

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16km102-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-1:

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FV16KM204 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP pins (see Section 2.4 "Voltage Regulator Pin (VCAP)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

MINIMUM CONNECTIONS C2⁽²⁾ Vdd Vss ₹R1 VDD R2 MCLR VCAP (1) C1 PIC24FV16KM204 Vdd Vss C6⁽²⁾ C3(2) VDD Vss AVDD AVSS /SS 20/

RECOMMENDED

Key (all values are recommendations):

C5⁽²⁾

C1 through C6: 0.1 $\mu\text{F},$ 20V ceramic

C7: 10 µF, 16V tantalum or ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pin (VCAP)" for an explanation of VCAP pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/Vss and AVDD/AVss pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

C4(2)

NOTES:

TABLE 4-6: TIMER1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	100h		Timer1 Register xxxx															
PR1	102h								Timer1	Period Regis	ster							FFFF
T1CON	104h	TON	—	TSIDL	_	_	_	TECS1	TECS0	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
Lanandi			le ave a a d					and the second										

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-7: CLC1-2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CLC1CONL	122h	LCEN	—	_	—	INTP	INTN	—	—	LCOE	LCOUT	LCPOL	—	_	MODE2	MODE1	MODE0	0000
CLC1CONH	124h	_	_		_	_	_	_	_	_	_	_	_	G4POL	G3POL	G2POL	G1POL	0000
CLC1SEL	126h	_	DS42	DS41	DS40		DS32	DS31	DS30	—	DS22	DS21	DS20	_	DS12	DS11	DS10	0000
CLC1GLSL	12Ah	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	0000
CLC1GLSH	12Ch	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	0000
CLC2CONL ⁽¹⁾	12Eh	LCEN	_	-	_	INTP	INTN	_	_	LCOE	LCOUT	LCPOL	_	_	MODE2	MODE1	MODE0	0000
CLC2CONH ⁽¹⁾	130h	—	—	_	—	_	_	—	_	_	_	_	—	G4POL	G3POL	G2POL	G1POL	0000
CLC2SEL ⁽¹⁾	132h	—	DS42	DS41	DS40	_	DS32	DS31	DS30	_	DS22	DS21	DS20	—	DS12	DS11	DS10	0000
CLC2GLSL ⁽¹⁾	136h	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	0000
CLC2GLSH ⁽¹⁾	138h	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	0000

Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-8: MCCP1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Rese
CCP1CON1L	140h	CCPON	—	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP1CON1H	142h	OPSSRC	SRC RTRGEN <u>– –</u> OPS3 OPS2 OPS1 OPS0 TRIGEN ONESHOT ALTSYNC SYNC4 SYNC3 SYNC2 SYNC1 SYNC0 000									0000						
CCP1CON2L	144h	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP1CON2H	146h	OENSYNC	_	OCFEN	OCEEN	OCDEN	OCCEN	OCBEN	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0	0100
CCP1CON3L	148h	_	_	_	_	_	_	_	_	_		DT5	DT4	DT3	DT2	DT1	DT0	0000
CCP1CON3H	14Ah	OETRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2	OUTM1	OUTM0	_	_	POLACE	POLBDF	PSSACE1	PSSACE0	PSSBDF1	PSSBDF0	0000
CCP1STATL	14Ch	_	_	_	_	_	_	_	_	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP1TMRL	150h							MCCI	P1 Time Ba	se Register	Low Word							0000
CCP1TMRH	152h							MCCF	P1 Time Ba	se Register	High Word							0000
CCP1PRL	154h							MCCP1	Fime Base F	Period Regis	ster Low Wor	ď						FFFF
CCP1PRH	156h							MCCP1 T	īme Base F	Period Regis	ster High Wo	rd						FFFF
CCP1RAL	158h		Output Compare 1 Data Word A 000								0000							
CCP1RBL	15Ch		Output Compare 1 Data Word B 000								0000							
CCP1BUFL	160h		Input Capture 1 Data Buffer Low Word								0000							
CCP1BUFH	162h							Input	Capture 1	Data Buffer	High Word							0000

Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-12: SCCP5 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP5CON1L ⁽¹⁾	1D0h	CCPON	_	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP5CON1H(1)	1D2h	OPSSRC	RTRGEN	_	_	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP5CON2L ⁽¹⁾	1D4h	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP5CON2H(1)	1D6h	OENSYNC	_	_	_	_	_	_	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP5CON3H ⁽¹⁾	1DAh	OETRIG	OSCNT2	OSCNT1	OSCNT0	-	_	_	_	_	_	POLACE	_	PSSACE1	PSSACE0	_	_	0000
CCP5STATL ⁽¹⁾	1DCh	-	_	_	—	-	_	_	_	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP5TMRL ⁽¹⁾	1E0h							SCCP5	i Time Base	Register Lo	w Word							0000
CCP5TMRH ⁽¹⁾	1E2h							SCCP5	Time Base	Register Hig	gh Word							0000
CCP5PRL ⁽¹⁾	1E4h							SCCP5 Tir	ne Base Pe	iod Register	r Low Word							FFFF
CCP5PRH ⁽¹⁾	1E6h							SCCP5 Tin	ne Base Per	iod Register	High Word							FFFF
CCP5RAL ⁽¹⁾	1E8h							Out	put Compar	e 5 Data Wo	rd A							0000
CCP5RBL ⁽¹⁾	1ECh		Output Compare 5 Data Word B 000									0000						
CCP5BUFL ⁽¹⁾	1F0h		Input Capture 5 Data Buffer Low Word									0000						
CCP5BUFH ⁽¹⁾	1F2h		Input Capture 5 Data Buffer High Word									0000						

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

REGISTER 8-33: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	_	_	—	ULPWUIP2	ULPWUIP1	ULPWUIP0				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							
bit 15-3	Unimplemer	ted: Read as '0)'								
bit 2-0	ULPWUIP<2	:0>: Ultra Low-F	Power Wake-u	p Interrupt Prior	rity bits						

111 = Interrupt is Priority 7 (highest priority interrupt)

- •
- 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 8-34: IPC24: INTERRUPT PRIORITY CONTROL REGISTER 24

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	CLC2IP2	CLC2IP1	CLC2IP0	—	CLC1IP2	CLC1IP1	CLC1IP0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	CLC2IP<2:0>: CLC2 Interrupt Priority bits
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	CLC1IP<2:0>: CLC1 Interrupt Priority bits
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1
	000 = Interrupt source is disabled

REGISTER 10-1: ULPWCON: ULPWU CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0		
ULPEN		ULPSIDL	_	—	_	_	ULPSINK		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	_	—		—	_	_	—		
bit 7	·	· · ·					bit 0		
Legend:									
R = Readabl	le bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Bit is unknown		
bit 15	ULPEN: ULF	PWU Module En	able bit						
	1 = Module i								
	0 = Module i	s disabled							
bit 14	Unimpleme	nted: Read as '0	,						
bit 13	ULPSIDL: U	LPWU Stop in Ic	lle Select bit						
		nues module ope			Idle mode				
	0 = Continues module operation in Idle mode								
bit 12-9	Unimplemented: Read as '0'								
bit 8	ULPSINK: U	ILPWU Current S	Sink Enable bit						
	1 = Current s	sink is enabled							
	0 = Current s	sink is disabled							
bit 7-0	Unimpleme	nted: Read as '0	3						

11.2.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation, and a read operation of the same port. Typically, this instruction would be a NOP.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC24FXXXXX family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 37 external signals (CN0 through CN36) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the CN module. The CNEN1 and CNEN3 registers contain the interrupt enable control bits for each of the CNx input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CNx pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately using the CNPU1 and CNPU3 registers, which contain the control bits for each of the CNx pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately using the CNPD1 and CNPD3 registers, which contain the control bits for each of the CNx pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

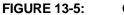
When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to Vss by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on Change Notification (CN) pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0; MOV W0, TRISB;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP ;	//Delay 1 cycle
BTSS PORTB, #13;	//Next Instruction
<pre>Equivalent `C' Code TRISB = 0xFF00; NOP(); if(PORTBbits.RB13 == 1) { }</pre>	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs //Delay 1 cycle // execute following code if PORTB pin 13 is set.

13.3 Output Compare Mode


Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module on compare match events has the ability to generate a single output transition or a train of output

pulses. Like most PIC[®] MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

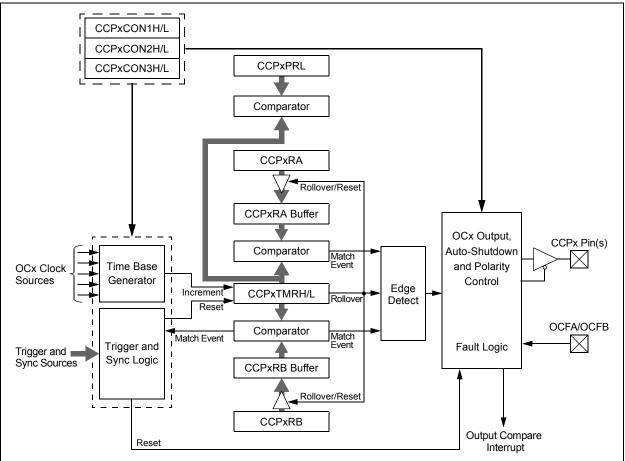
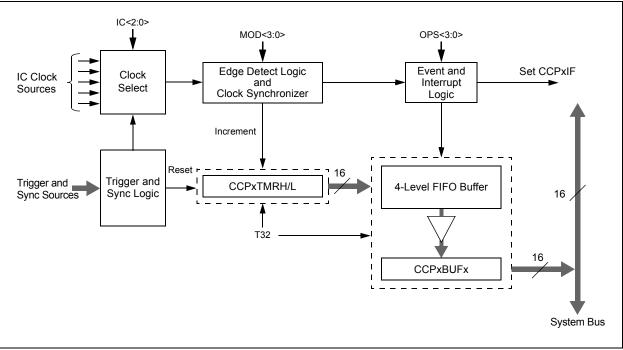

Table 13-3 shows the various modes available in Output Compare modes.

TABLE 13-3:	OUTPUT COMPARE/PWM MODES
-------------	--------------------------

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode			
0001	0	Output High on Compare (16-bit)			
0001	1	Output High on Compare (32-bit)			
0010	0	Output Low on Compare (16-bit)	Single Edge Mede		
0010	1	Output Low on Compare (32-bit)	Single Edge Mode		
0011	0	Output Toggle on Compare (16-bit)			
0011	1	Output Toggle on Compare (32-bit)			
0100	0	Dual Edge Compare (16-bit)	Dual Edge Mode		
0101	0	Dual Edge Compare (16-bit buffered)	PWM Mode		
0110	0	Center-Aligned Pulse (16-bit buffered)	Center PWM		
0111	0	Variable Frequency Pulse (16-bit)			
0111	1	Variable Frequency Pulse (32-bit)			

OUTPUT COMPARE x BLOCK DIAGRAM

13.4 Input Capture Mode


Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal Trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 13-6 depicts a simplified block diagram of Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L register.

To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and the MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 13-4.

MOD<3:0> (CCPxCON1L<3:0>)	T32 (CCPxCON1L<5>)	Operating Mode
0000	0	Edge Detect (16-bit capture)
0000	1	Edge Detect (32-bit capture)
0001	0	Every Rising (16-bit capture)
0001	1	Every Rising (32-bit capture)
0010	0	Every Falling (16-bit capture)
0010	1	Every Falling (32-bit capture)
0011	0	Every Rise/Fall (16-bit capture)
0011	1	Every Rise/Fall (32-bit capture)
0100	0	Every 4th Rising (16-bit capture)
0100	1	Every 4th Rising (32-bit capture)
0101	0	Every 16th Rising (16-bit capture)
0101	1	Every 16th Rising (32-bit capture)

TABLE 13-4: INPUT CAPTURE MODES

REGISTER 17-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3

TABLE 19-2:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
12-BIT FRACTIONAL FORMATS

VIN/VREF	12-Bit Output Code								
+4095/4096	0 1111 1111 1111	1111 1111 1111 0000	0.999	0111 1111 1111 1000	0.999				
+4094/4096	0 1111 1111 1110	1111 1111 1110 0000	0.998	0111 1111 1110 1000	0.998				
		• • •							
+1/4096	0 0000 0000 0001	0000 0000 0001 0000	0.001	0000 0000 0000 1000	0.001				
0/4096	0 0000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000				
-1/4096	1 0111 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1111 1000	-0.001				
	•••								
-4095/4096	1 0000 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0000 1000	-0.999				
-4096/4096	1 0000 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000				

FIGURE 19-5: A/D OUTPUT DATA FORMATS (10-BIT)

RAM Contents:							d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Read to Bus:																I
Integer	0	0	0	0	0	0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Signed Integer	s0	s0	s0	s0	s0	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Fractional (1.15)	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0	0
Signed Fractional (1.15)	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0
	L							1								

TABLE 19-3:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
10-BIT INTEGER FORMATS

VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Integer Format/ Equivalent Decimal Value		16-Bit Signed Integer Forn Equivalent Decimal Valu	
+1023/1024	011 1111 1111	0000 0011 1111 1111	1023	0000 0001 1111 1111	1023
+1022/1024	011 1111 1110	0000 0011 1111 1110	1022	0000 0001 1111 1110	1022
		•••			
+1/1024	000 0000 0001	0000 0000 0000 0001	1	0000 0000 0000 0001	1
0/1024	000 0000 0000	0000 0000 0000 0000	0	0000 0000 0000 0000	0
-1/1024	101 1111 1111	0000 0000 0000 0000	0	1111 1111 1111 1111	-1
		•••			
-1023/1024	100 0000 0001	0000 0000 0000 0000	0	1111 1110 0000 0001	-1023
-1024/1024	100 0000 0000	0000 0000 0000 0000	0	1111 1110 0000 0000	-1024

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS (CONTINUED)

- bit 2 Unimplemented: Read as '0'
- bit 1-0 **CCH<1:0>:** Comparator x Channel Select bits
 - 11 = Inverting input of the comparator connects to BGBUF1⁽¹⁾
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CxINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin
- **Note 1:** BGBUF1 voltage is configured by BUFREF1<1:0> (BUFCON0<1:0>).
 - 2: If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

REGISTER 22-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
CMIDL	—	—	—	—	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	C3OUT ⁽¹⁾	C2OUT ⁽¹⁾	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	CMIDL: Comparator x Stop in Idle Mode bit
	 1 = Comparator interrupts are disabled in Idle mode; enabled comparators remain operational 0 = Continues operation of all enabled comparators in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only) ⁽¹⁾
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only) ⁽¹⁾
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).
Note 1:	Comparator 2 and Comparator 3 are only available on PIC24F(V)16KM2XX devices.

24.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Time Measurement Unit, refer to the "PIC24F Family Reference Manual", "Charge Time Measurement Unit (CTMU) with Threshold Detect" (DS39743).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

- Thirteen external edge input Trigger sources
- · Polarity control for each edge source
- · Control of edge sequence
- Control of response to edge levels or edge transitions
- · Time measurement resolution of one nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 enables the module and controls the mode of operation of the CTMU, as well as controlling edge sequencing. CTMUCON2 controls edge source selection and edge source polarity selection. The CTMUICON register selects the current range of current source and trims the current.

24.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from several internal peripheral modules (OC1, Timer1, any input capture or comparator module) and up to 13 external pins (CTED1 through CTED13). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

EQUATION 24-1:

$$I = C \cdot \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an External Capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 24-1 illustrates the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

REGISTER 24-1: CTMUCON1L: CTMU CONTROL 1 LOW REGISTER (CONTINUED)

- bit 1-0 IRNG<1:0>: Current Source Range Select bits
 - 11 = 100 × Base Current
 - 10 = 10 × Base Current
 - 01 = Base Current Level (0.55 μA nominal)
 - 00 = 1000 × Base Current

REGISTER 25-7: FICD: IN-CIRCUIT DEBUGGER CONFIGURATION REGISTER

R/P-1	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1		
DEBUG	_	_	—	—	—	FICD1	FICD0		
bit 7				•		•	bit 0		
Legend:									
R = Readab	le bit	P = Programn	nable bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	x = Bit is unknown		
bit 7 bit 6-2 bit 1-0	DEBUG: Background 1 = Background 0 = Background Unimplemente FICD<1:0:>: IC 11 = PGEC1/P 10 = PGEC2/P 01 = PGEC3/P 00 = Reserved	d debugger is o d debugger fun ed: Read as '0' CD Pin Select b GED1 are use GED2 are use GED3 are use	disabled Inctions are ena its d for programm d for programm	ning and debug ning and debug	ging the device	Э			

REGISTER 25-8: DEVID: DEVICE ID REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16

R	R	R	R	R	R	R	R
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0
bit 15							bit 8

R	R	R	R	R	R	R	R
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '0'
bit 15-8	FAMID<7:0>: Device Family Identifier bits
	01000101 = PIC24FV16KM204 family
bit 7-0	DEV<7:0>: Individual Device Identifier bits
	00011111 = PIC24FV16KM204
	00011011 = PIC24FV16KM202
	00010111 = PIC24FV08KM204
	00010011 = PIC24FV08KM202
	00001111 = PIC24FV16KM104
	00001011 = PIC24FV16KM102
	00000011 = PIC24FV08KM102
	00000001 = PIC24FV08KM101
	00011110 = PIC24F16KM204
	00011010 = PIC24F16KM202
	00010110 = PIC24F08KM204
	00010010 = PIC24F08KM202
	00001110 = PIC24F16KM104
	00001010 = PIC24F16KM102
	00000010 = PIC24F08KM102
	0000000 = PIC24F08KM101

TABLE 27-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
$\begin{array}{l} \mbox{Power Dissipation} \\ \mbox{Internal Chip Power Dissipation:} \\ \mbox{PINT} = \mbox{VDD } x \ (\mbox{IDD} - \Sigma \ \mbox{IOH}) \\ \mbox{I/O Pin Power Dissipation:} \\ \mbox{PI/O} = \Sigma \ (\{\mbox{VDD} - \mbox{VOH} \} \ x \ \mbox{IOH}) + \Sigma \ (\mbox{VOL } x \ \mbox{IOL}) \end{array}$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 27-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 20-Pin PDIP	θJA	62.4	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60		°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θJA	108	-	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71	_	°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	75	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	80.2	_	°C/W	1
Package Thermal Resistance, 20-Pin QFN	θJA	43	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN	θJA	32	_	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29	_	°C/W	1
Package Thermal Resistance, 44-Pin TQFP	θJA	40	_	°C/W	1
Package Thermal Resistance, 48-Pin UQFN	θJA	41	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 27-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA		STICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Min Typ ⁽¹⁾ Max Units			Conditions
DC10	Vdd	Supply Voltage	1.8	—	3.6	V	For PIC24F devices
			2.0		5.5	V	For PIC24FV devices
DC12	Vdr	RAM Data Retention	1.6		—	V	For PIC24F devices
		Voltage ⁽²⁾	1.8		—	V	For PIC24FV devices
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	0.7	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	—	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

AC CHARACTERISTICS				Operating temperatu		$\begin{array}{l} \textbf{s: 1.8V to 3.6V (PIC24F16KM204)} \\ \textbf{2.0V to 5.5V (PIC24FV16KM204)} \\ \textbf{-40^{\circ}C} \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for Industrial} \\ \textbf{-40^{\circ}C} \leq \text{TA} \leq +125^{\circ}\text{C} \text{ for Extended} \end{array}$			
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
OS50	Fplli	PLL Input Frequency Range	4	—	8	MHz	ECPLL, HSPLL modes, -40°C \leq TA \leq +85°C		
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz	$-40^{\circ}C \le TA \le +85^{\circ}C$		
OS52	TLOCK	PLL Start-up Time (Lock Time)	-	1	2	ms			
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over 100 ms period		

TABLE 27-21: PLL CLOCK TIMING SPECIFICATIONS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 27-22: INTERNAL RC OSCILLATOR ACCURACY

AC CHARACTERISTICS Standard Operating Conditions: 1.8V to 3.6V (PIC24F16KM204) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						/16KM204) or Industrial			
Param No.CharacteristicMinTypMaxUnitsCondition					onditions				
F20	FRC @ 8 MHz ⁽¹⁾	-2		+2	%	+25°C $3.0V \le VDD \le 3.6V, F dt 3.2V \le VDD \le 5.5V, FV$			
		-5	_	+5	%	$\label{eq:constraint} \begin{array}{c} -40^\circ C \leq T_A \leq +125^\circ C \\ 2.0V \leq V DD \leq 3.6V, \ F \ devic \\ 2.0V \leq V DD \leq 5.5V, \ FV \ devic \\ \end{array}$			
F21	LPRC @ 31 kHz ⁽²⁾	-15		+15	%	$\label{eq:constraint} \begin{array}{l} -40^{\circ}C \leq TA \leq +125^{\circ}C \\ 2.0V \leq VDD \leq 3.6V, \ F \ device \\ 2.0V \leq VDD \leq 5.5V, \ FV \ device \end{array}$			

Note 1: The frequency is calibrated at +25°C and 3.3V. The OSCTUN bits can be used to compensate for temperature drift.

2: The change of LPRC frequency as VDD changes.

TABLE 27-23: INTERNAL RC OSCILLATOR SPECIFICATIONS

АС СНА	AC CHARACTERISTICS		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
Param No.	Sym	Characteristic	Min	Тур	Мах	Units	Conditions		
	TFRC	FRC Start-up Time	—	5	_	μS			
	TLPRC	LPRC Start-up Time	—	70	—	μS			

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
300	TRESP	Response Time ^{*(1)}	_	150	400	ns	
301	Тмс2о∨	Comparator Mode Change to Output Valid [*]	—	—	10	μs	

TABLE 27-26: COMPARATOR TIMING REQUIREMENTS

Parameters are characterized but not tested.

*

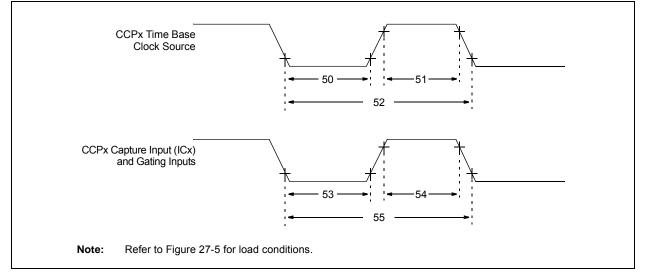

Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 27-27: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time ⁽¹⁾			10	μS	

Note 1: Settling time is measured while CVRSS = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

FIGURE 27-10: CAPTURE/COMPARE/PWM TIMINGS (MCCPx, SCCPx MODULES)

TABLE 27-28: CAPTURE/COMPARE/PWM REQUIREMENTS (MCCPx, SCCPx MODULES)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
50	TCLKL	CCPx Time Base Clock Source Low Time	TCY/2	_	ns	
51	ТсікН	CCPx Time Base Clock Source High Time	Tcy/2	_	ns	
52	TCLK	CCPx Time Base Clock Source Period	Тсү	-	ns	
53	TccL	CCPx Capture or Gating Input Low Time	TCLK	—	ns	
54	ТссН	CCPx Capture or Gating Input High Time	TCLK	_	ns	
55	TCCP	CCPx Capture or Gating Input Period	2 * Tclk/N	—	ns	N = Prescale Value (1, 4 or 16)