

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	8KB (2.75K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 22x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv08km204-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DETIGETERTOREOTO								
Features	PIC24FV16KM204	PIC24FV08KM204	PIC24FV16KM202	PIC24FV08KM202				
Operating Frequency		DC-3	2 MHz					
Program Memory (bytes)	16K	8K	16K	8K				
Program Memory (instructions)	5632 2816 5632 2816							
Data Memory (bytes)		20)48					
Data EEPROM Memory (bytes)		5	12					
Interrupt Sources (soft vectors/NMI traps)		40 (36/4)					
Voltage Range		2.0-	-5.5V					
I/O Ports	PORTA<1 PORTB< PORTC	1:7,5:0> <15:0> <9:0>	POF POF	RTA<7,5:0> RTB<15:0>				
Total I/O Pins	37			23				
Timers	(One 16-bit timer, f	, ive MCCPs/SCC	11 Ps with up to tv	vo 16/32 timers each)				
Capture/Compare/PWM modules MCCP SCCP			3 2					
Serial Communications MSSP UART			2 2					
Input Change Notification Interrupt	36			22				
12-Bit Analog-to-Digital Module (input channels)	22			19				
Analog Comparators			3					
8-Bit Digital-to-Analog Converters			2					
Operational Amplifiers			2					
Charge Time Measurement Unit (CTMU)		Y	<i>ï</i> es					
Real-Time Clock and Calendar (RTCC)		Y	es					
Configurable Logic Cell (CLC)			2					
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatc (PWRT, OST, PLL Lock)							
Instruction Set	76 Base Inst	ructions, Multiple	e Addressing N	lode Variations				
Packages	44-Pin QFI 48-Pin U	N/TQFP, JQFN	SPDIP/S	28-Pin SPDIP/SSOP/SOIC/QFN				

TABLE 1-3: DEVICE FEATURES FOR THE PIC24FV16KM204 FAMILY

TABLE 4-3:CPU CORE REGISTERS MAP

IADLL	-т-Ј.		0.00															
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0h								W	/REG0								0000
WREG1	2h		WREG1 0000									0000						
WREG2	4h								W	/REG2								0000
WREG3	6h		WREG3 0000									0000						
WREG4	8h		WREG4 0000															
WREG5	Ah		WREG5 0000															
WREG6	Ch		WREG6 0000									0000						
WREG7	Eh		WREG7 0000									0000						
WREG8	10h		WREG8 0000															
WREG9	12h		WREG9 0000															
WREG10	14h								W	REG10								0000
WREG11	16h								W	REG11								0000
WREG12	18h								W	REG12								0000
WREG13	1Ah								W	REG13								0000
WREG14	1Ch								W	REG14								0000
WREG15	1Eh								W	REG15								0800
SPLIM	20h								SPLI	M Register								xxxx
PCL	2Eh								PCL	Register								0000
PCH	30h	_	—	_	_	_	_	_	_	PCH7	PCH6	PCH5	PCH4	PCH3	PCH2	PCH1	PCH0	0000
TBLPAG	32h	_	—	_	_	_	_	_	_	TBLPAG7	TBLPAG6	TBLPAG5	TBLPAG4	TBLPAG3	TBLPAG2	TBLPAG1	TBLPAG0	0000
PSVPAG	34h	_	—	_	_	_	_	_	_	PSVPAG7	PSVPAG6	PSVPAG5	PSVPAG4	PSVPAG3	PSVPAG2	PSVPAG1	PSVPAG0	0000
RCOUNT	36h								RCOU	NT Register								xxxx
SR	42h	_	—	_	_	_	_	_	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	44h	_	_	_	_	_	_	—	—	_	—	_	_	IPL3	PSV	—	—	0000
DISICNT	52h	_	_	DISICNT13	DISICNT12	DISICNT11	DISICNT10	DISICNT9	DISICNT8	DISICNT7	DISICNT6	DISICNT5	DISICNT4	DISICNT3	DISICNT2	DISICNT1	DISICNT0	xxxx

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-24: PAD CONFIGURATION REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	2FCh	_	_	_		SDO2DIS ⁽¹⁾	SCK2DIS ⁽¹⁾	SDO1DIS	SCK1DIS	_	_	_	_	_	_	_	_	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These bits are not available on the PIC24F(V)08KM101 device, read as '0'.

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator Configuration".

TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC<2:0> Configuration bits
BOR	(FOSCSEL<2:0>)
MCLR	COSC<2:0> Control bits
WDTO	(OSCCON<14:12>)
SWR	

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT	_	1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	TLOCK	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Тоѕт	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	Tost + Tlock	1, 2, 4, 5
BOR	EC	TPWRT	—	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	TLOCK	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Tost	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	—	_	None

TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if the Power-up Timer is enabled; otherwise, it is zero.
- **3:** TFRC and TLPRC = RC Oscillator start-up times.
- **4:** TLOCK = PLL Lock time.
- **5:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.
- 6: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 27.0 "Electrical Characteristics".

8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Interrupt Controller, refer to the *"PIC24F Family Reference Manual"*, **"Interrupts"** (DS39707).

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU. It has the following features:

- Up to Eight Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with up to 118 Vectors
- Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Alternate Interrupt Vector Table (AIVT) for Debug Support
- Fixed Interrupt Entry and Return Latencies

8.1 Interrupt Vector Table (IVT)

The IVT is shown in Figure 8-1. The IVT resides in the program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of eight non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FV16KM204 family devices implement non-maskable traps and unique interrupts; these are summarized in Table 8-1.

8.1.1 ALTERNATE INTERRUPT VECTOR TABLE (AIVT)

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

8.2 Reset Sequence

A device Reset is not a true exception, because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the Program Counter (PC) to zero. The microcontroller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects the program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

8.3 Interrupt Control and Status Registers

The PIC24FV16KM204 family of devices implements a total of 33 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS6
- · IEC0 through IEC6
- IPC0 through IPC7, IPC10, IPC12, IPC15, IPC16, IPC18 through IPC20 and IPC24
- INTTREG

Global Interrupt Enable (GIE) control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIVT.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals, or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence. For example, the INT0 (External Interrupt 0) is depicted as having a vector number and a natural order priority of 0. The INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits are in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU Interrupt Priority Level by writing to the IPLx bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that the trap events cannot be masked by the user's software.

All Interrupt registers are described in Register 8-1 through Register 8-35, in the following sections.

REGISTER 8-13: IECT. INTERRUPT ENABLE CONTROL REGISTER	REGISTER 8-13:	IEC1: INTERRUPT ENABLE CONTROL REGISTER 1
--	----------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0					
U2TXIE	U2RXIE	INT2IE	CCT4IE	CCT3IE	-	_	_					
bit 15	_						bit 8					
U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	CCP5IE		INT1IE	CNIE	CMIE	BCL1IE	SSP1IE					
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'						
-n = Value at	POR	'1' = Bit is set		0° = Bit is clea	ared	x = Bit is unkn	iown					
h# 45	bit 15 U2TXIE: UART2 Transmitter Interrupt Enable bit											
DIUID	1 = Interrupt request is enabled											
	0 = Interrupt request is not enabled											
bit 14	U2RXIE: UART2 Receiver Interrupt Enable bit											
	1 = Interrupt request is enabled											
	0 = Interrupt r	equest is not e	nabled									
bit 13	INT2IE: External Interrupt 2 Enable bit											
	1 = Interrupt r 0 = Interrupt r	1 = Interrupt request is enabled 0 = Interrupt request is not enabled										
bit 12	CCT4IE: Capit	CCT4IE: Canture/Compare 4 Timer Interrunt Enable bit										
	1 = Interrupt r	equest is enab	led									
	0 = Interrupt r	equest is not e	nabled									
bit 11	CCT3IE: Cap	ture/Compare 3	3 Timer Interru	pt Enable bit								
	1 = Interrupt r	equest is enab	led pablod									
bit 10-7		ted: Read as '	n'									
bit 6	CCP5IE: Can	ture/Compare /	, 5 Event Interru	nt Enable bit								
bit 0	1 = Interrupt r	request is enab	led									
	0 = Interrupt r	equest is not e	nabled									
bit 5	Unimplement	ted: Read as 'd)'									
bit 4	INT1IE: Exter	nal Interrupt 1	Enable bit									
	1 = Interrupt r	request is enab	led									
h it 0		equest is not e	nabled	achla bit								
DIL 3	1 = Interrupt r	nange Nounca	lion interrupt E	nable bit								
	0 = Interrupt r	equest is not e	nabled									
bit 2	CMIE: Compa	arator Interrupt	Enable bit									
	1 = Interrupt r	equest is enab	led									
	0 = Interrupt r	equest is not e	nabled									
bit 1	BCL1IE: MSS	SP1 I [∠] C™ Bus	Collision Interr	upt Enable bit								
	1 = Interrupt r 0 = Interrupt r	equest is enab	ied nabled									
bit 0	SSP1IE: MSS	SP1 SPI/I ² C Fv	ent Interrupt F	nable bit								
	1 = Interrupt r	equest is enab	led									
	0 = Interrupt r	equest is not e	nabled									

10.2.2 IDLE MODE

Idle mode includes these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.3.1 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. When a true POR occurs, the entire device is reset.

10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RB0.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source.

See Example 10-2 for initializing the ULPWU module.

EXAMPLE 10-2: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//*********
// 1. Charge the capacitor on RBO
TRISBbits.TRISB0 = 0;
  LATBbits.LATB0 = 1;
  for(i = 0; i < 10000; i++) Nop();</pre>
//2. Stop Charging the capacitor
   on RBO
11
//********************************
  TRISBbits.TRISB0 = 1;
//3. Enable ULPWU Interrupt
IFS5bits.ULPWUIF = 0;
IEC5bits.ULPWUIE = 1;
IPC21bits.ULPWUIP = 0x7;
//*********************************
//4. Enable the Ultra Low Power
11
   Wakeup module and allow
11
  capacitor discharge
ULPWCONbits.ULPEN = 1;
  ULPWCONbit.ULPSINK = 1;
//5. Enter Sleep Mode
 11
  Sleep();
//for sleep, execution will
//resume here
```

A series resistor, between RB0 and the external capacitor provides overcurrent protection for the AN2/ULPWU/RB0 pin and enables software calibration of the time-out (see Figure 10-1).

FIGURE 10-1: SERIES RESISTOR

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

10.5 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption. Meanwhile, the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

10.6 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMDx Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMDx bits for a module, disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect, and read values will be invalid. Many peripheral modules have a corresponding PMDx bit.

In contrast, disabling a module by clearing its XXXEN bit, disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as when the PMDx bits are used. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

FIGURE 13-4: 32-BIT TIMER MODE

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
PWMRSEN	ASDGM		SSDG			_	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	PWMRSEN:	CCPx PWM Re	start Enable b	it			
	1 = ASEVT b	it clears autom	atically at the I	beginning of the	e next PWM pe	riod, after the s	hutdown input
	0 = ASEVT b	a hit must be clea	red in software	e to resume PW	/M activity on o	utput pins	
bit 14	ASDGM: CCI	Px Auto-Shutdo	wn Gate Mode	e Enable bit			
	1 = Wait until	the next Time	Base Reset or	r rollover for shu	utdown to occu	r	
	0 = Shutdown	n event occurs	immediately				
bit 13	Unimplemen	ted: Read as 'o)'				
bit 12	SSDG: CCPx	Software Shut	down/Gate Co	ontrol bit			
	1 = Manually	force auto-sh	utdown, timer	clock gate or	input capture	signal gate eve	ent (setting of
		bit still applies)	_				
h:+ 44 0		todule operatio	n ,				
		ted: Read as (
bit 7-0	ASDG<7:0>:	CCPx Auto-Sh	utdown/Gating	Source Enable	e bits	,	
	1 = ASDGXS	Source n is ena	bled (see Tabl	e 13-7 for auto-	snutdown/gatir	ig sources)	

REGISTER 13-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS

TABLE 13-7: AUTO-SHUTDOWN AND GATING SOURCES

ASDG<7:0> Bits	Auto-Shutdown/Gating Source
0	Comparator 1 Output
1	Comparator 2 Output
2	Comparator 3 Output
3	SCCP4 Output Compare
4	SCCP5 Output Compare
5	CLC1 Output
6	OCFA Fault Input
7	OCFB Fault Input

REGISTER 14-5: SSPxCON2: MSSPx CONTROL REGISTER 2 (I²C[™] MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
			_		_		<u> </u>						
bit 15							bit 8						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾						
bit 7							bit 0						
Legend:													
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'							
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own						
bit 15-8	Unimplemen	ted: Read as ')'										
bit 7	GCEN: Gene	GEN: General Call Enable bit (Slave mode only)											
	1 = Enables i	1 = Enables interrupt when a general call address (0000h) is received in the SSPxSR											
	0 = General call address is disabled												
bit 6	bit 6 ACKSTAT: Acknowledge Status bit (Master Transmit mode only)												
	1 = Acknowledge was not received from slave												
bit 5		0 = Acknowledge was received from slave											
DIL D	1 - No Ackno		DIL (IVIASIEL RE		y)(
	0 = Acknowle	edge											
bit 4	ACKEN: Ack	nowledge Sequ	ence Enable b	oit (Master mod	e only) ⁽²⁾								
	1 = Initiates	Acknowledge	sequence on	SDAx and SO	CLx pins and	transmits AC	KDT data bit;						
	automati	cally cleared by	hardware										
	0 = Acknowl	edge sequence	is Idle	(0)									
bit 3	RCEN: Rece	ive Enable bit (I	Master Receive	e mode only) ⁽²⁾									
	1 = Enables I	Receive mode f	or I [∠] C										
hit 2		s luie andition Enabla	hit (Maator ma	d_{2}									
DIL Z	1 = Initiates		n SDAy and S		natically cleare	d by bardware							
	1 = Stop cond	dition is Idle	II SDAx and S	CLX pins, autor									
bit 1	RSEN: Repe	ated Start Cond	lition Enable bi	t (Master mode	e only) ⁽²⁾								
	1 = Initiates	Repeated Start	condition on S	DAx and SCLx	pins; automati	cally cleared by	/ hardware						
	0 = Repeate	d Start condition	n is Idle										
bit 0	SEN: Start C	ondition Enable	bit ⁽²⁾										
	Master Mode	<u>:</u>											
	1 = Initiates S	Start condition o	n SDAx and S	CLx pins; autor	natically cleare	ed by hardware							
	0 = Start con Slave Mode:	dition is Idle											
	1 = Clock stre	etching is enabl	ed for both sla	ve transmit and	l slave receive	(stretch is enab	oled)						
	0 = Clock stre	etching is disab	led										
Note 1-	The velue that	Il bo trong	hubon the ····	vr initiataa aa A	oknowladza s-		and of a						
NOTE 1:	receive.		a when the USE	a muates an A	cknowledge se	equence at the e	and of a						
2:	If the I ² C module	is active. these	bits may not b	be set (no spoo	ling) and the S	SPxBUF mav n	ot be written						
	(or writes to the S	SSPxBUF are d	isabled).		<u>,</u> , , , , , , , , , , , , , , , , , , ,	,							

NOTES:

15.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write the appropriate values for data, parity and Stop bits.
 - b) Write the appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write the data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0, and then, the user may set UTXEN. This will cause the serial bit stream to begin immediately, because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

15.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 15.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

15.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an Auto-Baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK this sets up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

15.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 15.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. A receive interrupt will be generated when one or more data characters have been received, as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

15.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-To-Send (UxCTS) and Request-To-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx module. These two pins allow the UARTx to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

15.7 Infrared Support

The UARTx module provides two types of infrared UARTx support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder.

As the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

15.7.1 EXTERNAL IrDA SUPPORT – IrDA CLOCK OUTPUT

To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

15.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

16.2.4 RTCC CONTROL REGISTERS

REGISTER 16-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0 HSC	R-0 HSC	R/W-0	R/W-0	R/W-0						
RTCEN ⁽²⁾	_	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0						
bit 15							bit 8						
							J						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0						
bit 7							bit 0						
Legend:		HSC = Hardw	are Settable/C	learable bit									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'									
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown						
hit 15 BTCEN : BTCC Enable bit ⁽²⁾													
DIL 15	1 = RTCC m		d										
	0 = RTCC module is enabled												
bit 14	U = RICC module is disabled Unimplemented: Read as '0'												
bit 13	RTCWREN: RTCC Value Registers Write Enable bit												
	1 = RTCVALH and RTCVALL registers can be written to by the user												
	0 = RTCVALH and RTCVALL registers are locked out from being written to by the user												
bit 12	RTCSYNC: R	TCC Value Re	gisters Read S	Synchronization	bit								
	1 = RTCVALI	H, RTCVALL ar in an invalid da	nd ALCFGRPT	registers can c	hange while ro	eading due to a	rollover ripple						
	can be as	ssumed to be v	alid.		twice and rest								
	0 = RTCVAL	H, RTCVALL or	ALCFGRPT r	egisters can be	read without of	concern over a	rollover ripple						
bit 11	HALFSEC: H	alf Second Stat	tus bit ⁽³⁾										
	1 = Second h	alf period of a	second										
	0 = First half	period of a sec	cond										
bit 10		C Output Enab	ble bit										
	1 = RTCC out = RTCCC out = RTCC	itput is enabled	1										
bit 9-8	RTCPTR<1:0	>: RTCC Value	e Register Wind	dow Pointer bits	6								
	Points to the c	corresponding F	RTCC Value reg	gisters when rea	ading the RTC	ALH and RTC	ALL registers.						
		<1:0> value dec	crements on ev	very read or write	e of RTCVALH	until it reaches	.00.						
	$\frac{RICVAL<15:2}{0.0} = MINUTE$	<u>3>:</u> :S											
	01 = WEEKD	AY											
	10 = MONTH												
	11 = Reserve	d											
	$\frac{\text{RICVAL} < 7:0}{0.0} = \text{SECON}$	<u>>:</u> DS											
	01 = HOURS												
	10 = DAY												
	11 = YEAR												

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

FIGURE 16-2:	ALARM MASK SE	ITINGS					
Alarm Mas (AMASK	k Setting <<3:0>)	Day of the Week	Month	Day	Hours	Minutes	Seconds
0000 - Every 0001 - Every	half second second						
0010 - Every	10 seconds						s
0011 - Every	minute						S S
0100 - Every	10 minutes					m	SS
0101 - Every	hour					m m :	SS
0110 - Every	day				h h :	m m :	s s
0111 - Every	week	d			h h :	m m :	s s
1000 - Every	month			b	h h :	m m :	s s
1001 - Every	year ⁽¹⁾		m m / 0	b	h h :	m m :	s s
Note 1: A	nnually, except when cor	ifigured for	r February 29.				

16.5 Power Control

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake from the current low-power mode (Sleep, Deep Sleep, etc.).

To enable this feature, the RTCC must be enabled (RTCEN = 1), the PWCEN register bit must be set and the RTCC pin must be driving the PWC control signal (RTCOE = 1 and RTCCLK<1:0> = 11).

The polarity of the PWC control signal may be chosen using the PWCPOL register bit. Active-low or active-high may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin. This setting is able to drive the GND pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

REGISTER 17-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
_	DS42	DS41	DS40	_	DS32	DS31	DS30
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
_	DS22	DS21	DS20	_	DS12	DS11	DS10
bit 7							bit 0
							1
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, rea		d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
h:4 4 5	11	(ada David vi da	.,				
DIT 15	Unimplemen	ted: Read as 'C		. 1			
bit 14-12	DS4<2:0>: Da	ata Selection M	UX 4 Signal S	election bits			
	111 = MCCP3	3 Compare Eve	nt Flag (CCP3	SIF)			
	101 = Digital	I Compare Eve	ent Flag (CCP1	IF)			
	100 = CTMU	Trigger interrup	ot				
	For CLC1:						
	011 = SPI1 S	DIx					
	010 = Compa	rator 3 output					
	001 = CLC2 (000 = CLC2)	output BIVO nin					
	UUU = CLCIN	e i/O biti					
	011 = SPI2 S	DIx					
	010 = Comparator 3 output						
	001 = CLC1 o	output					
	000 = CLCIN	B I/O pin					
bit 11	Unimplemen	ted: Read as '0)'				
bit 10-8	DS3<2:0>: Da	ata Selection M	UX 3 Signal S	election bits			
	111 = MCCP3	3 Compare Eve	nt Flag (CCP3	BIF)			
	101 = NICCP	∠ Compare Eve logic low	int Flag (CCP2	.ir)			
	For CI C1	10 10 10 10					
	100 = UART1	RX					
	011 = SPI1 SDOx						
	010 = Comparator 2 output						
	001 = CLC1 output						
	UUU = CLUIN	A I/O pin					
	$\frac{100 \text{ CLC2.}}{100 = \text{HART2}}$	RX					
	011 = SPI2 S	DOx					
	010 = Compa	rator 2 output					
	001 = CLC2 c	output					
	000 = CLCIN	A I/O pin					
bit 7	Unimplemen	ted: Read as '0)'				

20.0 8-BIT DIGITAL-TO-ANALOG CONVERTER (DAC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*. Device-specific information in this data sheet supersedes the information in the *"PIC24F Family Reference Manual"*.

PIC24FV16KM204 family devices include two 8-bit Digital-to-Analog Converters (DACs) for generating analog outputs from digital data. A simplified block diagram for a single DAC is shown in Figure 20-1. Both of the DACs are identical. The DAC generates an analog output voltage based on the digital input code, according to the formula:

 $V \text{DAC} = \frac{V \text{DACREF} \times \text{DACxDAT}}{256}$

where *V*DAC is the analog output voltage and *V*DACREF is the reference voltage selected by DACREF<1:0>.

Each DAC includes these features:

- Precision 8-bit resistor ladder for high accuracy
- Fast settling time, supporting 1 Msps effective sampling rates
- · Buffered output voltage
- Three user-selectable voltage reference options
- Multiple conversion Trigger options, plus a manual convert-on-write option
- · Left and right justified input data options
- User-selectable Sleep and Idle mode operation

When using the DAC, it is recommended to set the ANSx and TRISx bits for the DACx output pin to configure it as an analog output. See **Section 11.2** "**Configuring Analog Port Pins**" for more information.

FIGURE 20-1: SINGLE DACX SIMPLIFIED BLOCK DIAGRAM

Μ

Master Synchronous Serial Port (MSSP)	159
Microchip Internet Web Site	332
MPLAB Assembler, Linker, Librarian	262
MPLAB ICD 3 In-Circuit Debugger	263
MPLAB PM3 Device Programmer	263
MPLAB REAL ICE In-Circuit Emulator System	263
MPLAB X Integrated Development	
Environment Software	
MPLAB X SIM Software Simulator	263
MPLIB Object Librarian	262
MPLINK Object Linker	262
N	
Near Data Space	

0

257
127
127
122
123
122
122
128

P Packagir

Packaging	
Details	300
Marking	
PICkit 3 In-Circuit Debugger/Programmer	
Power-Saving	135
Power-Saving Features	131
Clock Frequency, Clock Switching	131
Coincident Interrupts	132
Instruction-Based Modes	131
Idle	132
Sleep	131
Retention Regulator (RETREG)	134
Selective Peripheral Control	135
Ultra Low-Power Wake-up (ULPWU)	
Voltage Regulator-Based	134
Retention Sleep Mode	134
Run Mode	134
Sleep Mode	134
Product Identification System	
Program and Data Memory	
Access Using Table Instructions	65
Program Space Visibility	66
Program and Data Memory Spaces	
Interfacing, Addressing	63
Program Memory	
Address Space	41
Configuration Word Addresses	
Program Space	
Memory Map	41
Program Verification	
R	
Real-Time Clock and Calendar (RTCC)	181
Register Mans	
A/D	59
ANSFI	00 08
Band Gap Buffer Control	
CI C1-2	01 48

Clock Control	62
Comparator	61
CPU Core	45
CTMU	60
DAC1	56
DAC2	56
ICN	46
Interrupt Controller	47
MCCP1	49
	50
	51
MSSPI (FC/SPI)	54
NISSEZ (I C/SEI)	04 62
0n Amn 1	02 56
Op Amp 2	50 56
Pad Configuration	50 58
PMD	50 62
PORTA	02 57
PORTB	07 57
PORTC	07
Real-Time Clock and Calendar	60
SCCP4	
SCCP5	53
Timer1	48
UART1	55
UART2	55
Ultra Low-Power Wake-up	62
Registers	
AD1CHITH (A/D Scan Compare Hit,	
High Word)	. 219
AD1CHITL (A/D Scan Compare Hit,	
Low Word)	. 220
AD1CHS (A/D Sample Select)	. 218
AD1CON1 (A/D Control 1)	. 213
AD1CON2 (A/D Control 2)	. 215
AD1CON3 (A/D Control 3)	. 216
AD1CON5 (A/D Control 5)	. 217
AD1CSSH (A/D Input Scan Select, High Word)	. 221
AD1C55L (A/D Input Scan Select, Low Word)	. ZZ I
ADICTMENT (CTMU Enable Low Word)	. <u>222</u> 222
ALCEGRET (Alarm Configuration)	186
ALON OR 1 (Alarm Conliguration)	. 100
Seconds Value)	190
AI MTHDY (Alarm Month and Day Value)	189
AI WDHR (Alarm Weekday and Hours Value)	189
AMPxCON (Op Amp x Control)	. 234
ANSA (PORTA Analog Selection)	. 138
ANSB (PORTB Analog Selection)	. 139
ANSC (PORTC Analog Selection)	. 139
BUFCON0 (Internal Voltage Reference	
Control 0)	. 232
CCPxCON1H (CCPx Control 1 High)	. 152
CCPxCON1L (CCPx Control 1 Low)	. 150
CCPxCON2H (CCPx Control 2 High)	. 155
CCPxCON2L (CCPx Control 2 Low)	. 154
CCPxCON3H (CCPx Control 3 High)	. 157
CCPxCON3L (CCPx Control 3 Low)	. 156
CCPxSTATL (CCPx Status)	. 158
CLCxCONH (CLCx Control High)	. 199
CLCxCONL (CLCx Control Low)	. 198
CLCxGLSH (CLCx Gate Logic Input Select High)	. 204
CLCxGLSL (CLCx Gate Logic Input Select Low)	. 202
CLCXSEL (CLCX Input MUX Select)	. 200
ULNDIV (Clock Dividel')	. 125