E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16km102-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F					FV					
		I	Pin Numb	ber			I	Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
SCL1	12	17	14	44	48	12	17	14	44	48	I/O	I2C	MSSP1 I ² C Clock
SDA1	13	18	15	1	1	13	18	15	1	1	I/O	I2C	MSSP1 I ² C Data
SCL2	_	7	4	24	26	_	7	4	24	26	I/O	I2C	MSSP2 I ² C Clock
SDA2	_	6	3	23	25	_	6	3	23	25	I/O	I2C	MSSP2 I ² C Data
SCLKI	10	12	9	34	37	10	12	9	34	37	Ι	ST	Secondary Clock Digital Input
SOSCI	9	11	8	33	36	9	11	8	33	36	Ι	ANA	Secondary Oscillator Input
SOSCO	10	12	9	34	37	10	12	9	34	37	Ι	ANA	Secondary Oscillator Output
T1CK	13	18	15	1	1	13	18	15	1	1	Ι	ST	Timer1 Digital Input Cock
TCKIA	18	26	23	15	16	18	26	23	15	16	Ι	ST	MCCP/SCCP Time Base Clock Input A
TCKIB	6	6	3	23	25	6	6	3	23	25	Ι	ST	MCCP/SCCP Time Base Clock Input B
U1CTS	12	17	14	44	48	12	17	14	44	48	Ι	ST	UART1 Clear-To-Send Input
U1RTS	13	18	15	1	1	13	18	15	1	1	0	_	UART1 Request-To-Send Output
U1BCLK	13	18	15	1	1	13	18	15	1	1	0	—	UART1 16x Baud Rate Clock Output
U1RX	6	6	3	2	2	6	6	3	2	2	Ι	ST	UART1 Receive
U1TX	11	16	13	3	3	11	16	13	3	3	0	_	UART1 Transmit
U2CTS	_	12	9	34	37	_	12	9	34	37	I	ST	UART2 Clear-To-Send Input
U2RTS	_	11	8	33	36	_	11	8	33	36	0	_	UART2 Request-To-Send Output
U2BCLK	13	18	15	1	1	13	18	15	1	1	0	—	UART2 16x Baud Rate Clock Output
U2RX	_	5	2	22	24	—	5	2	22	24	Ι	ST	UART2 Receive
U2TX	_	4	1	21	23	—	4	1	21	23	0	_	UART2 Transmit
ULPWU	4	4	1	21	23	4	4	1	21	23	Ι	ANA	Ultra Low-Power Wake-up Input
VCAP	_	_		—	_	14	20	17	7	7	Р	—	Regulator External Filter Capacitor Connection
Vdd	20	28	25	17,28,28	18,30,30	20	28	25	17,28,28	18,30,30	Р	—	Device Positive Supply Voltage
VDDCORE	_	_	_	—	_	14	20	17	7	7	Р	—	Microcontroller Core Supply Voltage
Vpp	1	1	26	18	19	1	1	26	18	19	Р	—	High-Voltage Programming Pin
VREF+	2	2	27	19	21	2	2	27	19	21	I	ANA	A/D Reference Voltage Positive Input
VREF-	3	3	28	20	22	3	3	28	20	22	Ι	ANA	A/D Reference Voltage Negative Input
Vss	19	27	24	16,29,29	17,31,31	19	27	24	16,29,29	17,31,31	Р	—	Device Ground Return Voltage

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, I²C[™] = I²C/SMBus input buffer

TABLE 4-10: MCCP3 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP3CON1L ⁽¹⁾	188h	CCPON	_	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP3CON1H ⁽¹⁾	18Ah	OPSSRC	RTRGEN	_	_	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP3CON2L ⁽¹⁾	18Ch	PWMRSEN	ASDGM	_	SSDG	_	_	_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP3CON2H ⁽¹⁾	18Eh	OENSYNC	_	OCFEN	OCEEN	OCDEN	OCCEN	OCBEN	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICS2	ICS1	ICS0	0100
CCP3CON3L ⁽¹⁾	190h	_	_	_	_	_	_	_	_	_	_	DT5	DT4	DT3	DT2	DT1	DT0	0000
CCP3CON3H ⁽¹⁾	192h	OETRIG	IG OSCNT2 OSCNT1 OSCNT0 — OUTM2 OUTM1 OUTM0 — — POLACE POLBDF PSSACE1 PSSACE0 PSSBDF1 PSSBDF0 00											0000				
CCP3STAT ⁽¹⁾	194h	_	CCPTRIG TRSET TRCLR ASEVT SCEVT ICDIS ICOV ICBNE 000											0000				
CCP3TMRL ⁽¹⁾	198h							MCCF	P3 Time Bas	se Register	Low Word					•	•	0000
CCP3TMRH ⁽¹⁾	19Ah							MCCF	3 Time Bas	e Register	High Word							0000
CCP3PRL ⁽¹⁾	19Ch							MCCP3 1	īme Base F	Period Regis	ster Low Wor	d						FFFF
CCP3PRH ⁽¹⁾	19Eh							МССРЗ Т	ime Base P	eriod Regis	ter High Wor	d						FFFF
CCP3RAL ⁽¹⁾	1A0h							Οι	tput Compa	are 3 Data \	Word A							0000
CCP3RBL ⁽¹⁾	1A4h		Output Compare 3 Data Word B									0000						
CCP3BUFL ⁽¹⁾	1A8h							Input	Capture 3 [Data Buffer	Low Word							0000
CCP3BUFH ⁽¹⁾	1AAh		Input Capture 3 Data Buffer High Word									0000						

 $\label{eq:logend:loge$

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-26: CTMU REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1L	35Ah	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	0000
CTMUCON1H	35Ch	EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	_	_	0000
CTMUCON2L	35Eh	—	_	—	_			—	-	-	-	_	IRSTEN		DISCHS2	DISCHS1	DISCHS0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-27: ANSEL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ANSA	4E0h	—	_	—	—	—	—	—	_	_	—	—	ANSA4(2)	ANSA3	ANSA2	ANSA1	ANSA0	001F ⁽¹⁾
ANSB	4E2h	ANSB15	ANSB14	ANSB13	ANSB12	_	_	ANSB9	ANSB8	ANSB7	ANSB6(2)	ANSB5 ⁽²⁾	ANSB4	ANSB3 ⁽²⁾	ANSB2	ANSB1	ANSB0	_{F3FF} (1)
ANSC	4E4h	_		—	_	—	—	_			_		_	_	ANSC2 ^(2,3)	ANSC1 ^(2,3)	ANSC0 ^(2,3)	0007 (1)

Legend: x = unknown, u = unchanged, --- = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

TABLE 4-28: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	620h						Alarm Value I	High Register	Window Based	on APTR	<1:0>							XXXX
ALCFGRPT	622h	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	₀₀₀₀ (1)
RTCVAL	624h					R	TCC Value H	igh Register W	/indow Based o	n RTCPT	R<1:0>							xxxx
RCFGCAL	626h	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000 (1)
RTCPWC	628h	PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLK1	RTCCLK0	RTCOUT1	RTCOUT0	_	_	_	_	_	-	_	_	₀₀₀₀ (1)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Values are reset only on a VDD POR event.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—	CCP5IP2	CCP5IP1	CCP5IP0
bit 15						- -	bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—		—	INT1IP2	INT1IP1	INT1IP0
bit 7							bit 0
Legend:							
R = Readat	ole hit	W = Writable b	hit	II = Unimpler	nented bit, read	1 as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	own
bit 15-11	Unimplemer	nted: Read as '0	'				
bit 10-8	CCP5IP<2:0	>: Capture/Com	pare 5 Event	Interrupt Priorit	y bits		
	111 = Interru	ipt is Priority 7 (ł	nighest priority	y interrupt)			
	•						
	•						
		pt is Priority 1					
		pt source is disa					
bit 7-3	Unimplemer	nted: Read as '0	'				
bit 2-0		: External Interru					
	111 = Interru	ipt is Priority 7 (h	nighest priority	y interrupt)			
	•						
	•						
		pt is Priority 1	- la la al				
	000 = interru	pt source is disa	adied				

REGISTER 8-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

NOTES:

R/W-0	U-0	R/W-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0
CCPON		CCPSIDL	r	TMRSYNC	CLKSEL2 ⁽¹⁾	CLKSEL1 ⁽¹⁾	CLKSEL0 ⁽¹⁾
bit 15					•	•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0
bit 7							bit (
Legend:		r = Reserved I					
R = Readable		W = Writable I	oit		nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	CCPON: CCF	x Module Enat	ole bit				
	1 = Module is 0 = Module is		an operating r	node specified b	by the MOD<3:	0> control bits	
bit 14	Unimplemen	ted: Read as 'd)'				
bit 13	CCPSIDL: CO	CPx Stop in Idle	Mode Bit				
		ues module op s module opera		device enters lo ode	lle mode		
bit 12	Reserved: Ma	-					
bit 11	TMRSYNC: T	ime Base Cloc	k Synchroniza	ation bit			
	(CLKSEL 0 = Synchron	<2:0> ≠ 000)		k is selected and lock is selecte	-		-
bit 10-8		>: CCPx Time	Base Clock S	elect bits ⁽¹⁾			
	110 = Externa 101 = CLC1 100 = Reserv 011 = LPRC (31 kHz source dary Oscillator ed	t				
bit 7-6	TMRPS<1:0>	: Time Base Pr	escale Select	t bits			
	11 = 1:64 Pre 10 = 1:16 Pre 01 = 1:4 Pres 00 = 1:1 Pres	scaler caler					
bit 5	T32: 32-Bit Ti	me Base Selec	t bit				
				e edge output co e edge output co			
bit 4		ure/Compare N					
	1 = Input Cap	-					

REGISTER 13-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS

14.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on MSSP, refer to the "PIC24F Family Reference Manual".

The Master Synchronous Serial Port (MSSP) module is an 8-bit serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, Shift registers, display drivers, A/D Converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
- Slave mode (with general address call)

The SPI interface supports these modes in hardware:

- Master mode
- Slave mode
- · Daisy-Chaining Operation in Slave mode
- Synchronized Slave Operation

The I²C interface supports the following modes in hardware:

- Master mode
- · Multi-Master mode
- Slave mode with 10-Bit and 7-Bit Addressing and Address Masking
- Byte NACKing
- Selectable Address and Data Hold, and Interrupt Masking

14.1 I/O Pin Configuration for SPI

In SPI Master mode, the MSSP module will assert control over any pins associated with the SDOx and SCKx outputs. This does not automatically disable other digital functions associated with the pin and may result in the module driving the digital I/O port inputs. To prevent this, the MSSP module outputs must be disconnected from their output pins while the module is in SPI Master mode. While disabling the module temporarily may be an option, it may not be a practical solution in all applications.

The SDOx and SCKx outputs for the module can be selectively disabled by using the SDOxDIS and SCKxDIS bits in the PADCFG1 register (Register 14-10). Setting the bit disconnects the corresponding output for a particular module from its assigned pin.

'1' = Bit is set

REGISTER 14-8: SSPxADD: MSSPx SLAVE ADDRESS/BAUD RATE GENERATOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	_	—	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	

'0' = Bit is cleared

x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

-n = Value at POR

 bit 7-0
 ADD<7:0>: Slave Address/Baud Rate Generator Value bits

 SPI Master and I²C™ Master modes:
 Reload value for the Baud Rate Generator. Clock period is (([SPxADD] + 1) * 2)/Fosc.

 I²C Slave modes:
 Represents 7 or 8 bits of the slave address, depending on the addressing mode used:

 7-Bit mode:
 Address is ADD<7:1>; ADD<0> is ignored.

 10-Bit LSb mode:
 ADD<7:0> are the Least Significant bits of the address.

 10-Bit MSb mode:
 ADD<2:1> are the two Most Significant bits of the address; ADD<7:3> are always '11110' as a specification requirement; ADD<0> is ignored.

REGISTER 14-9: SSPxMSK: I²C[™] SLAVE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|---------------------|
| MSK7 | MSK6 | MSK5 | MSK4 | MSK3 | MSK2 | MSK1 | MSK0 ⁽¹⁾ |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-0	MSK<7:0>: Slave Address Mask Select bits ⁽¹⁾
	1 = Masking of corresponding bit of SSPxADD is enabled
	0 = Masking of corresponding bit of SSPxADD is disabled

Note 1: MSK0 is not used as a mask bit in 7-bit addressing.

16.2.6 ALRMVAL REGISTER MAPPINGS

REGISTER 16-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3 MTHONE2		MTHONE1	MTHONE0
bit 15							bit 8
11.0		D/1/		D/14/			
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
<u> </u>		DAYTEN1	DAYTEN0	R/W-X DAYONE3	R/W-X DAYONE2	DAYONE1	R/W-x DAYONE0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 bit 12	Unimplemented: Read as '0' MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

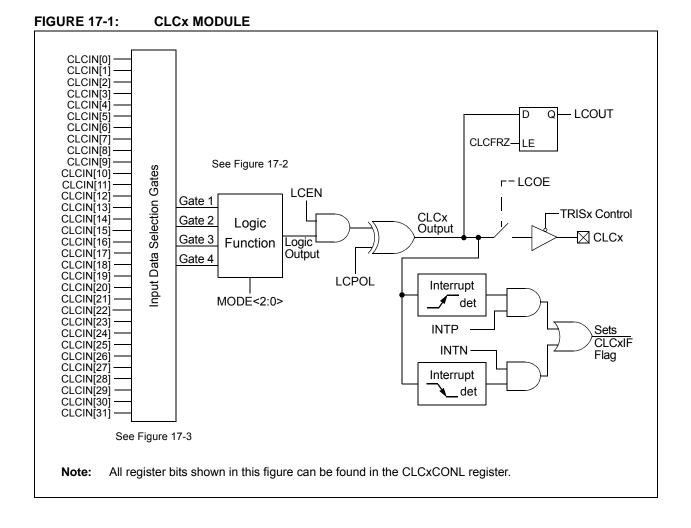
Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 16-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

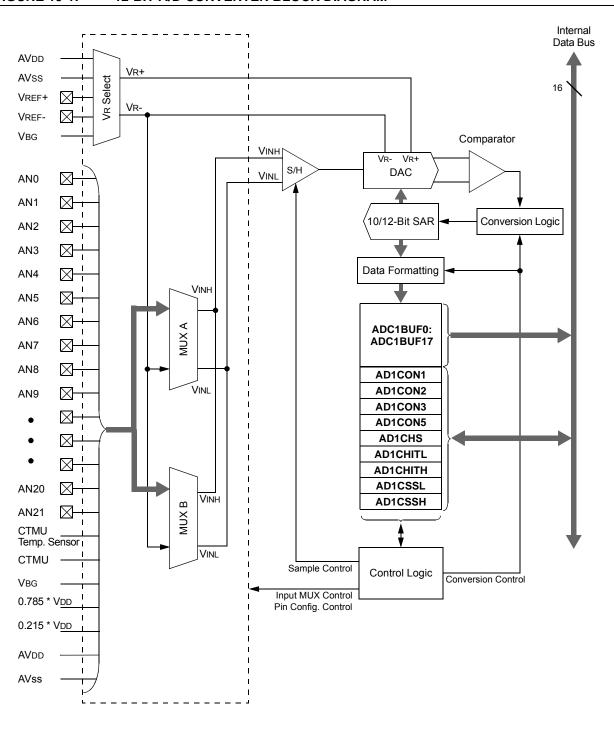

Note 1: A write to this register is only allowed when RTCWREN = 1.

17.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flex-ibility and potential in embedded designs since the CLC

module can operate outside the limitations of software execution and supports a vast amount of output designs.

There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 17-1 shows an overview of the module. Figure 17-3 shows the details of the data source multiplexers and logic input gate connections.



REGISTER 17-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

- bit 6-4 DS2<2:0>: Data Selection MUX 2 Signal Selection bits
 - 111 = MCCP2 Compare Event Flag (CCP2IF)
 - 110 = MCCP1 Compare Event Flag (CCP1IF)
 - 101 = Digital logic low
 - 100 = A/D end of conversion event
 - For CLC1:
 - 011 = UART1 TX
 - 010 = Comparator 1 output
 - 001 = CLC2 output
 - 000 = CLCINB I/O pin
 - For CLC2:
 - 011 = UART2 TX
 - 010 = Comparator 1 output
 - 001 = CLC1 output
 - 000 = CLCINB I/O pin
- bit 3 Unimplemented: Read as '0'
- bit 2-0 DS1<2:0>: Data Selection MUX 1 Signal Selection bits
 - 111 = SCCP5 Compare Event Flag (CCP5IF)
 - 110 = SCCP4 Compare Event Flag (CCP4IF)
 - 101 = Digital logic low
 - 100 = 8 MHz FRC clock source
 - 011 = LPRC clock source
 - 010 = SOSC clock source
 - 001 = System clock (TCY)
 - 000 = CLCINA I/O pin

REGISTER 17-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

bit 3	G3D2T: Gate 3 Data Source 2 True Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 2	G3D2N: Gate 3 Data Source 2 Negated Enable bit
	1 = The Data Source 2 inverted signal is enabled for Gate 3
	0 = The Data Source 2 inverted signal is disabled for Gate 3
bit 1	G3D1T: Gate 3 Data Source 1 True Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3
bit 0	G3D1N: Gate 3 Data Source 1 Negated Enable bit
	1 = The Data Source 1 inverted signal is enabled for Gate 3
	0 = The Data Source 1 inverted signal is disabled for Gate 3

FIGURE 19-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM

R/W-0	R-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7	I		•		•		bit
Legend:		r = Reserved	bit				
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 13 bit 12-8	0 = A/D is fir Reserved: M	Auto-Sample]	S			
	• • 00001 = 1 T. 00000 = 0 T.						
bit 7-0	11111111-0	A/D Conversio 1000000 = Re: 64 * Tcy = Tad	served	t bits			
	• 00000001 = 00000000 =	2 * TCY = TAD					

REGISTER 19-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
DACEN		DACSIDL	DACSLP	DACFM		SRDIS	DACTRIG
bit 15			27.002			0.12.0	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DACOE	DACTSEL4	DACTSEL3	DACTSEL2	DACTSEL1	DACTSEL0	DACREF1	DACREF0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
							-
bit 15	DACEN: DAC	x Enable bit					
	1 = Module is	s enabled					
	0 = Module is	s disabled					
bit 14	Unimplement	ted: Read as 'd)'				
bit 13	DACSIDL: DA	ACx Stop in Idle	e Mode bit				
		ues module op s module opera		device enters lo ode	lle mode		
bit 12	DACSLP: DA	Cx Enable Per	ipheral During	Sleep bit			
				ent value of DA ; DACxOUT pi			nd LATx bits
bit 11	DACFM: DAC	x Data Format	Select bit				
		ft justified (data ht justified (dat					
bit 10	Unimplement	ted: Read as '0)'				
bit 9	SRDIS: Soft F	Reset Disable b	oit				
				only on a POR on any type of		:	
bit 8		ACx Trigger Inp					
				selected (by D as DACxDAT is			ed)
bit 7	DACOE: DAC	Cx Output Enab	le bit				
	1 = DACx out	put pin is enabl	led and driven	on the DACxO put is available		her peripherals	only
Note 1.		in configuration			-1.0~)		-

REGISTER 20-1: DACxCON: DACx CONTROL REGISTER

Note 1: BGBUF1 voltage is configured by BUFREF<1:0> (BUFCON0<1:0>).

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1		
FWDTEN1	WINDIS	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0		
bit 7							bit (
Legend:									
R = Readab	ole bit	P = Programn	nable bit	U = Unimplen	nented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 7,5	FWDTEN<1:0	>: Watchdog Ti	mer Enable bi	ts					
		enabled in hardw							
		controlled with the enabled only white the second se		Ų	s disabled in Sl	leen: SWDTEN	hit is disable		
		disabled in hard							
bit 6									
	WINDIS: Windowed Watchdog Timer Disable bit 1 = Standard WDT is selected; windowed WDT is disabled								
	0 = Windowe	d WDT is enable and software (ed; note that e	xecuting a CLR	WDT instruction				
bit 4		F Prescaler bit							
	1 = WDT pres	caler ratio of 1:	128						
	0 = WDT pres	caler ratio of 1:3	32						
bit 3-0	WDTPS<3:0>: Watchdog Timer Postscale Select bits								
	1111 = 1:32,768								
	1110 = 1:16,3								
	1101 = 1:8,19 1100 = 1:4,09								
	1011 = 1:2,04								
	1010 = 1.2,04 1010 = 1:1,02								
	1001 = 1:512								
	1000 = 1:256								
	0111 = 1:128								
	0110 = 1:64								
	0101 = 1:32 0100 = 1:16								
	0100 = 1.16 0011 = 1:8								
	0010 = 1.0 0010 = 1.4								
	0001 = 1:2								
	0000 = 1:1								

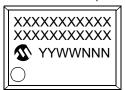
REGISTER 25-5: FWDT: WATCHDOG TIMER CONFIGURATION REGISTER

AC CH	ARACTER	ISTICS	Operating temperature -40°C			to 3.6V (PIC24F16KM204) to 5.5V (PIC24FV16KM204) $f \leq TA \leq +85^{\circ}C$ for Industrial $f \leq TA \leq +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Device S	Supply				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 1.8		Lesser of: VDD + 0.3 or 3.6	V	PIC24FXXKMXXX devices	
			Greater of: VDD – 0.3 or 2.0		Lesser of: VDD + 0.3 or 5.5	V	PIC24FVXXKMXXX devices	
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V		
			Reference	e Input	s			
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V		
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 1.7	V		
AD07	Vref	Absolute Reference Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD08	IVREF	Reference Voltage Input Current	_	1.25	_	mA		
AD09	Zvref	Reference Input Impedance	—	10k	—	Ω		
	•		Analog	Input	•			
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)	
AD11	VIN	Absolute Input Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD12	VINL	Absolute Vın∟ Input Voltage	AVss – 0.3	_	AVDD/2	V		
AD17	RIN	Recommended Impedance of Analog Voltage Source	—		1k	Ω	12-bit	
	-		A/D Acc	uracy				
AD20b	Nr	Resolution	_	12	—	bits		
AD21b	INL	Integral Nonlinearity		±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD22b	DNL	Differential Nonlinearity	_	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD23b	Gerr	Gain Error	_	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD24b	EOFF	Offset Error	—	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD25b		Monotonicity ⁽¹⁾	—	_	—		Guaranteed	

TABLE 27-37: A/D MODULE SPECIFICATIONS

 $\label{eq:Note_1:} \textbf{Note_1:} \quad \text{The A/D conversion result never decreases with an increase in the input voltage.}$

2: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.


28.0 PACKAGING INFORMATION

28.1 Package Marking Information

20-Lead PDIP (300 mil)

20-Lead SSOP (5.30 mm)

20-Lead SOIC (7.50 mm)

20-Lead QFN

Example PIC24F08KM101 -I/P@3 0 1342M7W

Example

Example

Legend:	XXX Y YY WW NNN @3	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.	
Note:	will be	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

NOTES: