

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km202t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

		Pin Features						
44-Pin TQFP/QFN ⁽¹⁾	Pin	PIC24FXXKMX04 PIC24FVXXKMX04						
ფიფი ^{ი დ} ი4დ04	1	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/ /CLC10/CTED4/CN21/RB9						
RB4 RB7 RB7 RB7 RB7 RB7 RB7 RB7 RB7 RB7 RB7	2	U1RX/ /CN18/RC6						
444 441 339 338 337 335 335 335 335 335	3	U1TX/ /CN17/RC7						
RB9 1 33 RB4	4	/CN20/RC8						
RC6 2 32 RA8 RC7 3 31 RA3	5	IC4/OC2F/CTED7/CN19/RC9						
RC8 4 30 RA2	6	IC1/ / /CTED3/CN9/RA7						
RC9 5 PIC24FXXKMX04 29 Vss RA7 6 28 VdD	7	/OC1A/CTED1/INT2/CN8/RA6 VCAP or VDDCORE						
RA6 7 27 RC2	8	PGED2/SDI1/OC1C/CTED11/CN16/RB10						
RB10 8 26 RC1	9	PGEC2/SCK1/OC2A/CTED9/CN15/RB11 //AN42/UV/DIN/////CTED2/IN12//////////////////////////////////						
RB11 9 25 RC0 RB12 10 24 RB3	10	/AN12/HLVDIN/ /CTED2/ /AN12/HLVDIN/ /CTED2/INT2/ CN14/RB12 CN14/RB12						
RB13 11 23 RB2	11	/ /AN11/SDO1/OC1D/CTPLS/CN13/RB13						
000777777777	12	/ /CN35/RA10						
RANDIC A10 RANDIC A11 RANDIC A11	13	/ /CTED8/CN36/RA11						
	14	/CVREF/ / /AN10/ / /C1OUT/OCFA/CTED5/INT1/CN12/						
RA10 RB14 RB15 AVSS AVSS AVSS AVSS RB15 RB15 RB16 RB10 RB10 RB10 RB10 RB10		RB14						
	15	/ /AN9/ /REFO/SS1/TCKIA/CTED6/CN11/RB15						
	16	AVss						
	17	AVDD						
	18 19	MCLR/Vpp/RA5 CVRef+/VRef+/ /AN0/ /CN2/ CVRef+/VRef+/ /AN0/ /						
	19	RA0 CTED1/CN2/RA0						
	20	CVREF-/VREF-/AN1/CN3/RA1						
	21	PGED1/AN2/CTCMP/ULPWU/C1IND/ / / /CN4/RB0						
	22	PGEC1/ / /AN3/C1INC/ / /CTED12/CN5//RB1						
	23	/ /AN4/C1INB/ / /TCKIB/CTED13/CN6/RB2						
	24	/AN5/C1INA/ / /CN7/RB3						
	25	AN6/CN32/RC0						
	26	AN7/CN31/RC1						
	27	AN8/CN10/RC2						
	28	VDD						
	29 30	Vss OSCI/CLKI/AN13/CN30/RA2						
	31	OSC/CLK/AN19/CN29/RA2						
	32	OCFB/CN33/RA8						
	33	SOSCI/AN15/ / /CN1/RB4						
	34	SOSCO/SCLKI/AN16/PWRLCLK/ /CN0/RA4						
	35	/CN34/RA9						
	36	/CN28/RC3						
	37	/CN25/RC4						
	38	/CN26/RC5						
Legend: Values in indicate pin	39	Vss						
function differences between	40	Vdd						
PIC24F(V)XXKM202 and PIC24F(V)XXKM102 devices.	41	PGED3/AN17/ASDA1/OC1E/CLCINA/CN27/RB5						
Note 1: Exposed pad on underside of	42	PGEC3/AN18/ASCL1/OC1F/CLCINB/CN24/RB6						
device is connected to Vss.	43	AN19/INT0/CN23/RB7 AN19/ /OC1A/INT0/CN23/RB7						
	44	AN20/SCL1/U1CTS/C3OUT/OC1B/CTED10/CN22/RB8						

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

The PIC24FV16KM204 family introduces many new analog features to the extreme low-power Microchip devices. This is a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. This family also offers a new migration option for those high-performance applications which may be outgrowing their 8-bit platforms, but do not require the numerical processing power of a Digital Signal Processor (DSC).

1.1 Core Features

1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] Digital Signal Controllers. The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear Addressing of up to 16 Mbytes (program space) and 16 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32-bit by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as C
- Operational performance up to 16 MIPS

1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FV16KM204 family incorporate a range of features that can significantly reduce power consumption during operation. Key features include:

- On-the-Fly Clock Switching, to allow the device clock to be changed under software control to the Timer1 source or the internal, low-power RC Oscillator during operation, allowing users to incorporate power-saving ideas into their software designs.
- Doze Mode Operation, when timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes, to allow the microcontroller to suspend all operations or selectively shut down its core while leaving its peripherals active with a single instruction in software.

1.1.3 OSCILLATOR OPTIONS AND FEATURES

The PIC24FV16KM204 family offers five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock (EC) modes offering the option of a divide-by-2 clock output.
- Two Fast Internal Oscillators (FRCs), one with a nominal 8 MHz output and the other with a nominal 500 kHz output. These outputs can also be divided under software control to provide clock speed as low as 31 kHz or 2 kHz.
- A Phase Locked Loop (PLL) frequency multiplier, available to the external oscillator modes and the 8 MHz FRC Oscillator, which allows clock speeds

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

I/O

1

0

I/O

I/O

I/O

I/O

I/O

I/O

Т

I/O

48-Pin

UQFN

33

34

24

23

10

9

46

45

37

21

22

33

34

37

19

_

6

35

38

13

14

23

24

25

26

36

45

46

47

48

44-Pin

QFN/

TQFP

30

31

22

21

9

8

42

41

34

19 20

30

31

34

18

6

32

35

12

13

21

22

23

24

33

41

42

43

44

Buffer

ANA

ANA

ST

Description

Primary Oscillator Input

ICSP Clock 1

ICSP Data 1

ICSP Clock 2

ICSP Data 2

ICSP Clock 3

ICSP Data 3

PORTA Pins

PORTB Pins

Primary Oscillator Output

RTCC Power Line Clock Input

l			F					FV	
1			Pin Numb	er			I	Pin Numb	er
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	4
OSCI	7	9	6	30	33	7	9	6	
OSCO	8	10	7	31	34	8	10	7	
PGEC1	5	5	2	22	24	5	5	2	
PGED1	4	4	1	21	23	4	4	1	
PGEC2	2	22	19	9	10	2	22	19	
PGED2	3	21	18	8	9	3	21	18	
PGEC3	10	15	12	42	46	10	15	12	
PGED3	9	14	11	41	45	9	14	11	
PWRLCLK	10	12	9	34	37	10	12	9	
RA0	2	2	27	19	21	2	2	27	
RA1	3	3	28	20	22	3	3	28	
RA2	7	9	6	30	33	7	9	6	
RA3	8	10	7	31	34	8	10	7	
RA4	10	12	9	34	37	10	12	9	
RA5	1	1	26	18	19	1	1	26	
RA6	14	20	17	7	7				
RA7	_	19	16	6	6		19	16	
RA8	_	_		32	35				
RA9	—	—	—	35	38	—	—	—	
RA10	—	—	—	12	13	—	—	—	
RA11	—	—	—	13	14	—	—	—	
RB0	4	4	1	21	23	4	4	1	
RB1	5	5	2	22	24	5	5	2	
RB2	6	6	3	23	25	6	6	3	
RB3	_	7	4	24	26	—	7	4	
RB4	9	11	8	33	36	9	11	8	
RB5	—	14	11	41	45	—	14	11	
RB6	_	15	12	42	46	—	15	12	
RB7	11	16	13	43	47	11	16	13	
RB8	12	17	14	44	48	12	17	14	

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, I²CTM = I²C/SMBus input buffer

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

	F						FV						
	Pin Number					Pin Number				-			
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
RB9	13	18	15	1	1	13	18	15	1	1	I/O	ST	PORTB Pins
RB10	—	21	18	8	9	_	21	18	8	9	I/O	ST	PORTB Pins
RB11	—	22	19	9	10	_	22	19	9	10	I/O	ST	PORTB Pins
RB12	15	23	20	10	11	15	23	20	10	11	I/O	ST	PORTB Pins
RB13	16	24	21	11	12	16	24	21	11	12	I/O	ST	PORTB Pins
RB14	17	25	22	14	15	17	25	22	14	15	I/O	ST	PORTB Pins
RB15	18	26	23	15	16	18	26	23	15	16	I/O	ST	PORTB Pins
RC0	_	_	—	25	27	_	_	—	25	27	I/O	ST	PORTC Pins
RC1	_	_	—	26	28			_	26	28	I/O	ST	PORTC Pins
RC2	_	_	—	27	29			_	27	29	I/O	ST	PORTC Pins
RC3	_	_	—	36	39	_	_	—	36	39	I/O	ST	PORTC Pins
RC4	_	_	—	37	40	_	_	—	37	40	I/O	ST	PORTC Pins
RC5	_	_	—	38	41	_	_	—	38	41	I/O	ST	PORTC Pins
RC6	_	_	—	2	2	_	_	—	2	2	I/O	ST	PORTC Pins
RC7	_	_	—	3	3	_	_	—	3	3	I/O	ST	PORTC Pins
RC8	_	_	—	4	4	_	_	—	4	4	I/O	ST	PORTC Pins
RC9	_	_	—	5	5	_	_	—	5	5	I/O	ST	PORTC Pins
REFO	18	26	23	15	16	18	26	23	15	16	0	—	Reference Clock Output
RTCC	_	25	22	14	15	_	25	22	14	15	0	—	Real-Time Clock/Calendar Output
SCK1	15	22	19	9	10	15	22	19	9	10	I/O	ST	MSSP1 SPI Clock
SDI1	17	21	18	8	9	17	21	18	8	9	I	ST	MSSP1 SPI Data Input
SDO1	16	24	21	11	12	16	24	21	11	12	0	—	MSSP1 SPI Data Output
SS1	18	26	23	15	16	18	26	23	15	16	Ι	ST	MSSP1 SPI Slave Select Input
SCK2	—	14	11	38	41	—	14	11	38	41	I/O	ST	MSSP2 SPI Clock
SDI2	—	19	16	36	39	_	19	16	36	39	Ι	ST	MSSP2 SPI Data Input
SDO2	—	15	12	37	40	_	15	12	37	40	0	—	MSSP2 SPI Data Output
SS2	_	23	20	35	38	_	23	20	35	38	Ι	ST	MSSP2 SPI Slave Select Input

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as displayed in Example 5-5.

EXAMPLE 5-1:	ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

; Set up NVMCON for row erase operation	
MOV #0x4058, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts
	for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
                                                             // Variable located in Pgm Memory, declared as a
int __attribute__ ((space(auto_psv))) progAddr = 0x1234;
                                                              // global variable
   unsigned int offset;
//Set up pointer to the first memory location to be written
   TBLPAG = __builtin_tblpage(&progAddr);
                                                              // Initialize PM Page Boundary SFR
   offset = __builtin_tbloffset(&progAddr);
                                                             // Initialize lower word of address
    __builtin_tblwtl(offset, 0x0000);
                                                              // Set base address of erase block
                                                              // with dummy latch write
   NVMCON = 0 \times 4058;
                                                              // Initialize NVMCON
   asm("DISI #5");
                                                              // Block all interrupts for next 5 instructions
     _builtin_write_NVM();
                                                              // C30 function to perform unlock
                                                              // sequence and set WR
```

		D 444 0		11.0			
R/W-0, H		R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	SBOREN	RETEN ⁽³⁾			CM	PMSLP
bit 15							bit 8
R/W-0, H	S R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
EXTR	SWR	SWDTEN(2)	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit
			0 " 11 1"				
Legend:		HS = Hardwar				(-)	
R = Reada		W = Writable k	Dit	-	nented bit, read		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	TRAPR: Trap	Reset Flag bit					
	-	onflict Reset has	occurred				
		onflict Reset has					
bit 14	IOPUWR: Ille	gal Opcode or l	Jninitialized W	Access Reset	Flag bit		
	1 = An illegal	opcode detecti	on, an illegal a	ddress mode o	or Uninitialized V	V register used	as an Addres
		aused a Reset					
	0	l opcode or Unir			curred		
bit 13		oftware Enable/E		R bit			
		rned on in softw					
1 1 40		rned off in softw					
bit 12		ention Sleep Mo		he Detention F			
					Regulator (RETR ge Regulator (VF		
bit 11-10	-	ted: Read as '0					Jop
bit 9	-	ation Word Misr		lag hit			
bit 5	-	Iration Word Mis		-			
	•	ration Word Mis			ed		
bit 8	•	gram Memory Po					
		memory bias vo	-	-	ng Sleep		
	0 = Program Standby		voltage is pow	vered down du	iring Sleep and	the voltage re	gulator enter
bit 7	EXTR: Extern	nal Reset (MCLF	R) Pin bit				
	1 = A Master	Clear (pin) Res	et has occurre	d			
	0 = A Master	Clear (pin) Res	et has not occ	urred			
bit 6	SWR: Softwa	re RESET (Instru	uction) Flag bi	t			
		instruction has I instruction has r		-			
bit 5	SWDTEN: So	oftware Enable/[Disable of WD	T bit ⁽²⁾			
	1 = WDT is e						
	0 = WDT is di						
Note 1:	All of the Reset a cause a device	-	be set or clear	ed in software.	Setting one of the	nese bits in soft	ware does no
2:	If the FWDTEN- of the SWDTEN	-	tion bits are '1	1' (unprogrami	med), the WDT i	is always enabl	ed regardless
•	T I: := := :== = = = =						

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾

3: This is implemented on PIC24FV16KMXXX parts only; not used on PIC24F16KMXXX devices.

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—			—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0
	—	—	—	IPL3 ⁽²⁾	PS√ ⁽¹⁾	—	—
bit 7							bit 0

Legend:	C = Clearable bit	HSC = Hardware Settat	ole/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 1-0 Unimplemented: Read as '0'

Note 1: See Register 3-2 for the description of this bit, which is not dedicated to interrupt control functions.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

Note: Bit 2 is described in Section 3.0 "CPU".

REGISTER 9-3:

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	—	—	—	—		
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	= Bit is unknown	
bit 15-6	Unimplemen	ted: Read as '	0'					
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾					
	011111 = Ma 011110	ximum frequer	ncy deviation					
	•							
	•							
	• 000001							
		nter frequency	, oscillator is ru	inning at factory	/ calibrated free	quency		
	•							
	•							
	•							
	100001 100000 = Mir	nimum frequen	cy deviation					

OSCTUN: FRC OSCILLATOR TUNE REGISTER

- Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC
 - tuning range and may not be monotonic.

13.2 General Purpose Timer

Timer mode is selected when CCSEL = 0 and MOD<3:0> = 0000. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 13-2).

T32 (CCPxCON1L<5>)	Operating Mode
0	Dual Timer Mode (16-bit)
1	Timer Mode (32-bit)

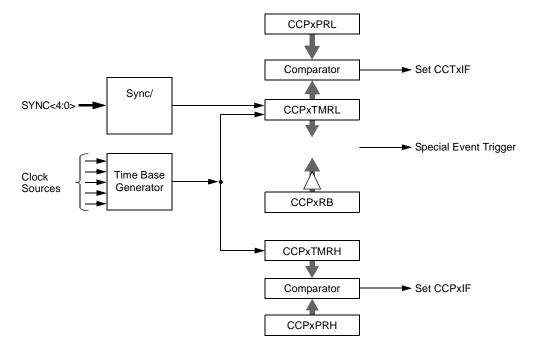
TABLE 13-2: TIMER OPERATION MODE

Dual 16-Bit Timer mode provides a simple timer function with two independent 16-bit timer/counters. The primary timer uses CCPxTMRL and CCPxPRL. Only the primary timer can interact with other modules on the device. It generates the MCCPx Sync out signals for use by other MCCP modules. It can also use the SYNC<4:0> bits signal generated by other modules.

The secondary timer uses CCPxTMRH and CCPxPRH. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an Output Sync/Trigger signal like the primary time base. In Dual Timer mode, the Secondary Timer Period register, CCPxPRH, generates the MCCP Compare Event (CCPxIF) used by many other modules on the device.

The 32-Bit Timer mode uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments by one. This mode provides a simple timer function when it is important to track long time periods. Note that

FIGURE 13-3: DUAL 16-BIT TIMER MODE


the T32 bit (CCPxCON1L<5>) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

13.2.1 SYNC AND TRIGGER OPERATION

In both 16-bit and 32-bit modes, the timer can also function in either Synchronization ("Sync") or Trigger operation. Both use the SYNC<4:0> bits (CCPxCON1H<4:0>) to determine the input signal source. The difference is how that signal affects the timer.

In Sync operation, the timer Reset or clear occurs when the input selected by SYNC<4:0> is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H<7>) is cleared. SYNC<4:0> can have any value except '11111'.

In Trigger operation, the timer is held in Reset until the input selected by SYNC<4:0> is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a Trigger event as long as the CCPTRIG bit (CCPxSTATL< 7>) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL<5>) must be set to clear the Trigger event, reset the timer and hold it at zero until another Trigger event occurs. On PIC24FV16KM204 family devices, Trigger operation can only be used when the system clock is the time base source (CLKSEL<2:0> = 000).

REGISTER 13-7: CCPxSTATL: CCPx STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	_	_	—	_	_			
bit 15							bit 8		
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
CCPTRIG	TRSET	TRSET TRCLR ASEVT SCEVT ICDIS ICOV ICB							
bit 7							bit 0		
Legend:		C = Clearable	hit						
R = Readab	le hit	W1 = Write '1'		II – I Inimplem	nented bit, read	1 26 '0'			
-n = Value a		(1) = Bit is set	Offiy	$0^{\circ} = \text{Bit is clear}$		x = Bit is unkr	NOWD		
					alea		IOWIT		
bit 15-8	Unimplemen	ted: Read as '0	,						
bit 7	-	CPx Trigger Sta							
		s been triggere		ng					
	0 = Timer has not been triggered and is held in Reset								
bit 6		x Trigger Set R	•						
	Write '1' to th	is location to trig	gger the timer	when TRIGEN	= 1 (location a	lways reads as	sʻ0').		
bit 5		Px Trigger Clear	•						
	Write '1' to th	is location to ca	ncel the timer	Trigger when T	RIGEN = 1 (lo	cation always r	eads as '0').		
bit 4		x Auto-Shutdov							
		wn event is in p		x outputs are in	the shutdown	state			
h it 0		Itputs operate n	•	- hit					
bit 3		le Edge Compa edge compare e							
	Ų	edge compare e							
bit 2	-	Capture x Disat							
	1 = Event on	Input Capture	k pin (ICx) doe	es not generate	a capture ever	nt			
	0 = Event on	Input Capture	k pin will gene	rate a capture e	event				
bit 1	ICOV: Input (Capture x Buffer	Overflow Stat	tus bit					
		t Capture x FIF							
	•	t Capture x FIF		ot overflowed					
bit 0	•	Capture x Buff							
		apture x buffer I apture x buffer i		able					
			sempty						

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_			—	—	_	_	—
bit 15							bit 8
R/W-0	R/W-0 R-0 R-0 R-0 R-0						
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit. rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
bit 15-8	Unimplemen	ted: Read as '	כ'				
bit 7	SMP: Sample	e bit					
	SPI Master m						
		is sampled at					
	•	-	the middle of	data output time			
	SPI Slave mo SMP must be	de: cleared when	SPI is used in	Slave mode.			
bit 6		ock Select bit ⁽¹⁾					
				ve to Idle clock s to active clock s			
bit 5	D/A: Data/Ad	dress bit					
	Used in I ² C™						
bit 4	P: Stop bit	-					
	Used in I ² C m	node only. This	bit is cleared	when the MSSP	x module is d	sabled; SSPEN	bit is cleared
bit 3	S: Start bit						
	Used in I ² C m	node only.					
bit 2	R/W : Read/W	rite Information	n bit				
	Used in I ² C m	node only.					
bit 1	UA: Update A	Address bit					
	Used in I ² C m	node only.					
bit 0	BF: Buffer Fu	ll Status bit					
	1 = Receive is	s complete. SS	PxBUF is full				
	0 = Receive is	s not complete		empty			

REGISTER 14-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

15.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated 16-bit Baud Rate Generator (BRG). The UxBRG register controls the period of a free-running, 16-bit timer. Equation 15-1 provides the formula for computation of the baud rate with BRGH = 0.

EQUATION 15-1: UARTX BAUD RATE WITH BRGH = $0^{(1)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ $UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$ Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 15-1 provides the calculation of the baud rate error for the following conditions:

- FCY = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 15-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 15-2: UARTx BAUD RATE WITH BRGH = $1^{(1)}$

Baud Rate =
$$\frac{FCY}{4 \cdot (UxBRG + 1)}$$

 $UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 15-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate	= FCY/(16 (UxBRG + 1))
Solving for UxBRG va	alue:
UxBRG UxBRG	= ((FCY/Desired Baud Rate)/16) - 1 = ((4000000/9600)/16) - 1
UxBRG	= 25
Calculated Baud Rate	= 4000000/(16 (25 + 1)) = 9615
Error	 = (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate = (9615 – 9600)/9600 = 0.16%
Note 1: Based on	FCY = FOSC/2; Doze mode and PLL are disabled.

R/W-0 UTXISEL1 bit 15	R/W-0 UTXINV	R/W-0 UTXISEL0	U-0 —	R/W-0, HC UTXBRK	R/W-0 UTXEN	R-0, HSC UTXBF	R-1, HSC TRMT bit 8
R/W-0 URXISEL1 bit 7	R/W-0 URXISEL0	R/W-0 ADDEN	R-1, HSC RIDLE	R-0, HSC PERR	R-0, HSC FERR	R/C-0, HS OERR	R-0, HSC URXDA bit 0
Legend: HS = Hardwa R = Readable -n = Value at		HC = Hardwar C = Clearable W = Writable b '1' = Bit is set	bit	HSC = Hardwa U = Unimpleme '0' = Bit is clear	ented bit, read		own
bit 15,13	 11 = Reserve 10 = Interrup transmi 01 = Interrup are com 00 = Interrup 	0>: UARTx Trar ed; do not use t when a charac t buffer become t when the last c upleted t when a charac aracter open in t	cter is transferr s empty haracter is shif ter is transferre	ed to the Transi ited out of the Tr ed to the Transm	mit Shift Regis ransmit Shift Re	egister; all trans	mit operations
bit 14		A [®] Encoder Trai e '0' e '1' e '1'		-			
bit 12	Unimplemer	ted: Read as ')'				
bit 11	1 = Sends S cleared	ARTx Transmit E ync Break on ne by hardware upo eak transmissior	ext transmission		owed by twelv	e '0' bits, follow	ed by Stop bit;
bit 10	1 = Transmit 0 = Transmit	RTx Transmit Er is enabled; Ux is disabled; ar d by the PORT r	TX pin is controlly by pending training	•		buffer is reset	; UxTX pin is
bit 9	UTXBF: UAF 1 = Transmit	RTx Transmit Bu	ffer Full Status		can be written		
bit 8		mit Shift Registe Shift Register ed)		• •	ouffer is empt	y (the last trar	ismission has

REGISTER 15-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

16.2.4 RTCC CONTROL REGISTERS

REGISTER 16-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾	—	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0
bit 15		-		· · · · ·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0
bit 7	•	•					bit 0

Legend:	HSC = Hardware Setta	able/Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	RTCEN: RTCC Enable bit ⁽²⁾ 1 = RTCC module is enabled 0 = RTCC module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	RTCWREN: RTCC Value Registers Write Enable bit
	 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user
bit 12	RTCSYNC: RTCC Value Registers Read Synchronization bit
	 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid. 0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple
bit 11	HALFSEC: Half Second Status bit ⁽³⁾
	1 = Second half period of a second0 = First half period of a second
bit 10	RTCOE: RTCC Output Enable bit
	1 = RTCC output is enabled0 = RTCC output is disabled
bit 9-8	RTCPTR<1:0>: RTCC Value Register Window Pointer bits
	Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers. The RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'.
	RTCVAL<15:8>: 00 = MINUTES
	10 = MONTH 11 = Reserved
	<u>RTCVAL<7:0>:</u>
	00 = SECONDS
	01 = HOURS
	10 = DAY 11 = YEAR

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

17.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Source Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

REGISTER 17-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	
LCEN	—	—	—	INTP	INTN	—	—	
bit 15							bit 8	
R-0	R-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
LCOE	LCOUT	LCPOL	—	—	MODE2	MODE1	MODE0	
bit 7							bit 0	
<u> </u>								
Legend:			•.					
R = Readab		W = Writable I	Dit	•	nented bit, rea			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	LCEN: CLCx	- Frankla hit						
DIL IS		enabled and mi	vina input siar	ale				
		disabled and ha						
bit 14-12		nted: Read as '0	0	·				
bit 11	INTP: CLCx	Positive Edge Ir	terrupt Enabl	e bit				
	1 = Interrupt	will be generate	ed when a risi	ng edge occurs	on LCOUT			
	•	will not be gene						
bit 10		Negative Edge	•					
		will be generate will not be gene		ing edge occurs	s on LCOUT			
bit 9-8	•	ted: Read as '0						
bit 7	-	Port Enable bit						
bit i		rt pin output is e						
		rt pin output is d						
bit 6	LCOUT: CLCx Data Output Status bit							
	1 = CLCx output high							
	0 = CLCx output low							
bit 5		X Output Polari						
		out of the module		be				
bit 4-3		nted: Read as '(50				
	emplement		, ,					

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0		
bit 7							bit (
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-13	111 = AN6 ⁽¹⁾ 110 = AN5 ⁽²⁾ 101 = AN4 100 = AN3 011 = AN2 010 = AN1 001 = AN0	-	annel 0 Negati	ve Input Select	bits				
	000 = AVss								
bit 12-8	CH0SB<4:0>: S/H Amplifier Positive Input Select for MUX B Multiplexer Setting bits 11111 = Unimplemented, do not use								
	11011 = Low 11011 = Low 11010 = Inte 11000-1100 10001 = No 10111 = No 10110 = No doe 10101 = Cha 10010 = Cha 10001 = Cha 01001 = Cha 01001 = Cha 01001 = Cha 00111 = Cha 00111 = Cha 00110 = Cha	ss(3) ber guardband i ver guardband i vrnal Band Gap 1 = Unimpleme channels are co channels are co channels are co channels are co channels are co s not require the annel 0 positive annel 0 positive	e correspondin input is AN21 input is AN20 input is AN19 input is AN18 input is AN17 ⁽¹⁾ input is AN8 ⁽¹⁾ input is AN7 ⁽¹⁾ input is AN6 ⁽¹⁾ input is AN5 ⁽²⁾	D) G)(3) e puts are floatin puts are floatin outs are floatin g CTMEN22 (<i>k</i> 2) 2)	g (used for CT) g (used for CTN	MU) /IU temperature	e sensor input		
	00010 = Cha 00001 = Cha 00000 = Cha	annel 0 positive annel 0 positive annel 0 positive annel 0 positive	input is AN2 input is AN1 input is AN0						
	nis is implement	-	-	oc only					

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER

- **2:** This is implemented on 28-pin and 44-pin devices only.
- 3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

DC CHA	RACTER	ISTICS		I Operatin g temperat	-	/ to 3.6V (PIC24F16KM204) / to 5.5V (PIC24FV16KM204) ^o C TA +85°C for Industrial ^o C TA +125°C for Extended	
Param No.	Sym Characteristic Min Typ ⁽¹⁾ Max Units				Units	Conditions	
		Data EEPROM Memory					
D140	Epd	Cell Endurance	100,000	—	—	E/W	
D141	Vprd	VDD for Read	Vmin	—	3.6	V	VMIN = Minimum operating voltage
D143A	Tiwd	Self-Timed Write Cycle Time	—	4	—	ms	
D143B	Tref	Number of Total Write/Erase Cycles Before Refresh	—	10M	_	E/W	
D144	Tretdd	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D145	IDDPD	Supply Current During Programming	—	7		mA	

TABLE 27-12: DC CHARACTERISTICS: DATA EEPROM MEMORY

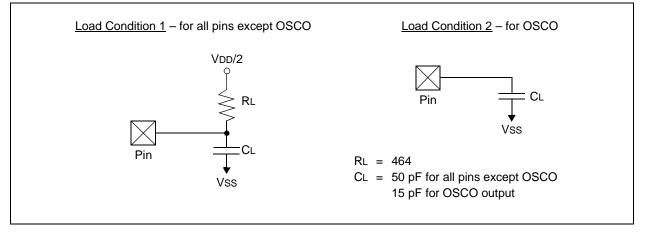
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 27-13: DC CHARACTERISTICS: COMPARATOR

DC CHA	DC CHARACTERISTICS			perating Co	2.0V	' to 5.5V (F C TA +8	PIC24F16KM204) PIC24FV16KM204) 85°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic	Min Typ Max Units			Conditions	
D300	VIOFF	Input Offset Voltage		20	40	mV	
D301	VICM	Input Common-Mode Voltage	0	—	Vdd	V	
D302	D302 CMRR Common-Mode Rejection Ratio			—	—	dB	

TABLE 27-14: DC CHARACTERISTICS: COMPARATOR VOLTAGE REFERENCE

DC CHAF	DC CHARACTERISTICS			Operating temperatu	re	2.0V to 5.5 -40°C TA	5V (PIC24F16KM204) 5V (PIC24FV16KM204) +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
VRD310	CVRES	Resolution	—		Vdd/32	LSb	
VRD311	CVRAA	Absolute Accuracy	—	—	1	LSb	AVDD = 3.3V-5.5V
VRD312	CVRur	Unit Resistor Value (R)	—	2k	_		


27.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FV16KM204 family AC characteristics and timing parameters.

TABLE 27-18: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 1.8V to 3.6V		
AC CHARACTERISTICS	Operating temperature -40°C TA +85°C for Industrial		
AC CHARACTERISTICS	-40°C TA +125°C for Extended		
	Operating voltage VDD range as described in Section 27.1 "DC Characteristics".		

FIGURE 27-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 27-19: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_	—	15		In XT and HS modes when External Clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In l ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

INDEX

	r
•	•

A/D	
Buffer Data Formats	. 225
Control Registers	. 212
AD1CHITH/L	. 212
AD1CHS	. 212
AD1CON1	. 212
AD1CON2	. 212
AD1CON3	. 212
AD1CON5	. 212
AD1CSSH/L	. 212
AD1CTMENH/L	. 212
Sampling Requirements	. 223
Transfer Function	. 224
AC Characteristics	
8-Bit DAC Specifications	. 296
A/D Conversion Requirements	. 295
A/D Module Specifications	. 294
Capacitive Loading Requirements on	
Output Pins	. 279
CLKO and I/O Requirements	. 282
External Clock Requirements	. 280
Internal RC Accuracy	. 281
Internal RC Oscillator Specifications	. 281
Load Conditions and Requirements	. 279
PLL Clock Specification	. 281
Reset, Watchdog Timer. Oscillator Start-up Timer,	
Power-up Timer, Brown-out Reset	
Requirements	. 284
Temperature and Voltage Specifications	. 279
Assembler	
MPASM Assembler	. 262

В

Block Diagrams	
12-Bit A/D Converter	210
12-Bit A/D Converter Analog Input Model	223
16-Bit Timer1	
32-Bit Timer Mode	146
Accessing Program Memory with	
Table Instructions	65
CALL Stack Frame	63
CLCx Input Source Selection	
CLCx Logic Function Combinatorial Options	196
CLCx Module	195
Comparator Voltage Reference	239
Comparator x Module	
Conceptual MCCPx/SCCPx Modules	143
CPU Programmer's Model	37
CTMU Connections, Internal Configuration for	
Capacitance Measurement	242
CTMU Connections, Internal Configuration for	
Pulse Delay Generation	243
CTMU Connections, Internal Configuration for	
Time Measurement	242
Data Access from Program Space Address Gen 64	eration
Data EEPROM Addressing with TBLPAG and	
NVM Registers	75
Dual 16-Bit Timer Mode	145
High/Low-Voltage Detect (HLVD)	
Individual Comparator Configurations	236
Input Capture x Module	148

MCLR Pin Connections Example	30
MSSPx (I ² C Master Mode)	161
MSSPx (I ² C Mode)	161
MSSPx (SPI Mode)	160
On-Chip Voltage Regulator Connections	257
Output Compare x Module	147
PIC24F CPU Core	
PIC24FXXXXX Family (General)	
PSV Operation	
Recommended Minimum Connections	
Reset System	
RTCC Module	181
Series Resistor	132
Shared I/O Port Structure	137
Simplified Single DACx Module	229
Simplified UARTx	173
Single Operational Amplifier	233
SPI Master/Slave Connection	
Suggested Oscillator Circuit Placement	33
System Clock	
Table Register Addressing	67
Timer Clock Generator	
Watchdog Timer (WDT)	258
Brown-out Reset	
Trip Points	269

С

C Compilers
MPLAB XC Compilers
Capture/Compare/PWM/Timer
Auxiliary Output149
General Purpose Timer
Input Capture Mode 148
Output Compare Mode
Synchronization Sources 153
Time Base Generator
Capture/Compare/PWM/Timer (MCCP, SCCP)143
Charge Time Measurement Unit. See CTMU.
CLC
Control Registers 198
Code Examples
Assembly Code Sequence for Clock Switching 128
C Code Power-Saving Entry 131
C Code Sequence for Clock Switching 128
Data EEPROM Bulk Erase
Data EEPROM Unlock Sequence
Erasing a Program Memory Row,
Assembly Language
Erasing a Program Memory Row, C Language 70
I/O Port Write/Read140
Initiating a Programming Sequence,
Assembly Language72
Initiating a Programming Sequence, C Language 72
Loading the Write Buffers, Assembly Language 71
Loading the Write Buffers, C Language
Reading Data EEPROM Using
TBLRD Command78
Setting the RTCWREN Bit in 'C' 182
Setting the RTCWREN Bit in Assembly 182
Single-Word Erase
Single-Word Write to Data EEPROM
Ultra Low-Power Wake-up Initialization
Code Protection
Comparator 235