

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16КВ (5.5К х 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16km102-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION

			F					FV					
			Pin Numb	er				Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
AN0	2	2	27	19	21	2	2	27	19	21	I	ANA	A/D Analog Inputs
AN1	3	3	28	20	22	3	3	28	20	22	I	ANA	A/D Analog Inputs
AN2	4	4	1	21	23	4	4	1	21	23	I	ANA	A/D Analog Inputs
AN3	5	5	2	22	24	5	5	2	22	24	Ι	ANA	A/D Analog Inputs
AN4	6	6	3	23	25	6	6	3	23	25	I	ANA	A/D Analog Inputs
AN5	_	7	4	24	26	—	7	4	24	26	I	ANA	A/D Analog Inputs
AN6	_	—	—	25	27	—	—		25	27	I	ANA	A/D Analog Inputs
AN7	_	—	—	26	28	—	—		26	28	I	ANA	A/D Analog Inputs
AN8	_	—	—	27	29	—	—		27	29	I	ANA	A/D Analog Inputs
AN9	18	26	23	15	16	18	26	23	15	16	I	ANA	A/D Analog Inputs
AN10	17	25	22	14	15	17	25	22	14	15	I	ANA	A/D Analog Inputs
AN11	16	24	21	11	12	16	24	21	11	12	I	ANA	A/D Analog Inputs
AN12	15	23	20	10	11	15	23	20	10	11	I	ANA	A/D Analog Inputs
AN13	7	9	6	30	33	7	9	6	30	33	I	ANA	A/D Analog Inputs
AN14	8	10	7	31	34	8	10	7	31	34	I	ANA	A/D Analog Inputs
AN15	9	11	8	33	36	9	11	8	33	36	I	ANA	A/D Analog Inputs
AN16	10	12	9	34	37	10	12	9	34	37	I	ANA	A/D Analog Inputs
AN17	_	14	11	41	45	_	14	11	41	45	I	ANA	A/D Analog Inputs
AN18	_	15	12	42	46	_	15	12	42	46	I	ANA	A/D Analog Inputs
AN19	11	16	13	43	47	11	16	13	43	47	I	ANA	A/D Analog Inputs
AN20	12	17	14	44	48	12	17	14	44	48	I	ANA	A/D Analog Inputs
AN21	13	18	15	1	1	13	18	15	1	1	I	ANA	A/D Analog Inputs
ASCL1	_	15	12	42	46	_	15	12	42	46	I/O	I ² C™	Alternate I2C1 Clock Input/Output
ASDA1	_	14	11	41	45	_	14	11	41	45	I/O	l ² C	Alternate I2C1 Data Input/Output
AVDD	20	28	25	17	18	20	28	25	17	18	Р		A/D Supply Pins
AVss	19	27	24	16	17	19	27	24	16	17	Р		A/D Supply Pins
C1INA	8	7	4	24	26	8	7	4	24	26	I	ANA	Comparator 1 Input A (+)
C1INB	7	6	3	23	25	7	6	3	23	25	I	ANA	Comparator 1 Input B (-)
C1INC	5	5	2	22	24	5	5	2	22	24	Ι	ANA	Comparator 1 Input C (+)
C1IND	4	4	1	21	23	4	4	1	21	23	Ι	ANA	Comparator 1 Input D (-)

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, $I^2C^{TM} = I^2C/SMBus$ input buffer

DS30003030B-page 20

REGISTER 7-1:

RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0, H	S R/W-0, HS	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
TRAPR		SBOREN	RETEN ⁽³⁾	_	_	СМ	PMSLP
bit 15							bit 8
R/W-0, H	S R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit C
Legend:		HS = Hardwar	e Settable bit				
R = Read	able bit	W = Writable t	pit	U = Unimplen	nented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	-	Reset Flag bit					
	•	onflict Reset has					
1.11.4.4		onflict Reset has			E 1		
bit 14		gal Opcode or l			r Flag bit or Uninitialized V	/ register used	aa an Addraaa
		aused a Reset	on, an illegal a	duress mode c		v register used	as an Address
		opcode or Unir	nitialized W Re	set has not oc	curred		
bit 13	SBOREN: So	oftware Enable/D	Disable of BOF	R bit			
	1 = BOR is tu	rned on in softw	are				
		rned off in softw					
bit 12		ention Sleep Mo					
					Regulator (RETR ge Regulator (VF		
bit 11-10	-	ted: Read as '0					
bit 9	-	ation Word Misr		lag bit			
	-	Iration Word Mis		-			
	0 = A Configu	ration Word Mis	match Reset	has not occurre	ed		
bit 8	PMSLP: Prog	gram Memory Po	ower During S	leep bit			
		memory bias vo					
	0 = Program Standby		oltage is pow	ered down du	iring Sleep and	the voltage re	gulator enters
bit 7	•	nal Reset (MCLF	R) Pin hit				
bit i		Clear (pin) Rese		d			
		Clear (pin) Rese					
bit 6	SWR: Softwa	re reset (Instru	uction) Flag bit	t			
		instruction has t					
		instruction has r					
bit 5		oftware Enable/[Disable of WD	l bit ⁽²⁾			
	1 = WDT is ei 0 = WDT is di						
					-		
Note 1:	All of the Reset	•	be set or clear	ed in software.	Setting one of the	nese bits in soft	ware does not
2:	If the FWDTEN		tion bits are '1	1' (upprogram	med) the WDT i	is alwavs enabl	ed renardless
_ .	of the SWDTEN					ie amayo chabi	
-							

3: This is implemented on PIC24FV16KMXXX parts only; not used on PIC24F16KMXXX devices.

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator Configuration".

TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC<2:0> Configuration bits
BOR	(FOSCSEL<2:0>)
MCLR	COSC<2:0> Control bits
WDTO	(OSCCON<14:12>)
SWR	

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT		1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	Тьоск	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Tost	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	TOST + TLOCK	1, 2, 4, 5
BOR	EC	TPWRT	—	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	Тьоск	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Тоѕт	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	_	_	None

TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if the Power-up Timer is enabled; otherwise, it is zero.
- **3:** TFRC and TLPRC = RC Oscillator start-up times.
- **4:** TLOCK = PLL Lock time.
- **5:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.
- 6: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 27.0 "Electrical Characteristics".

R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0	R/W-0, HS
NVMIF	—	AD1IF	U1TXIF	U1RXIF	_	—	CCT2IF
bit 15							bit
R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS
CCT1IF	CCP4IF	CCP3IF		T1IF	CCP2IF	CCP1IF	INTOIF
bit 7							bit
Legend:		HS = Hardwa	re Settable bit				
R = Readable	bit	W = Writable		U = Unimplem	ented bit. read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15		Interrupt Flag					
		equest has occ					
		equest has not					
bit 14	-	ted: Read as '					
bit 13			-	Flag Status bit			
		equest has occ equest has not					
bit 12	-	-	Interrupt Flag	Status bit			
		equest has occ		Status bit			
	•	equest has not					
bit 11	-	-	terrupt Flag St	atus bit			
		equest has occ					
		equest has not					
bit 10-9	Unimplement	ted: Read as '	כ'				
bit 8	CCT2IF: Capt	ture/Compare 2	2 Timer Interrup	ot Flag Status b	it		
	1 = Interrupt r	equest has occ	curred				
	-	equest has not					
bit 7	-		-	ot Flag Status b	it		
		equest has occ					
		equest has not					
bit 6	-	-		ot Flag Status b	oit		
		equest has occ					
bit 5	•	equest has not		at Elag Status h	.;+		
DIUS	-	equest has occ		pt Flag Status b	11		
		equest has oct					
bit 4		ted: Read as '					
bit 3	-	Interrupt Flag S					
		equest has occ					
	•	equest has not					
bit 2	CCP2IF: Cap	ture/Compare 2	2 Event Interru	ot Flag Status b	oit		
	1 = Interrupt r	equest has occ	curred	-			
	0 = Interrupt r	equest has not	occurred				
bit 1	CCP1IF: Cap	ture/Compare	1 Event Interru	ot Flag Status b	bit		
		equest has occ					
	-	equest has not					
	INTOIL Evitor		Elaa Statua hit				
bit 0		nal Interrupt 0 equest has occ	-				

R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS
DAC2IF	DAC1IF	CTMUIF	—		_		HLVDIF
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	—	—	_	—	U2ERIF	U1ERIF	—
bit 7							bit 0
Legend:		HS = Hardwar	re Settable bit				
R = Readable	e bit	W = Writable I	oit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	•	tal-to-Analog C		rrupt Flag Stat	us bit		
		request has occ request has not					
bit 14		•		rrunt Flog Stat	ua hit		
DIL 14	•	tal-to-Analog Co request has occ		mupt Flag Stat			
		request has not					
bit 13		MU Interrupt Fla					
		request has occ	•				
	0 = Interrupt r	request has not	occurred				
bit 12-9	Unimplemen	ted: Read as 'o)'				
bit 8	HLVDIF: High	n/Low-Voltage D	Detect Interrupt	t Flag Status bi	t		
		request has occ					
		request has not					
bit 7-3	Unimplemented: Read as '0'						
bit 2	U2ERIF: UART2 Error Interrupt Flag Status bit 1 = Interrupt request has occurred						
		request has occ request has not					
bit 1	•	RT1 Error Interro		s bit			
		request has occ					
		request has not					
bit 0	Unimplemen	ted: Read as 'o)'				

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

REGISTER 8-14: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
_	—	—	—	—	—	CCT5IE	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	_		—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-10	Unimplemen	ted: Read as '	כי				
hit 9	-						

bit 9	CCT5IE: Capture/Compare 5 Timer Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled

bit 8-0 Unimplemented: Read as '0'

REGISTER 8-15: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIE	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
—	—	—	—	—	BCL2IE	SSP2IE	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	RTCIE: Real-Time Clock and Calendar Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 13-3	Unimplemented: Read as '0'
bit 2	BCL2IE: MSSP2 I ² C [™] Bus Collision Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 1	SSP2IE: MSSP2 SPI/I ² C Event Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 0	Unimplemented: Read as '0'

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The maximum open-drain voltage allowed is the same as the maximum VIH specification.

11.2 Configuring Analog Port Pins

The use of the ANSx and TRISx registers controls the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level). Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

11.2.1 ANALOG SELECTION REGISTER

I/O pins with shared analog functionality, such as A/D inputs and comparator inputs, must have their digital inputs shut off when analog functionality is used. Note that analog functionality includes an analog voltage being applied to the pin externally.

To allow for analog control, the ANSx registers are provided. There is one ANSx register for each port (ANSA, ANSB and ANSC). Within each ANSx register, there is a bit for each pin that shares analog functionality with the digital I/O functionality.

If a particular pin does not have an analog function, that bit is unimplemented. See Register 11-1 to Register 11-3 for implementation.

REGISTER 11-1: ANSA: PORTA ANALOG SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—	ANSA4 ⁽¹⁾	ANSA3	ANSA2	ANSA1	ANSA0
bit 7						bit 0	
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	iown	
,							

bit 15-5 Unimplemented: Read as '0'

bit 4-0 ANSA<4:0>: Analog Select Control bits⁽¹⁾

1 = Digital input buffer is not active (use for analog input)

0 = Digital input buffer is active

Note 1: The ANSA4 bit is not available on 20-pin devices.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
TON		TSIDL	—	_	—	TECS1 ⁽¹⁾	TECS0 ⁽¹⁾			
bit 15		•	-				bit			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0			
—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	—			
bit 7							bit			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15	TON: Timer1	On bit								
	1 = Starts 16- 0 = Stops 16-									
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	TSIDL: Timer	1 Stop in Idle I	Node bit							
			eration when o ation in Idle mo	device enters lo ode	lle mode					
bit 12-10	Unimplemen	ted: Read as '	0'							
bit 9-8			ed Clock Seled	ct bits ⁽¹⁾						
	11 = Reserve	•	as the sleek s	0.1700						
	10 = Timer1 uses the LPRC as the clock source 01 = Timer1 uses the External Clock (EC) from T1CK									
				r (SOSC) as th	e clock source					
bit 7	Unimplemen	ted: Read as '	0'							
bit 6			Accumulation	Enable bit						
	When TCS =									
	When TCS = $\frac{1}{2}$									
		<u>o.</u> ne accumulatio	n is enabled							
	0 = Gated tim	ne accumulatio	n is disabled							
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescale	e Select bits						
	11 = 1:256									
	10 = 1:64 01 = 1:8									
	00 = 1:1									
bit 3	Unimplemen	ted: Read as '	0'							
bit 2	TSYNC: Time	er1 External Cl	ock Input Sync	hronization Se	lect bit					
	<u>When TCS =</u>	<u>1:</u> nizes External	Clock input							
			External Clock	input						
	When TCS =	-								
	This bit is igno	ored.								
bit 1		Clock Source								
			selected by TE	CS<1:0>						
	0 = Internal c									
bit 0	Unimplemen	tod. Dood oo .	Ω'							

SYNC<4:0>	Synchronization Source
00000	None; Timer with Rollover on CCPxPR Match or FFFFh
00001	MCCP1 or SCCP1 Sync Output
00010	MCCP2 or SCCP2 Sync Output
00011	MCCP3 or SCCP3 Sync Output
00100	MCCP4 or SCCP4 Sync Output
00101	MCCP5 or SCCP5 Sync Output
00110 to 01010	Unused
01011	Timer1 Sync Output ⁽¹⁾
01100 to 10000	Unused
10001	CLC1 Output ⁽¹⁾
10010	CLC2 Output ⁽¹⁾
10011 to 11010	Unused
11011	A/D ⁽¹⁾
11110	Unused
11111	None; Timer with Auto-Rollover (FFFFh \rightarrow 0000h)

TABLE 13-6: SYNCHRONIZATION SOURCES

Note 1: These sources are only available when the source module is being used in a Synchronous mode.

16.2 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- · Alarm Value Registers

16.2.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTRx bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 16-1).

By writing the RTCVALH byte, the RTCC Pointer value, the RTCPTR<1:0> bits decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 16-1: RTCVAL REGISTER MAPPING

RTCPTR<1:0>	RTCC Value Register Window					
	RTCVAL<15:8>	RTCVAL<7:0>				
00	MINUTES	SECONDS				
01	WEEKDAY	HOURS				
10	MONTH	DAY				
11	_	YEAR				

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTRx bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 16-2).

By writing the ALRMVALH byte, the ALRMPTR<1:0> bits (Alarm Pointer value) decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL, until the pointer value is manually changed.

TABLE 16-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window					
<1:0>	ALRMVALH<15:8>	ALRMVALL<7:0>				
00	ALRMMIN	ALRMSEC				
01	ALRMWD	ALRMHR				
10	ALRMMNTH	ALRMDAY				
11	PWCSTAB	PWCSAMP				

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes, the ALRMPTR<1:0> value will be decremented. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note: This only applies to read operations and not write operations.

16.2.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (see Example 16-1 and Example 16-2).

Note:	To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any
	other time. For the RTCWREN bit to be
	set, there is only one instruction cycle time
	window allowed between the 55h/AA
	sequence and the setting of RTCWREN.
	Therefore, it is recommended that code
	follow the procedure in Example 16-2.

16.2.3 SELECTING RTCC CLOCK SOURCE

There are four reference source clock options that can be selected for the RTCC using the RTCCLK<1:0> bits (RTCPWC<11:10>): 00 = Secondary Oscillator, 01 = LPRC, 10 = 50 Hz External Clock and 11 = 60 Hz External Clock.

	EXAMPLE 16-1:	SETTING THE RTCWREN BIT IN ASSEMBLY
--	---------------	-------------------------------------

push push	w7 w8	; Store W7 and W8 values on the stack.
disi	#5	; Disable interrupts until sequence is complete.
mov	#0x55, w7	; Write 0x55 unlock value to NVMKEY.
mov	w7, NVMKEY	
mov	#0xAA, w8	; Write 0xAA unlock value to NVMKEY.
mov	w8, NVMKEY	
bset	RCFGCAL, #13	; Set the RTCWREN bit.
pop	w8	; Restore the original W register values from the stack.
pop	w7	

EXAMPLE 16-2: SETTING THE RTCWREN BIT IN 'C'

//This builtin function executes implements the unlock sequence and sets
//the RTCWREN bit.
__builtin_write_RTCWEN();

FIGURE 16-2:	ALARM MASK SE	ITINGS					
Alarm Mas (AMASK	k Setting <<3:0>)	Day of the Week	Month	Day	Hours	Minutes	Seconds
0000 - Every 0001 - Every							
0010 - Every	10 seconds						s
0011 - Every	minute						S S
0100 - Every	10 minutes					m	SS
0101 - Every	hour					m m :	SS
0110 - Every	day				h h :	m m :	s s
0111 - Every	week	d			h h :	m m :	s s
1000 - Every	month			b	h h :	m m :	s s
1001 - Every	year ⁽¹⁾		m m / 0	b	h h :	m m :	s s
Note 1: A	nnually, except when cor	ifigured for	r February 29.				

16.5 Power Control

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake from the current low-power mode (Sleep, Deep Sleep, etc.).

To enable this feature, the RTCC must be enabled (RTCEN = 1), the PWCEN register bit must be set and the RTCC pin must be driving the PWC control signal (RTCOE = 1 and RTCCLK<1:0> = 11).

The polarity of the PWC control signal may be chosen using the PWCPOL register bit. Active-low or active-high may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin. This setting is able to drive the GND pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 G2D4T G2D4N G2D3T G2D3N G2D2T G2D2N G2D1T G2D1N bit 15 bit 8 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 G1D4T G1D2N G1D4N G1D3T G1D3N G1D2T G1D1T G1D1N bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '0' = Bit is cleared x = Bit is unknown '1' = Bit is set bit 15 G2D4T: Gate 2 Data Source 4 True Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 2 0 = The Data Source 4 inverted signal is disabled for Gate 2 bit 14 G2D4N: Gate 2 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 2 0 = The Data Source 4 inverted signal is disabled for Gate 2 bit 13 G2D3T: Gate 2 Data Source 3 True Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 2 0 = The Data Source 3 inverted signal is disabled for Gate 2 bit 12 G2D3N: Gate 2 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 2 0 = The Data Source 3 inverted signal is disabled for Gate 2 bit 11 G2D2T: Gate 2 Data Source 2 True Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2 bit 10 G2D2N: Gate 2 Data Source 2 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 2 0 = The Data Source 2 inverted signal is disabled for Gate 2 bit 9 G2D1T: Gate 2 Data Source 1 True Enable bit 1 = The Data Source 1 inverted signal is enabled for Gate 2 0 = The Data Source 1 inverted signal is disabled for Gate 2 bit 8 G2D1N: Gate 2 Data Source 1 Negated Enable bit 1 = The Data Source 2 inverted signal is enabled for Gate 1 0 = The Data Source 2 inverted signal is disabled for Gate 1 bit 7 G1D4T: Gate 1 Data Source 4 True Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 1 0 = The Data Source 4 inverted signal is disabled for Gate 1 bit 6 G1D4N: Gate 1 Data Source 4 Negated Enable bit 1 = The Data Source 4 inverted signal is enabled for Gate 1 0 = The Data Source 4 inverted signal is disabled for Gate 1 G1D3T: Gate 1 Data Source 3 True Enable bit bit 5 1 = The Data Source 3 inverted signal is enabled for Gate 1 0 = The Data Source 3 inverted signal is disabled for Gate 1 bit 4 G1D3N: Gate 1 Data Source 3 Negated Enable bit 1 = The Data Source 3 inverted signal is enabled for Gate 1 0 = The Data Source 3 inverted signal is disabled for Gate 1

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER (CONTINUED)

- bit 7-5 **CH0NA<2:0>:** Sample A Channel 0 Negative Input Select bits The same definitions as for CHONB<2:0>.
- bit 4-0 **CH0SA<4:0>:** Sample A Channel 0 Positive Input Select bits The same definitions as for CHONA<4:0>.
- Note 1: This is implemented on 44-pin devices only.
 - 2: This is implemented on 28-pin and 44-pin devices only.
 - 3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH23	CHH22	CHH21	CHH20 ⁽²⁾	CHH19 ⁽²⁾	CHH18	CHH17	CHH16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'.

bit 7-0 CHH<23:16>: A/D Compare Hit bits⁽²⁾

If CM<1:0> = 11:

1 = A/D Result Buffer x has been written with data or a match has occurred

0 = A/D Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

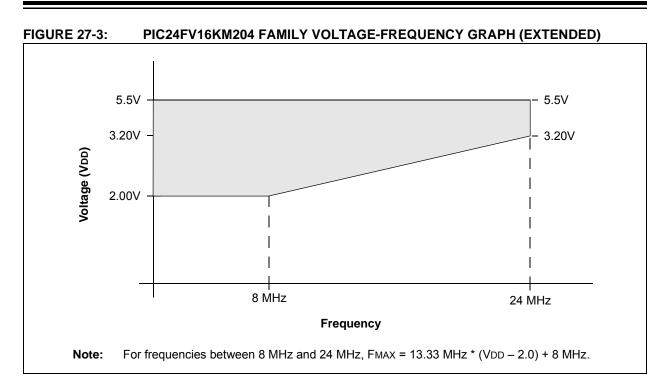
- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

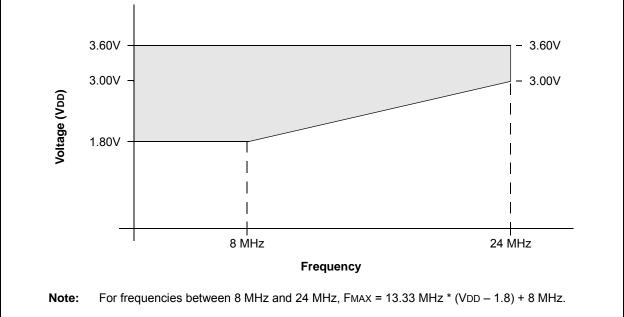
2: The CHH<20:19> bits are not implemented in 20-pin devices.

NOTES:

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
AMPEN		AMPSIDL	AMPSLP							
bit 15	•		•				bit 8			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SPDSEL	—	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
	-						-			
bit 15	AMPEN: Op	Amp x Control	Module Enable	e bit						
	1 = Module is enabled									
	0 = Module									
bit 14	-	nted: Read as '								
bit 13		Dp Amp x Periph								
		nues module op es module opera			lle mode					
bit 12		p Amp x Periph			it					
		es module opera		-						
		nues module op			pinede					
bit 11-8	Unimpleme	nted: Read as '	כי							
bit 7	SPDSEL: Op Amp x Power/Speed Select bit									
	• .	ower and band	•	• •						
bit 6	-	ower and bandw nted: Read as '	-	sponse une)						
bit 5-3	-			oct hite						
DIL 3-3		I>: Negative Op wed: do not use								
	111 = Reserved; do not use 110 = Reserved; do not use									
	101 = Op amp negative input is connected to the op amp output (voltage follower)									
	100 = Reserved; do not use									
	011 = Reserved; do not use010 = Op amp negative input is connected to the OAxIND pin									
		np negative inpl								
		np negative inpu								
bit 2-0	PINSEL<2:0	>: Positive Op /	Amp Input Sele	ect bits						
	111 = Op amp positive input is connected to the output of the A/D input multiplexer									
	110 = Reserved; do not use 101 = Op amp positive input is connected to the DAC1 output for OA1 (DAC2 output for OA2)									
	101 = Op amp positive input is connected to the DAC1 output for OA1 (DAC2 output for OA2) 100 = Reserved; do not use									
		rved; do not use								
	010 = Op amp positive input is connected to the OAxINC pin									
	001 = Op amp positive input is connected to the OAxINA pin 000 = Op amp positive input is connected to AVss									
	000 – Op a l	ne positive inpu								
Note 1: The	his register is a	vailable only on	PIC24F(V)16	KM2XX devices	i.					


REGISTER 21-1: AMPxCON: OP AMP x CONTROL REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0			
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable b	bit	U = Unimplei	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15		TMU Enable bit								
	1 = Module 0 = Module									
bit 14			3							
bit 13	Unimplemented: Read as '0' CTMUSIDL: CTMU Stop in Idle Mode bit									
	1 = Discontinues module operation when device enters Idle mode									
	0 = Continues module operation in Idle mode									
bit 12	TGEN: Time Generation Enable bit									
		edge delay gen s edge delay ger								
bit 11	EDGEN: Edge Enable bit									
	1 = Edges a 0 = Edges a	re not blocked re blocked								
bit 10	EDGSEQEN: Edge Sequence Enable bit									
	 1 = Edge 1 event must occur before Edge 2 event can occur 0 = No edge sequence is needed 									
bit 9	IDISSEN: Analog Current Source Control bit									
		current source of current source of								
bit 8	CTTRIG: CTMU Trigger Control bit									
	00	output is enabled output is disable								
bit 7-2	ITRIM<5:0>: Current Source Trim bits									
	011111 = M 011110	aximum positive	change from	nominal currer	nt					
	•									
	000000 = N	inimum positive ominal current or inimum negative	utput specified	d by IRNG<1:0	>					
	•									
	•									
	100010									
		aximum negative	ohongo from							


REGISTER 24-1: CTMUCON1L: CTMU CONTROL 1 LOW REGISTER

REGISTER 24-2: CTMUCON1H: CTMU CONTROL 1 HIGH REGISTER (CONTINUED)

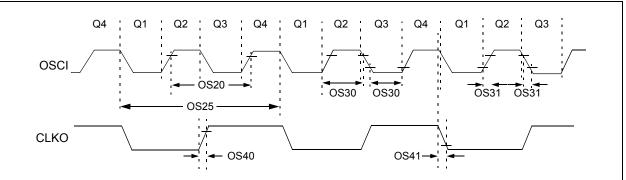

- bit 6 EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 is programmed for a positive edge 0 = Edge 2 is programmed for a negative edge bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Edge 2 source is the Comparator 3 output 1110 = Edge 2 source is the Comparator 2 output 1101 = Edge 2 source is the Comparator 1 output 1100 = Unimplemented; do not use 1011 = Edge 2 source is CLC1 1010 = Edge 2 source is the MCCP2 Compare Event (CCP2IF) 1001 = Unimplemented; do not use 1000 = Edge 2 source is CTED13 0111 = Edge 2 source is CTED12 0110 = Edge 2 source is CTED11⁽²⁾ 0101 = Edge 2 source is CTED10 0100 = Edge 2 source is CTED9⁽²⁾ 0011 = Edge 2 source is CTED1 0010 = Edge 2 source is CTED2 0001 = Edge 2 source is the MCCP1 Compare Event (CCP1IF) 0000 = Edge 2 source is Timer1
- bit 1-0 Unimplemented: Read as '0'
- Note 1: Edge sources, CTED7 and CTED8, are not available on 28-pin and 20-pin devices.
 - 2: Edge sources, CTED3, CTED9 and CTED11, are not available on 20-pin devices.

FIGURE 27-6: EXTERNAL CLOCK TIMING

Standard Operating Conditions: 1.8V to 3.6V (PIC24F16KM204)							
AC CHARACTERISTICS		Operating temperature			2.0V to 5.5V (PIC24FV16KM204) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended		
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS10	Fosc	External CLKI Frequency (External Clocks allowed only in EC mode)	DC 4 DC 4		32 8 24 6	MHz MHz MHz MHz	EC, -40°C < TA < +85°C ECPLL, -40°C < TA < +85°C EC, -40°C < TA < +85°C ECPLL, -40°C < TA < +125°C ECPLL, -40°C < TA < +125°C
		Oscillator Frequency	0.2 4 4 4 31		4 25 8 6 33	MHz MHz MHz MHz kHz	XT HS XTPLL, -40°C < TA < +85°C XTPLL, -40°C < TA < +125°C SOSC
OS20	Tosc	Tosc = 1/Fosc	—	—	_	_	See Parameter OS10 for Fosc value
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5		DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—		ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾	_	6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾	_	6	10	ns	

TABLE 27-20: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an External Clock applied to the OSCI/CLKI pin. When an External Clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support