35	—	—	—	32	35	Ι	ST	Interrupt-on-Change Inputs
CN34	_	—	_	35	38	—	—	—	35	38	Ι	ST	Interrupt-on-Change Inputs
CN35	_	_	_	12	13	_	—		12	13	Ι	ST	Interrupt-on-Change Inputs
CN36	_	_	_	13	14	_	—		13	14	Ι	ST	Interrupt-on-Change Inputs
CTCMP	4	4	1	21	23	4	4	1	21	23	Ι	ANA	CTMU Comparator Input

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

4.2 **Data Address Space**

The PIC24F core has a separate, 16-bit-wide data memory space, addressable as a single linear range. The Data Space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is displayed in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This gives a Data Space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data From Program Memory Using Program Space Visibility").

Depending on the particular device, PIC24FV16KM family devices implement either 512 or 1024 words of data memory. Should an EA point to a location outside of this area, an all zero word or byte will be returned.

FIGURE 4-3:

4.2.1 DATA SPACE WIDTH

The data organized memory space is in byte-addressable, 16-bit-wide blocks. Data is aligned in data memory and registers as 16-bit words, but all the Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

DATA SPACE MEMORY MAP FOR PIC24FXXXXX FAMILY DEVICES⁽³⁾

TABLE 4-9: MCCP2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP2CON1L	164h	CCPON	_	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP2CON1H	166h	OPSSRC	RTRGEN	_	_	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP2CON2L	168h	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP2CON2H	16Ah	OENSYNC	_	OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN	ICGSM1	ICGSM0	—	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP2CON3L	16Ch	_	_	_	_	_	_	_	_	_		DT5	DT4	DT3	DT2	DT1	DT0	0000
CCP2CON3H	16Eh	OETRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾	_	_	POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0(1)	0000
CCP2STATL	170h	_	_	_	_	_	_	_		CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP2TMRL	174h							MCC	P2 Time Ba	ase Register	r Low Word							0000
CCP2TMRH	176h							MCC	P2 Time Ba	se Register	High Word							0000
CCP2PRL	178h							MCCP2	Time Base	Period Regi	ister Low Wo	rd						FFFF
CCP2PRH	17Ah							MCCP2	Time Base I	Period Regi	ster High Wo	ord						FFFF
CCP2RAL	17Ch							C	utput Comp	oare 2 Data	Word A							0000
CCP2RBL	180h							C	utput Comp	oare 2 Data	Word B							0000
CCP2BUFL	184h							Inpu	t Capture 2	Data Buffer	Low Word							0000
CCP2BUFH	186h							Input	Capture 2	Data Buffer	High Word							0000

PIC24FV16KM204 FAMILY

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These bits are available only on PIC24F(V)16KM2XX devices.

TABLE 4-35: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address								
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>				
Instruction Access	User	0		PC<22:1>		0				
(Code Execution)			0xx xxxx x	xxx xxxx	xxxx xxx0					
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>					
(Byte/Word Read/Write)		02	xxx xxxx	xxx		xxx				
	Configuration	TB	LPAG<7:0>		Data EA<15:0>					
		1:	xxx xxxx	XXX		xxx				
Program Space Visibility	User	0	PSVPAG<7:	0>(2)	Data EA<14:	:0>(1)				
(Block Remap/Read)		0	XXXX XXX	κx	xxx xxxx xxx	x xxxx				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) on the PIC24F16KM family.

FIGURE 4-5: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI		—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	<u> </u>			INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	ALTIVT: Enat	ole Alternate Int	errupt Vector 7	able bit			
	1 = Uses Alte 0 = Uses stan	rnate Interrupt	Vector Table (Annuel Annuel Vector Netronal Ne	AIVT) r Table (IVT)			
bit 14	DISI: DISI In	struction Status	s bit	()			
	1 = DISI inst 0 = DISI inst	ruction is active	e ctive				
bit 13-3	Unimplemen	ted: Read as 'o)'				
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect F	Polarity Select b	oit		
	1 = Interrupt i 0 = Interrupt i	s on the negati s on the positiv	ve edge e edge				
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect F	Polarity Select b	oit		
	1 = Interrupt i 0 = Interrupt i	s on the negati s on the positiv	ve edge e edge				
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect F	Polarity Select b	oit		
	1 = Interrupt i 0 = Interrupt i	s on the negati s on the positiv	ve edge e edge				

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 CNIP2 CNIP1 CNIP0 CMIP2 CMIP1 CMIP0 bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 BCL1IP2 BCL1IP1 BCL1IP0 SSP1IP2 SSP1IP1 SSP1IP0 ____ ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 CNIP<2:0>: Input Change Notification Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 CMIP<2:0>: Comparator Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' bit 7 BCL1IP<2:0>: MSSP1 I²C[™] Bus Collision Interrupt Priority bits bit 6-4 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 **SSP1IP<2:0>:** MSSP1 SPI/I²C Event Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled

REGISTER 8-23: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enable bit <u>If FSCM is Enabled (FCKSM1 = 1):</u> 1 = Clock and PLL selections are locked 0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit <u>If FSCM is Disabled (FCKSM1 = 0):</u> Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit ⁽²⁾
	 1 = PLL module is in lock or PLL module start-up timer is satisfied 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	CF: Clock Fail Detect bit
	 1 = FSCM has detected a clock failure 0 = No clock failure has been detected
bit 2	SOSCDRV: Secondary Oscillator Drive Strength bit ⁽³⁾
	 1 = High-power SOSC circuit is selected 0 = Low/high-power select is done via the SOSCSRC Configuration bit
bit 1	SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
	 1 = Enables the Secondary Oscillator 0 = Disables the Secondary Oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	 1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits 0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.

- 2: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
- **3:** When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

13.2 General Purpose Timer

Timer mode is selected when CCSEL = 0 and MOD<3:0> = 0000. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 13-2).

T32 (CCPxCON1L<5>)	Operating Mode
0	Dual Timer Mode (16-bit)
1	Timer Mode (32-bit)

TABLE 13-2: TIMER OPERATION MODE

Dual 16-Bit Timer mode provides a simple timer function with two independent 16-bit timer/counters. The primary timer uses CCPxTMRL and CCPxPRL. Only the primary timer can interact with other modules on the device. It generates the MCCPx Sync out signals for use by other MCCP modules. It can also use the SYNC<4:0> bits signal generated by other modules.

The secondary timer uses CCPxTMRH and CCPxPRH. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an Output Sync/Trigger signal like the primary time base. In Dual Timer mode, the Secondary Timer Period register, CCPxPRH, generates the MCCP Compare Event (CCPxIF) used by many other modules on the device.

The 32-Bit Timer mode uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments by one. This mode provides a simple timer function when it is important to track long time periods. Note that

FIGURE 13-3: DUAL	16-BIT TIMER	MODE
-------------------	---------------------	------

the T32 bit (CCPxCON1L<5>) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

13.2.1 SYNC AND TRIGGER OPERATION

In both 16-bit and 32-bit modes, the timer can also function in either Synchronization ("Sync") or Trigger operation. Both use the SYNC<4:0> bits (CCPxCON1H<4:0>) to determine the input signal source. The difference is how that signal affects the timer.

In Sync operation, the timer Reset or clear occurs when the input selected by SYNC<4:0> is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H<7>) is cleared. SYNC<4:0> can have any value except '11111'.

In Trigger operation, the timer is held in Reset until the input selected by SYNC<4:0> is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a Trigger event as long as the CCPTRIG bit (CCPxSTATL< 7>) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL<5>) must be set to clear the Trigger event, reset the timer and hold it at zero until another Trigger event occurs. On PIC24FV16KM204 family devices, Trigger operation can only be used when the system clock is the time base source (CLKSEL<2:0> = 000).

13.3 Output Compare Mode

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module on compare match events has the ability to generate a single output transition or a train of output

pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

Table 13-3 shows the various modes available in Output Compare modes.

TABLE 13-3: OUTPUT COMPARE/PWM MODES

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode		
0001	0	Output High on Compare (16-bit)		
0001	1	Output High on Compare (32-bit)		
0010	0	Output Low on Compare (16-bit)	Single Edge Mede	
0010	1	Output Low on Compare (32-bit)		
0011	0	Output Toggle on Compare (16-bit)		
0011	1	Output Toggle on Compare (32-bit)		
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode	
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode	
0110	0	Center-Aligned Pulse (16-bit buffered)	Center PWM	
0111	0	Variable Frequency Pulse (16-bit)		
0111	1	Variable Frequency Pulse (32-bit)		

OUTPUT COMPARE x BLOCK DIAGRAM

REGISTER 14-2: SSPxSTAT: MSSPx STATUS REGISTER (I²C[™] MODE) (CONTINUED)

- BF: Buffer Full Status bit
- In Transmit mode:

bit 0

- 1 = Transmit is in progress, SSPxBUF is full
- 0 = Transmit is complete, SSPxBUF is empty
- In Receive mode:
- 1 = SSPxBUF is full (does not include the \overline{ACK} and Stop bits)
- 0 = SSPxBUF is empty (does not include the \overline{ACK} and Stop bits)
- **Note 1:** This bit is cleared on Reset and when SSPEN is cleared.
 - 2: This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or not ACK bit.
 - 3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Active mode.

					•	•		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		_	_		_		_	
bit 15		- -					bit 8	
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ACKTIN	1 PCIE	SCIE	BOEN ⁽¹⁾	SDAHT	SBCDE	AHEN	DHEN	
bit 7							bit 0	
Legend:								
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-8	Unimplemen	ted: Read as ')'					
bit 7	ACKTIM: Ack	knowledge Time	e Status bit (I ² 0	C™ mode only)				
		'I mode.		20				
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit (I	² C mode only)				
6:4 F		'I mode.		20				
DIT 5	SCIE: Start C	onaltion interru	pt Enable bit (I-C mode only)				
bit 4	BOEN. Buffor	r Monwrite Enc	blo bit(1)					
DIL 4	In SPI Slave	node.						
	1 = SSPxBU	F updates ever	y time that a n	ew data byte is	shifted in, igno	oring the BF bit		
	0 = If a new	byte is receive	d with the BF b	oit of the SSPx	STAT register a	already set, the	SSPOV bit of	
	the SSP>	CON1 register	is set and the	buffer is not up	dated			
bit 3	SDAHT: SDA	x Hold Time Se	election bit (I ² C	; mode only)				
		'I mode.			<u>.</u>			
bit 2	SBCDE: Slav	e Mode Bus C	ollision Detect	Enable bit (I ² C	Slave mode or	ıly)		
	Unused in SF	'l mode.						
bit 1	AHEN: Addre	ess Hold Enable	e bit (I ² C Slave	mode only)				
	Unused in SF	'I mode.						
bit 0	DHEN: Data	Hold Enable bi	(Slave mode)	only)				
	Unused in SF	'i mode.						
Note 1	For Daisy-Chaine	For Daisy Chained SPI Operation: Allows the user to ignore all but the last received bute. SSPO// is still						

REGISTER 14-6: SSPxCON3: MSSPx CONTROL REGISTER 3 (SPI MODE)

Note 1: For Daisy-Chained SPI Operation: Allows the user to ignore all but the last received byte. SSPOV is still set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPxBUF.

16.2.5 RTCVAL REGISTER MAPPINGS

REGISTER 16-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15			•				bit 8

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 16-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13 Unimplemented: Read as '0'

- bit 12 **MTHTENO:** Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
- bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
- bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 20-1: DACxCON: DACx CONTROL REGISTER (CONTINUED)

- bit 6-2 DACTSEL<4:0>: DACx Trigger Source Select bits
 - 11101-11111 = Unused 11100 = CTMU 11011 = A/D 11010 = Comparator 3 11001 = Comparator 2 11000 = Comparator 1 10011 to 10111 = Unused 10010 = CLC2 output 10001 = CLC1 output 01100 to 10000 = Unused 01011 = Timer1 Sync output 01010 = External Interrupt 2 01001 = External Interrupt 1 01000 = External Interrupt 0 0011x = Unused 00101 = MCCP5 or SCCP5 Sync output 00100 = MCCP4 or SCCP4 Sync output 00011 = MCCP3 or SCCP3 Sync output 00010 = MCCP2 or SCCP2 Sync output 00001 = MCCP1 or SCCP1 Sync output 00000 = Unused DACREF<1:0>: DACx Reference Source Select bits 11 = Internal Band Gap Buffer 1 (BGBUF1)⁽¹⁾
 - 10 = AVDD

bit 1-0

- 01 = DVREF+
- 00 = Reference is not connected (lowest power but no DAC functionality)
- **Note 1:** BGBUF1 voltage is configured by BUFREF<1:0> (BUFCON0<1:0>).

TABLE 27-38: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS			Standard Operating Condition			$\begin{array}{llllllllllllllllllllllllllllllllllll$		
Param No.	Sym	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Clock P	aramete	rs			
AD50	Tad	A/D Clock Period	600	—	—	ns	Tcy = 75 ns, AD1CON3 in default state	
AD51	TRC	A/D Internal RC Oscillator Period		1.67	—	μs		
			Conver	sion Rat	е			
AD55	Τςονν	Conversion Time	—	12 14		Tad Tad	10-bit results 12-bit results	
AD56	FCNV	Throughput Rate			100	ksps		
AD57	TSAMP	Sample Time		1	—	TAD		
AD58	TACQ	Acquisition Time	750	—	—	ns	(Note 2)	
AD59	Tswc	Switching Time from Convert to Sample	—	—	(Note 3)			
AD60	TDIS	Discharge Time	12	—	—	TAD		
			Clock P	aramete	rs			
AD61	TPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	_	3	TAD		

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

- 2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).
- 3: On the following cycle of the device clock.

20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC		
Optional Center Pad Width	W2			2.50	
Optional Center Pad Length	T2			2.50	
Contact Pad Spacing	C1		3.93		
Contact Pad Spacing	C2		3.93		
Contact Pad Width	X1			0.30	
Contact Pad Length	Y1			0.73	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		44	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E		8.00 BSC	
Exposed Pad Width	E2	6.25	6.45	6.60
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width		0.20	0.30	0.35
Terminal Length	Terminal Length L			0.50
Terminal-to-Exposed-Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2

NOTES: