

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 22x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km204-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	28-Pin QFN ⁽¹⁾	22 21 RB13 20 RB12
	RB3 4 Vss 5 RA2 6 RA3 7 <u>8 9 10 11 12 13 1</u>	18 RB10 17 RA6 or VDDcore 16 RA7 15 RB9
	R 85 R 85 R 85 R 82 R 82 R 82 R 82 R 82 R 82 R 82 R 82	5 0 2 2
Pin	Pin Features	Pin Features
	PIC24FXXKMX02	PIC24FVXXKMX02
1	PGED1/AN2/CTCMP/ULPWU/C1IND/ / / /CN4/I	RB0
2	PGEC1/ / /AN3/C1INC/ / /CTED12/CN	I5/RB1
3	/ /AN4/C1INB/ / /U1RX/TCKIB/CTED1	13/CN6/RB2
4	/AN5/C1INA/ / /CN7/RB3	
5	Vss	
6	OSCI/CLKI/AN13/CN30/RA2	
7	OSCO/CLKO/AN14/CN29/RA3	
8	SOSCI/AN15/ / /CN1/RB4	
9	SOSCO/SCLKI/AN16/PWRLCLK/ /CN0/RA4	
10		
11	PGED3/AN17/ASDA1/ / /OC1E/CLCINA/CN27/RB5	
12	PGEC3/AN18/ASCL1/ / /OC1F/CLCINB/CN24/RB6 AN19/U1TX/INT0/CN23/RB7	AN19/U1TX/ /OC1A/INT0/CN23/RB7
13 14	AN19/0112/IN10/CN23/RB7 AN20/SCL1/U1CTS/C3OUT/OC1B/CTED10/CN22/RB8	AN 19/011X/ /OCTA/IN10/CN23/RB7
14	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/ /CLC10/CTED4/CN	121/PB0
16	/IC1/ / /CTED3/CN9/RA7	vz //KD9
17	/OC1A/CTED1/INT2/CN8/RA6	VDDCORE/VCAP
18	PGED2/SDI1/ /OC1C/CTED11/CN16/RB10	
19	PGEC2/SCK1/OC2A/CTED9/CN15/RB11	<u></u>
20	/AN12/HLVDIN/ / / /CTED2/CN14/RB12	/AN12/HLVDIN/SS2/ / /CTED2/INT2/CN14/RB12
21	/ /AN11/SDO1/OCFB/OC3B/OC1D/CTPLS/CN13	3/RB13
22	/CVREF/ / /AN10/ / /C1OUT	OCFA/CTED5/INT1/CN12/RB14
23	/ /AN9/ /REFO/SS1/TCKIA/CTED6/CN	I11/RB15
24	Vss	
25	Vdd	
26	MCLR/Vpp/RA5	
	CVREF+/VREF+/ /AN0/ /CN2/RA0	CVREF+/VREF+/ /AN0/ /CTED1/CN2/RA0
27		

Legend:Values inindicate pin function differences between PIC24F(V)XXKM202 and PIC24F(V)XXKM102 devices.Note 1:Exposed pad on underside of device is connected to Vss.

TABLE 1-1:	DEVICE FEATURES FOR THE PIC24F16KM204 FAMILY
------------	--

TABLE 1-1: DEVICE FEATURES FO	R THE PIC24F16		•			
Features	PIC24F16KM204	PIC24F08KM204	PIC24F16KM202	PIC24F08KM202		
Operating Frequency		DC-3	2 MHz			
Program Memory (bytes)	16K	8K	16K	8K		
Program Memory (instructions)	5632	2816	5632	2816		
Data Memory (bytes)		20)48			
Data EEPROM Memory (bytes)		5	12			
Interrupt Sources (soft vectors/NMI traps)		40 (36/4)			
Voltage Range		1.8-	3.6V			
I/O Ports	PORTA< PORTB< PORTC	:15:0>	-	RTA<7:0> RTB<15:0>		
Total I/O Pins	38			24		
Timers	(One 16-bit timer, f		I1 Ps with up to tv	vo 16/32 timers each)		
Capture/Compare/PWM modules MCCP SCCP			3 2			
Serial Communications MSSP UART			2 2			
Input Change Notification Interrupt	37 23					
12-Bit Analog-to-Digital Module (input channels)	22	22	19	19		
Analog Comparators	3					
8-Bit Digital-to-Analog Converters			2			
Operational Amplifiers	2					
Charge Time Measurement Unit (CTMU)	Yes					
Real-Time Clock and Calendar (RTCC)	Yes					
Configurable Logic Cell (CLC)			2			
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode REPEAT Instruction, Hardware Traps, Configuration Word Mism (PWRT, OST, PLL Lock)					
Instruction Set	76 Base Inst	ructions, Multiple	e Addressing N	lode Variations		
Packages	44-Pin QFN/TQFP, 28-Pin 48-Pin UQFN SPDIP/SSOP/SOIC/QFN					

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

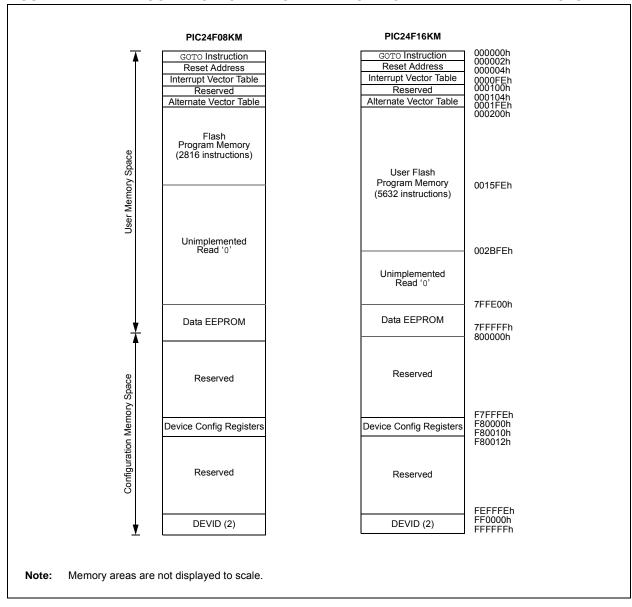
			F					FV					
		Pin Number					I	Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
MCLR	1	1	26	18	19	1	1	26	18	19	Ι	ST	Master Clear (Device Reset) Input (active-low)
OA1INA	_	5	2	22	24		5	2	22	24	Ι	ANA	Op Amp 1 Input A
OA1INB	_	6	3	23	25	_	6	3	23	25	I	ANA	Op Amp 1 Input B
OA1INC	_	24	21	11	12	_	24	21	11	12	I	ANA	Op Amp 1 Input C
OA1IND	_	25	22	14	15	_	25	22	14	15	I	ANA	Op Amp 1 Input D
OA1OUT	_	7	4	24	26	_	7	4	24	26	0	ANA	Op Amp 1 Analog Output
OA2INA	_	5	2	22	24	_	5	2	22	24	I	ANA	Op Amp 2 Input A
OA2INB	_	6	3	23	25	_	6	3	23	25	I	ANA	Op Amp 2 Input B
OA2INC	_	24	21	11	12	_	24	21	11	12	I	ANA	Op Amp 2 Input C
OA2IND	_	25	22	14	15	_	25	22	14	15	I	ANA	Op Amp 2 Input D
OA2OUT	_	26	23	15	16	_	26	23	15	16	0	ANA	Op Amp 2 Analog Output
OC1A	14	20	17	7	7	11	16	13	43	47	0	_	MCCP1 Output Compare A
OC1B	12	17	14	44	48	12	17	14	44	48	0	_	MCCP1 Output Compare B
OC1C	15	21	18	8	9	15	21	18	8	9	0	_	MCCP1 Output Compare C
OC1D	16	24	21	11	12	16	24	21	11	12	0		MCCP1 Output Compare D
OC1E	_	14	11	41	45	_	14	11	41	45	0	_	MCCP1 Output Compare E
OC1F	_	15	12	42	46	_	15	12	42	46	0	_	MCCP1 Output Compare F
OC2A	4	22	19	9	10	4	22	19	9	10	0		MCCP2 Output Compare A
OC2B	_	23	20	10	11		23	20	10	11	0	_	MCCP2 Output Compare B
OC2C	_		_	2	2				2	2	0		MCCP2 Output Compare C
OC2D	_		_	3	3				3	3	0		MCCP2 Output Compare D
OC2E	_		_	4	4				4	4	0		MCCP2 Output Compare E
OC2F	_		_	5	5				5	5	0		MCCP2 Output Compare F
OC3A	_	21	18	12	13		21	18	12	13	0	_	MCCP3 Output Compare A
OC3B	_	24	21	13	14	_	24	21	13	14	0	_	MCCP3 Output Compare B
OC4	_	18	15	1	1	_	18	15	1	1	0	_	SCCP4 Output Compare
OC5	_	19	16	6	6	_	19	16	6	6	0	_	SCCP5 Output Compare
OCFA	17	25	22	14	15	17	25	22	14	15	Ι	ST	MCCP/SCCP Output Compare Fault Input A
OCFB	16	24	21	32	35	16	24	21	32	35	Ι	ST	MCCP/SCCP Output Compare Fault Input B

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, I²C[™] = I²C/SMBus input buffer

DS30003030B-page 24

NOTES:

4.0 MEMORY ORGANIZATION


As with Harvard architecture devices, the PIC24F microcontrollers feature separate program and data memory space and busing. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.

4.1 **Program Address Space**

The program address memory space of the PIC24F devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from a table operation or Data Space remapping, as described in **Section 4.3 "Interfacing Program and Data Memory Spaces"**.

The user access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24FV16KM204 family of devices are displayed in Figure 4-1.

FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FXXXXX FAMILY DEVICES

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	U-0
—	—	—	—	—	—	CCT5IF	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	_		_		_
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	Unimplemented: Read as '0'
bit 9	CCT5IF: Capture/Compare 5 Timer Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

bit 8-0 Unimplemented: Read as '0'

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIF	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	—	—	—	—	BCL2IF	SSP2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-3	Unimplemented: Read as '0'
bit 2	BCL2IF: MSSP2 I ² C [™] Bus Collision Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SSP2IF: MSSP2 SPI/I ² C Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

RW-0 RW-1 RW-1 RW-0 RW-0 RW-0 RW-0 RW-1 R01 DOZE2 DOZE1 DOZE0 DOZEN ⁽¹⁾ RCDIV2 RCDIV1 RCDIV0 bit 15 bit 15 U-0 U-0 U-0 U-0 U-0 U-0 bit 7 U-0 U-0 U-0 U-0 Legend: Re Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 RO: Recover on Interrupt bit 1 = Interrupts lear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = 1:1 10 = 1:12 DOZE-c2:0: CPU and Peripheral Clock Ratio Select bits 111 = 1:2 112 = 1:2 100 = 1:1 12 DOZE-c2:0: CSCCON-14:12> = 111: 111 = 312 SkHz (divide-by-26) 111: 110 = 125 kHz (divide-by-26) 111: 111 = 25 (CSCCON-14:12>) = 111: <td< th=""><th>REGISTER</th><th>9-2: CLKL</th><th>DIV: CLOCK L</th><th></th><th>6151EK</th><th></th><th></th><th></th></td<>	REGISTER	9-2: CLKL	DIV: CLOCK L		6151EK						
bit 15 bit 1 U-0 U-0 U-0 U-0 U-0 U-0 - - - - - - bit 7 bit 10 U-0 U-0 U-0 U-0 Egend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 RO: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE DOZE 2:0: CPU and Peripheral Clock Ratio Select bits 111 = 1:28 110 = 1:4 101 = 1:28 100 = 1:16 112 100 = 1:16 011 = 1:1 DOZE 2:0: CPU and peripheral clock ratio are set to 1:1 111 = 13:25 kHz (divide-by-26) 110 = 125 kHz (divide-by-32) 100 = 2:0: CPU and peripheral clock ratio are set to 1:1 111 = 31:25 kHz (divide-by-32) 101 = 250 kHz (divide-by-30) 101 = 250 kHz (divide-by-30) 101 = 250 kHz (divide-by-30) 101 = 250 kHz (divide-by-30) 101 = 250 kHz (divide-by-30) 101 = 250 kHz (divide-by-30) 101 = 156 kHz (d	R/W-0	R/W-0	R/W-1	R/W-1		R/W-0	R/W-0	R/W-1			
U-0 U-0 U-0 U-0 U-0 U-0 U-0 -	ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0			
- -	bit 15							bit 8			
- -	11.0	11.0						11.0			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0-: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 110 = 1:132 100 = 1:16 011 = 1:3 100 = 1:16 011 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE-2:0-> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDIV-2:0->: FRC Postscaler Select bits When COSC-2:0-> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-2) 100 = 500 kHz (divide-by-2) 100 = 2 MHz (divide-by-2) - default 001 = 4 MHz (divide-by-2) - default 001 = 4 MHz (divide-by-2) 100 = 8 MHz (divide-by-2) 100 = 15 kHz (divide-by-2) 100 = 125 kHz (divide-by	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 101 = 1:64 101 = 1:32 100 = 1:16 001 = 1:1 000 = 1:11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE<2:0>: Dits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE 1 = 1:2 000 = 1:1 111 = 31.25 kHz (divide-by-256) 1 = 250 kHz (divide-by-256) 111 = 31.25 kHz (divide-by-256) 1 = 255 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 1 = 1 = 255 kHz (divide-by-32) 100 = 2 MHz (divide-by-41) 1 = 1 = 152 kHz (divide-by-32) 100 = 2 MHz (divide-by-32) 1 = 1 = 15 kHz (divide-by-32) 110 = 15.62 kHz (divide-by-256) 1 = 1 = 12 + 12 (divide-by-41) 111 = 1.5 kHz (divide-by-42) 1 = 1 = 1 = 1.5 kHz (divide-by-22) - default 100 = 8 MHz (divide-by-42) = 110: </td <td>bit 7</td> <td colspan="10">7</td>	bit 7	7									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 101 = 1:64 101 = 1:32 100 = 1:16 001 = 1:1 000 = 1:11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE<2:0>: Dits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE 1 = 1:2 000 = 1:1 111 = 31.25 kHz (divide-by-256) 1 = 250 kHz (divide-by-256) 111 = 31.25 kHz (divide-by-256) 1 = 255 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 1 = 1 = 255 kHz (divide-by-32) 100 = 2 MHz (divide-by-41) 1 = 1 = 152 kHz (divide-by-32) 100 = 2 MHz (divide-by-32) 1 = 1 = 15 kHz (divide-by-32) 110 = 15.62 kHz (divide-by-256) 1 = 1 = 12 + 12 (divide-by-41) 111 = 1.5 kHz (divide-by-42) 1 = 1 = 1 = 1.5 kHz (divide-by-22) - default 100 = 8 MHz (divide-by-42) = 110: </td <td>Logondu</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Logondu										
<pre>in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:1 001 = 1:4 001 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit⁽¹⁾ 1 = DOZE-2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDIVe2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON(14:12>) = 111: 111 = 31.25 kHz (divide-by-266) 110 = 125 kHz (divide-by-4) 011 = 150 kHz (divide-by-4) 011 = 150 kHz (divide-by-4) 011 = 15.8 kHz (divide-by-4) 011 = 15.8 kHz (divide-by-4) 101 = 15.62 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 02.5 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-2) - default 011 = 02.5 kHz (divide-by-4) 011 = 1.5 kHz (divide-by-4) 011 = 0.5 kH</pre>	-	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit DOZE-2:00: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE-2:00: bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDV-2:00: FRC Postscaler Select bits When COSC-2:00: (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-256) 110 = 125 kHz (divide-by-32) 100 = 500 kHz (divide-by-29) 011 = 1 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-2) - default 101 = 25 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 7.81 kHz (divide-by-32) 100 = 125 kHz (divide-by-2) - default 001 = 125 kHz (divide-by-2) - default 001 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 7.81 kHz (divide-by-32) 100 = 125 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 50.5 kHz (divide-by-4) 011 = 15.5 kHz (divide-by-4) 011 = 15.5 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 6					-			nown			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1 = Interrupts 0 = Interrupts	s clear the DOZ s have no effect	EN bit, and re t on the DOZE	N bit	d peripheral cl	ock ratio to 1:1				
1 = DOZE<2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 $RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-264) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 010 = 2 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-2) 100 = 8 MHz (divide-by-2) = 110: 111 = 1.95 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-3) 100 = 31.25 kHz (divide-by-4) 011 = 125 kHz (divide-by-4) 010 = 125 kHz (divide-by-4) 010 = 125 kHz (divide-by-2) - default 000 = 500 kHz (divide-by-1)$		111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2									
bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-64) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-16) 011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-8) 010 = 2 MHz (divide-by-2) – default 000 = 8 MHz (divide-by-2) – default 000 = 8 MHz (divide-by-1) When COSC<2:0> (OSCCON<14:12>) = 110: 111 = 1.95 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-8) 011 = 62.5 kHz (divide-by-8) 010 = 125 kHz (divide-by-4) 011 = 250 kHz (divide-by-2) – default 000 = 500 kHz (divide-by-1)	bit 11	1 = DOZE<2	:0> bits specify			ratio					
	bit 10-8	When COSC 111 = 31.25 K 110 = 125 K 101 = 250 K 100 = 500 K 011 = 1 MHz 010 = 2 MHz 001 = 4 MHz 000 = 8 MHz When COSC 111 = 1.95 K 100 = 7.81 K 101 = 15.62 K 100 = 31.25 K 011 = 62.5 K 010 = 125 K 001 = 250 K	<2:0> (OSCCO kHz (divide-by-2 dz (divide-by-2 dz (divide-by-32 dz (divide-by-32 dz (divide-by-32) (divide-by-4) (divide-by-4) (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-3) dz (divide-by-4) dz (divide-by-2) dz (divide-by-2)	<u>N<14:12>) = 1</u> 256))) default <u>N<14:12>) = 1</u> 56) 4) 32) 16)	-						
	bit 7-0)'							

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

The following code sequence for a clock switch is recommended:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- 2. Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8>, in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON 4. low byte by writing 46h and 57h to OSCCON<7:0>, in two back-to-back instructions.
- Set the OSWEN bit in the instruction immediately 5 following the unlock sequence.
- Continue to execute code that is not 6. clock-sensitive (optional).
- Invoke an appropriate amount of software delay 7. (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- 8. Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1 and Example 9-2.

EXAMPLE 9-1: ASSEMBLY CODE SEQUENCE FOR CLOCK SWITCHING

;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON,#0

EXAMPLE 9-2: BASIC 'C' CODE SEQUENCE FOR CLOCK SWITCHING

//Use compiler built-in function to write new clock setting __builtin_write_OSCCONH(0x01); //0x01

```
switches to FRCPLL
```

//Use compiler built-in function to set the OSWEN bit. __builtin_write_OSCCONL(OSCCONL | 0x01);

//Optional: Wait for clock switch sequence to complete while(OSCCONbits.OSWEN == 1);

9.5 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24FXXXXX family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 9-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV<3:0> bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSC1 and OSC2, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the primary modes (EC, HS or XT); otherwise, if the ROSEL bit is not also set, the oscillator on OSC1 and OSC2 will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.

10.2.2 IDLE MODE

Idle mode includes these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.3.1 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. When a true POR occurs, the entire device is reset.

10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

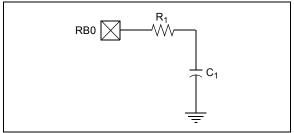
- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RB0.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source.


See Example 10-2 for initializing the ULPWU module.

EXAMPLE 10-2: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//********
// 1. Charge the capacitor on RBO
TRISBbits.TRISB0 = 0;
  LATBbits.LATB0 = 1;
  for(i = 0; i < 10000; i++) Nop();</pre>
//2. Stop Charging the capacitor
   on RBO
11
//*******************************
  TRISBbits.TRISB0 = 1;
//3. Enable ULPWU Interrupt
IFS5bits.ULPWUIF = 0;
IEC5bits.ULPWUIE = 1;
IPC21bits.ULPWUIP = 0x7;
//*********************************
//4. Enable the Ultra Low Power
11
   Wakeup module and allow
11
  capacitor discharge
ULPWCONbits.ULPEN = 1;
  ULPWCONbit.ULPSINK = 1;
//5. Enter Sleep Mode
 11
  Sleep();
//for sleep, execution will
//resume here
```

A series resistor, between RB0 and the external capacitor provides overcurrent protection for the AN2/ULPWU/RB0 pin and enables software calibration of the time-out (see Figure 10-1).

FIGURE 10-1: SERIES RESISTOR

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

10.5 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption. Meanwhile, the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.6 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

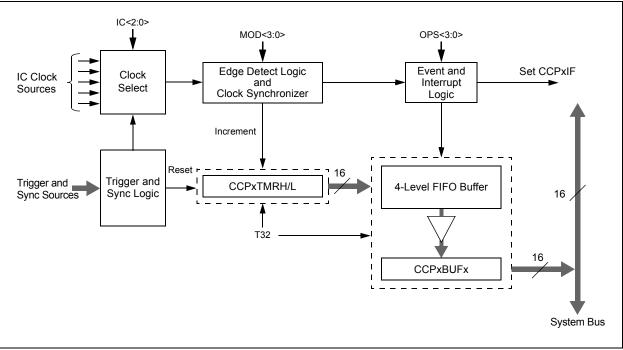
- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMDx Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMDx bits for a module, disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect, and read values will be invalid. Many peripheral modules have a corresponding PMDx bit.

In contrast, disabling a module by clearing its XXXEN bit, disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as when the PMDx bits are used. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

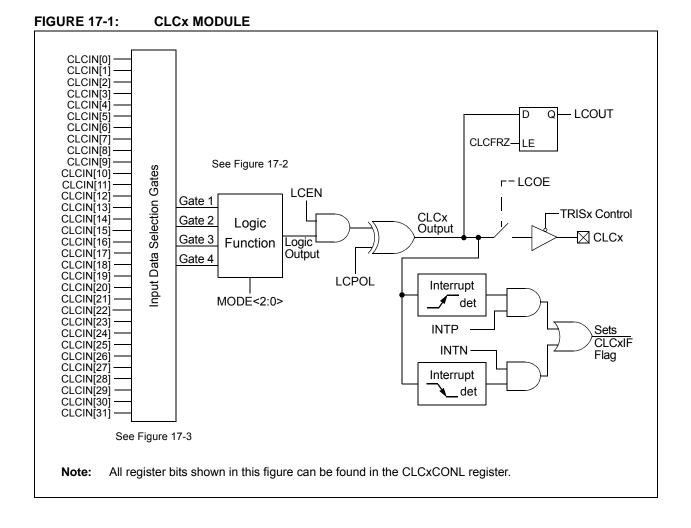
13.4 Input Capture Mode


Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal Trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 13-6 depicts a simplified block diagram of Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L register.

To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and the MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 13-4.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode
0000	0	Edge Detect (16-bit capture)
0000	1	Edge Detect (32-bit capture)
0001	0	Every Rising (16-bit capture)
0001	1	Every Rising (32-bit capture)
0010	0	Every Falling (16-bit capture)
0010	1	Every Falling (32-bit capture)
0011	0	Every Rise/Fall (16-bit capture)
0011	1	Every Rise/Fall (32-bit capture)
0100	0	Every 4th Rising (16-bit capture)
0100	1	Every 4th Rising (32-bit capture)
0101	0	Every 16th Rising (16-bit capture)
0101	1	Every 16th Rising (32-bit capture)

TABLE 13-4: INPUT CAPTURE MODES



17.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flex-ibility and potential in embedded designs since the CLC

module can operate outside the limitations of software execution and supports a vast amount of output designs.

There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 17-1 shows an overview of the module. Figure 17-3 shows the details of the data source multiplexers and logic input gate connections.

REGISTER 17-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3

REGISTER 20-1: DACxCON: DACx CONTROL REGISTER (CONTINUED)

- bit 6-2 DACTSEL<4:0>: DACx Trigger Source Select bits
 - 11101-11111 = Unused 11100 = CTMU 11011 = A/D 11010 = Comparator 3 11001 = Comparator 2 11000 = Comparator 1 10011 to 10111 = Unused 10010 = CLC2 output 10001 = CLC1 output 01100 to 10000 = Unused 01011 = Timer1 Sync output 01010 = External Interrupt 2 01001 = External Interrupt 1 01000 = External Interrupt 0 0011x = Unused 00101 = MCCP5 or SCCP5 Sync output 00100 = MCCP4 or SCCP4 Sync output 00011 = MCCP3 or SCCP3 Sync output 00010 = MCCP2 or SCCP2 Sync output 00001 = MCCP1 or SCCP1 Sync output 00000 = Unused DACREF<1:0>: DACx Reference Source Select bits 11 = Internal Band Gap Buffer 1 (BGBUF1)⁽¹⁾
 - 10 = AVDD

bit 1-0

- 01 = DVREF+
- 00 = Reference is not connected (lowest power but no DAC functionality)
- **Note 1:** BGBUF1 voltage is configured by BUFREF<1:0> (BUFCON0<1:0>).

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R-0
CON	COE	CPOL	CLPWR	_		CEVT	COUT
bit 15	•						bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
EVPOL1 ⁽²⁾	EVPOL0 ⁽²⁾	_	CREF1	CREF0	_	CCH1	CCH0
bit 7			UNL I	UNLI U		00111	bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15	CON: Compa	rator x Enable	bit				
		tor is enabled					
bit 11	•	tor is disabled	Enchlo hit				
bit 14	•	rator x Output itor output is pr		vOLIT nin			
		itor output is pr					
bit 13	CPOL: Comp	arator x Outpu	t Polarity Selec	ct bit			
		tor output is in					
	•	tor output is no					
bit 12		nparator x Low					
	•	tor operates in tor does not op					
bit 11-10	-	ted: Read as '		owermode			
bit 9	-	arator x Event					
	•			<1:0>, has occu	irred; subseque	ent Triggers and	d interrupts are
	disabled	until the bit is c	leared			00	·
	-	tor event has r					
bit 8		arator x Outpu	t bit				
	$\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{VI}}$						
	0 = VIN + < VI						
	When CPOL						
	1 = VIN + < VI $0 = VIN + > VI$						
bit 7-6			Interrupt Pola	rity Select bits ⁽²	2)		
DIL 7-0		00		n any change o		or output (while	$\sim CEVT = 0$
				n the high-to-lo			
				n the low-to-hig	h transition of	the comparator	output
		event/interrupt	•	lisabled			
bit 5	•	ted: Read as '					
bit 4-3		-		ect bits (non-inv	erting input)		
		erting input cor erting input cor					
	01 = Non-inve	erting input cor	nects to the in	ternal CVREF vo	oltage		
	00 = Non-inve	erting input cor	nects to the C	xINA pin			
Note 1: BC	GBUF1 voltage	is configured b	y BUFREF1<1	:0> (BUFCON	0<1:0>).		
• 161		·			· · · · · · · · · · · · · · · · · · ·		

2: If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

TABLE 27-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operati	Operating Conditions: $-40^{\circ}C < TA < +85^{\circ}C$ (unless otherwise stated) $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
	Vbg	Band Gap Reference Voltage	0.973	1.024	1.075	V	VDD > 4.5V for 4*VBG reference VDD > 2.3V for 2*VBG reference		
	Tbg	Band Gap Reference Start-up Time		1	-	ms			
	Vrgout	Regulator Output Voltage	3.1	3.3	3.6	V			
	Cefc	External Filter Capacitor Value	4.7	10	_	μF	Series resistance < 3 Ohm recommended; < 5 Ohm is required.		
	Vlvr	Low-Voltage Regulator Output Voltage	_	2.6		V			

TABLE 27-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CH	$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Comments					Conditions
	IOUT1	CTMU Current Source, Base Range	—	550	—	nA	CTMUCON1L<1:0> = 01	
	IOUT2	CTMU Current Source, 10x Range	_	5.5	_	μA	CTMUCON1L<1:0> = 10	2.5V < VDD < VDDMAX
	IOUT3	CTMU Current Source, 100x Range	—	55	—	μA	CTMUCON1L<1:0> = 11	2.5V < VDD < VDDMAX
	IOUT4	CTMU Current Source, 1000x Range	_	550	—	μA	CTMUCON1L<1:0> = 00 (Note 2)	
	VF Temperature Diode Forward Voltage			.76	—	V		
	VΔ	Voltage Change per Degree Celsius	_	1.6	_	mV/°C		

Note 1: Nominal value at the center point of the current trim range (CTMUCON1L<7:2> = 000000). On PIC24F16KM parts, the current output is limited to the typical current value when IOUT4 is chosen.

2: Do not use this current range with a temperature sensing diode.

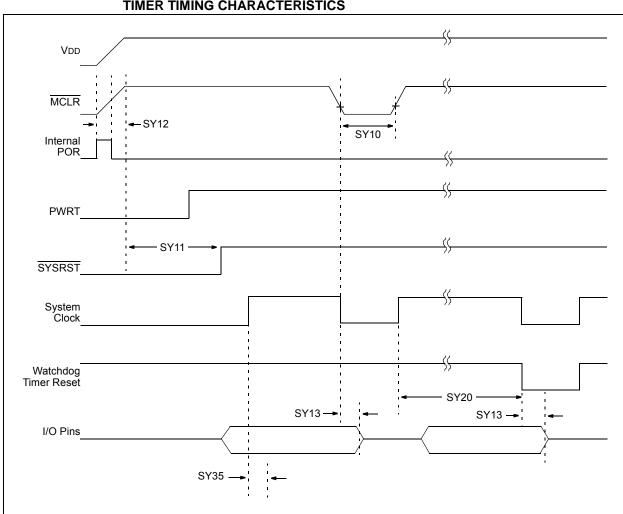
AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units			Conditions		
OS50	Fplli	PLL Input Frequency Range	4	—	8	MHz	ECPLL, HSPLL modes, -40°C \leq TA \leq +85°C	
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz	$-40^{\circ}C \le TA \le +85^{\circ}C$	
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	1	2	ms		
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over 100 ms period	

TABLE 27-21: PLL CLOCK TIMING SPECIFICATIONS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-22: INTERNAL RC OSCILLATOR ACCURACY


AC CHA	ARACTERISTICS		Standard Operating Conditions:1.8V to 3.6V (PIC24F16KM204)2.0V to 5.5V (PIC24FV16KM204)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
F20	FRC @ 8 MHz ⁽¹⁾	-2		+2	%	+25°C	$\begin{array}{l} 3.0V \leq V \text{DD} \leq 3.6V, \mbox{ F device} \\ 3.2V \leq V \text{DD} \leq 5.5V, \mbox{ FV device} \end{array}$		
		-5	_	+5	%	$-40^\circ C \le T A \le +125^\circ C$	$\begin{array}{l} 1.8V \leq V\text{DD} \leq 3.6\text{V}, \mbox{ F device} \\ 2.0V \leq V\text{DD} \leq 5.5\text{V}, \mbox{ FV device} \end{array}$		
F21	LPRC @ 31 kHz ⁽²⁾	-15		+15	%	$\label{eq:constraint} \begin{array}{c} -40^{\circ}C \leq TA \leq +125^{\circ}C \\ 2.0V \leq VDD \leq 3.6V, \ F \ devial \\ 2.0V \leq VDD \leq 5.5V, \ FV \ devial \\ \end{array}$			

Note 1: The frequency is calibrated at +25°C and 3.3V. The OSCTUN bits can be used to compensate for temperature drift.

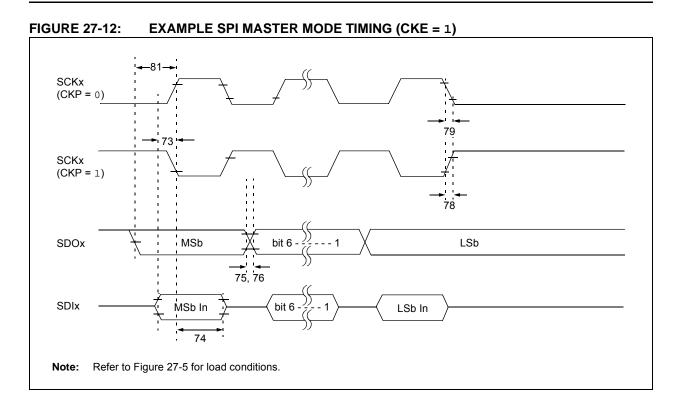

2: The change of LPRC frequency as VDD changes.

TABLE 27-23: INTERNAL RC OSCILLATOR SPECIFICATIONS

АС СНА	ARACTE	RISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Тур	Typ Max Units		Conditions	
	TFRC FRC Start-up Time — 5 —		μS					
	TLPRC	LPRC Start-up Time	—	70	—	μS		

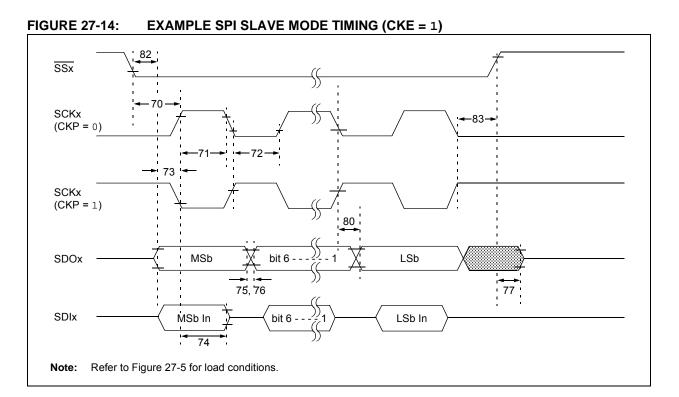


FIGURE 27-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 27-30: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	35	_	ns	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge	40	—	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	—	25	ns	
78	TscR	SCKx Output Rise Time (Master mode)	—	25	ns	
79	TscF	SCKx Output Fall Time (Master mode)	_	25	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	—	ns	
	Fsck	SCKx Frequency	_	10	MHz	

TABLE 27-32: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	3 Тсү		ns		
70A	TssL2WB	SSx to Write to SSPxBUF		3 TCY	_	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	lave mode) Single Byte		_	ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the First	1.5 Tcy + 40	_	ns	(Note 2)	
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SC	Kx Edge	40	_	ns	
75	TDOR	SDOx Data Output Rise Time			25	ns	
76	TDOF	SDOx Data Output Fall Time			25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impeda	ance	10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx	Edge	—	50	ns	
82	TssL2DoV	SDOx Data Output Valid After SSx	_	50	ns		
83	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge	1.5 Tcy + 40	_	ns		
	Fsck	SCKx Frequency		—	10	MHz	

Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.