

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-><F

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16km102-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	20-Pin QFN $\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Dia	Pin Features								
Pin	PIC24F08KM101 PIC24FV08KM101								
1	PGED1/AN2/CTCMP/ULPWU/C1IND/OC2A/CN4/RB0								
2	PGEC1/AN3/C1INC/CTED12/CN5/RB1								
3	AN4/U1RX/TCKIB/CTED13/CN6/RB2								
4	OSCI/CLKI/AN13/C1INB/CN30/RA2								
5	OSCO/CLKO/AN14/C1INA/CN29/RA3								
6	PGED3/SOSCI/AN15/CLCINA/CN1/RB4								
7	PGEC3/SOSCO/SCLKI/AN16/PWRLCLK/CLCINB/CN0/RA4								
8	AN19/U1TX/CTED1/INT0/CN23/RB7 AN19/U1TX/IC1/OC1A/CTED1/INT0/CN23/RB7								
9	AN20/SCL1/UICTS/OC1B/CTED10/CN22/RB8								
10	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/CLC10/CTED4/CN21/RB9								
11	IC1/OC1A/INT2/CN8/RA6 VCAP OR VDDCORE								
12	AN12/HLVDIN/SCK1/OC1C/CTED2/CN14/RB12 AN12/HLVDIN/SCK1/OC1C/CTED2/INT2/CN14/RB12								
13	AN11/SDO1/OCFB/OC1D/CTPLS/CN13/RB13								
14	CVREF/AN10/SDI1/C1OUT/OCFA/CTED5/INT1/CN12/RB14								
15	AN9/REFO/SS1/TCKIA/CTED6/CN11/RB15								
16	Vss/AVss								
17	Vdd/AVdd								
18	MCLR/Vpp/RA5								
19	PGEC2/CVREF+ /VREF+/AN0/CN2/RA0								
20	PGED2/CVREF-/VREF-/AN1/CN3/RA1								

TABLE 1-2: DEVICE FEATURES FOR THE PIC24F16KM104 FAMILY

				1		
Features	PIC24F16KM104	PIC24F16KM102	PIC24F08KM102	PIC24F08KM101		
Operating Frequency		DC-3	2 MHz			
Program Memory (bytes)	16K	16K	8K	8K		
Program Memory (instructions)	5632	5632	2816	2816		
Data Memory (bytes)		10	24			
Data EEPROM Memory (bytes)		5	12			
Interrupt Sources (soft vectors/NMI traps)		25 (2	21/4)			
Voltage Range		1.8-	3.6V			
I/O Ports	PORTA<11:0> PORTB<15:0> PORTC<9:0>	PORTA PORTB		PORTA<6:0> PORTB<15:12,9:7, 4,2:0>		
Total I/O Pins	38	24	ŀ	18		
Timers	(One 16-bit timer, t		5 Ps with up to tv	vo 16/32 timers each)		
Capture/Compare/PWM modules MCCP SCCP			1			
Serial Communications MSSP UART			1			
Input Change Notification Interrupt	37	23	}	17		
12-Bit Analog-to-Digital Module (input channels)	22	19)	16		
Analog Comparators			1			
8-Bit Digital-to-Analog Converters		_	_			
Operational Amplifiers		-	_			
Charge Time Measurement Unit (CTMU)		Y	es			
Real-Time Clock and Calendar (RTCC)		-	_			
Configurable Logic Cell (CLC)			1			
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)					
Instruction Set	76 Base Inst	ructions, Multiple	e Addressing N	Iode Variations		
Packages	44-Pin QFN/TQFP, 48-Pin UQFN	28-F SPDIP/SSOP		20-Pin SOIC/SSOP/PDIP		

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

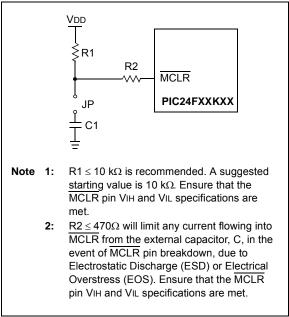
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \ \mu\text{F}$ to $0.001 \ \mu\text{F}$. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., $0.1 \ \mu\text{F}$ in parallel with $0.001 \ \mu\text{F}$).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%/-82\%$. Due to the extreme temperature tolerance, a 10 µF nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

DC BIAS VOLTAGE vs. FIGURE 2-4: CAPACITANCE **CHARACTERISTICS** Capacitance Change (%) 0 -10 16V Capacitor -20 -30 -40 10V Capacitor -50 -60 -70 6.3V Capacitor -80 -9 10 11 12 13 2 8 15 16 DC Bias Voltage (VDC)

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 3.3V or 2.5V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100Ω.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pins, Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 26.0 "Development Support"**.

TABLE 4-15: UART1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	220h	UARTEN	—	USIDL	IREN	RTSMD	-	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	222h	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	224h	_	_	_	_	_	_	_				UART1 Tra	ansmit Regi	ster				xxxx
U1RXREG	226h	—	_	_		_	_	—	UART1 Receive Register						0000			
U1BRG	U1BRG 228h Baud Rate Generator Prescaler											0000						

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-16: UART2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE ⁽¹⁾	230h	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA ⁽¹⁾	232h	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG ⁽¹⁾	234h	_	_	_	—	_	_	_				UART2 Tra	nsmit Regis	ster				xxxx
U2RXREG ⁽¹⁾	236h	_	_	_	—	_	_	_	UART2 Receive Register						0000			
U2BRG ⁽¹⁾	238h							E	Baud Rate G	enerator Pres	caler							0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '000100' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as displayed in Example 5-5.

EXAMPLE 5-1:	ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

; Set up NVMCON fo	or row erase operation	
MOV #0x	x4058, WO ;	
MOV W0,	, NVMCON ;	Initialize NVMCON
; Init pointer to	row to be ERASED	
MOV #tk	<pre>blpage(PROG_ADDR), W0 ;</pre>	
MOV W0,	, TBLPAG ;	Initialize PM Page Boundary SFR
MOV #tk	<pre>bloffset(PROG_ADDR), W0 ;</pre>	Initialize in-page EA[15:0] pointer
TBLWTL W0,	, [WO] ;	Set base address of erase block
DISI #5	;	Block all interrupts
		for next 5 instructions
MOV #0×	x55, WO	
MOV W0,	, NVMKEY ;	Write the 55 key
MOV #0×	xAA, W1 ;	
MOV W1,	, NVMKEY ;	Write the AA key
BSET NVM	MCON, #WR ;	Start the erase sequence
NOP	;	Insert two NOPs after the erase
NOP	;	command is asserted

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
                                                               // Variable located in Pgm Memory, declared as a
int __attribute__ ((space(auto_psv))) progAddr = 0x1234;
                                                               // global variable
   unsigned int offset;
//Set up pointer to the first memory location to be written
   TBLPAG = __builtin_tblpage(&progAddr);
                                                               // Initialize PM Page Boundary SFR
   offset = __builtin_tbloffset(&progAddr);
                                                               // Initialize lower word of address
    __builtin_tblwtl(offset, 0x0000);
                                                               // Set base address of erase block
                                                               // with dummy latch write
   NVMCON = 0 \times 4058;
                                                               // Initialize NVMCON
    asm("DISI #5");
                                                               // Block all interrupts for next 5 instructions
     _builtin_write_NVM();
                                                               \ensuremath{{//}} C30 function to perform unlock
                                                               // sequence and set WR
```

6.0 DATA EEPROM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on data EEPROM, refer to the *"PIC24F Family Reference Manual"*, **"Data EEPROM"** (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFE00h to 7FFFFh. The size of the data EEPROM is 256 words in PIC24FXXXXX devices.

The data EEPROM is organized as 16-bit-wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

	rrupts For 5 instruc	ctions
asm volatile	("disi #5");	
//Issue Unlock	Sequence	
asm volatile	("mov #0x55, W0	\n"
	"mov W0, NVMKEY	\n"
	"mov #0xAA, W1	\n"
	"mov W1, NVMKEY	\n");
// Perform Wri	te/Erase operations	
asm volatile	("bset NVMCON, #WR	\n"
	"nop	\n"
	"nop	\n");

REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:		HS = Hardware Settable bi	t	
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	1 = Interru	Interrupt Nesting Disable bit Ipt nesting is disabled		
bit 14-5		ipt nesting is enabled nented: Read as '0'		
bit 4	MATHERI 1 = Overfl	R: Arithmetic Error Trap Status t ow trap has occurred ow trap has not occurred	bit	
bit 3	1 = Addre	R: Address Error Trap Status bit ss error trap has occurred ss error trap has not occurred		
bit 2	1 = Stack	Stack Error Trap Status bit error trap has occurred error trap has not occurred		
bit 1	1 = Oscilla	Oscillator Failure Trap Status t ator failure trap has occurred ator failure trap has not occurred		
bit 0	Unimplen	nented: Read as '0'		

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
—	—	—	_	—	CCP5IP2	CCP5IP1	CCP5IP0					
bit 15						- -	bit 8					
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
_	—	—		—	INT1IP2	INT1IP1	INT1IP0					
bit 7							bit 0					
Legend:												
R = Readat	ole hit	W = Writable b	hit	II = Unimpler	nented bit, read	1 as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unknown						
bit 15-11	Unimplemer	nted: Read as '0	'									
bit 10-8	CCP5IP<2:0	>: Capture/Com	pare 5 Event	Interrupt Priorit	y bits							
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•	•										
	•	•										
		pt is Priority 1										
		pt source is disa										
bit 7-3	Unimplemer	nted: Read as '0	'									
bit 2-0		: External Interru										
	111 = Interru	111 = Interrupt is Priority 7 (highest priority interrupt)										
	•											
	•											
		pt is Priority 1	- la la al									
	000 = interru	pt source is disa	adied									

REGISTER 8-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

REGISTER 8-27: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CCT5IP2	CCT5IP1	CCT5IP0		_		—
bit 7							bit 0

Legend:								
R = Readable bit -n = Value at POR		W = Writable bit	U = Unimplemented bit	, read as '0'				
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-7	5-7 Unimplemented: Read as '0'							
bit 6-4	CCT5IP<	2:0>: Capture/Compare 5 Ti	imer Interrupt Priority bits					
	111 = Inte	errupt is Priority 7 (highest p	riority interrupt)					
	•							
•								
	001 = Inte	errupt is Priority 1						

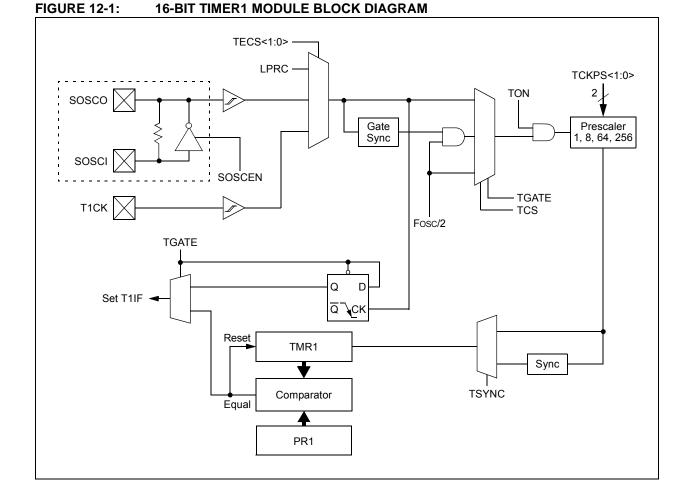
- 000 = Interrupt source is disabled
- bit 3-0 Unimplemented: Read as '0'

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on timers, refer to the "PIC24F Family Reference Manual", "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 illustrates a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

REGISTER 13-7: CCPxSTATL: CCPx STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	_	—	_	—				
bit 15	·						bit 8			
			5/2.2	5/2.2	5/2.2	5/2.2	5/2.2			
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0			
CCPTRIG	IRSEI	TRSET TRCLR ASEVT SCEVT ICDIS ICOV ICE								
bit 7							bit 0			
Legend:		C = Clearable	bit							
R = Readable	e bit	W1 = Write '1'	only	U = Unimplem	ented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-8	Unimplemen	ted: Read as '0)							
bit 7		CPx Trigger Sta								
		s been triggered s not been trigg								
bit 6		x Trigger Set Re								
bit o		is location to trig	•	when TRIGEN	= 1 (location al	ways reads as	; 'O').			
bit 5		x Trigger Clear			,					
	Write '1' to th	is location to ca	ncel the timer	Trigger when T	RIGEN = 1 (lo	cation always r	eads as '0').			
bit 4	ASEVT: CCP	x Auto-Shutdow	n Event Statu	s/Control bit						
		wn event is in p		x outputs are in	the shutdown	state				
L:1 0		Itputs operate n	•	- h:t						
bit 3	•	le Edge Compa edge compare e								
		edge compare e								
bit 2	ICDIS: Input	Capture x Disab	ole bit							
		Input Capture				nt				
		Input Capture >		-	event					
bit 1	ICOV: Input Capture x Buffer Overflow Status bit 1 = The Input Capture x FIFO buffer has overflowed									
		t Capture x FIF								
bit 0	-	Capture x Buffe								
	•	apture x buffer h		able						
	0 = Input Ca	apture x buffer i	s empty							

14.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on MSSP, refer to the "PIC24F Family Reference Manual".

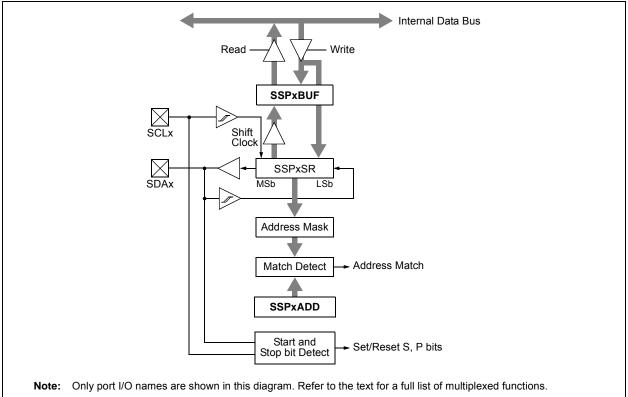
The Master Synchronous Serial Port (MSSP) module is an 8-bit serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, Shift registers, display drivers, A/D Converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
- Slave mode (with general address call)

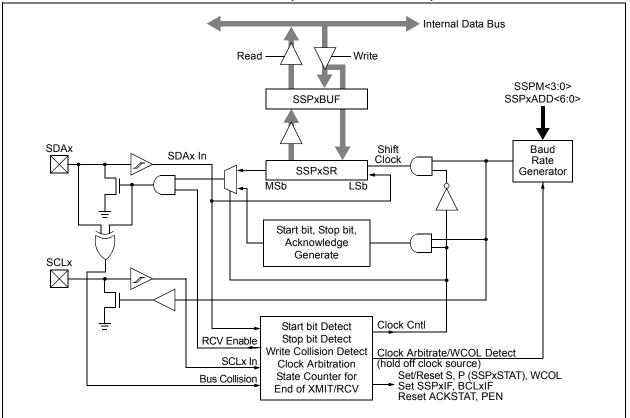
The SPI interface supports these modes in hardware:

- Master mode
- Slave mode
- · Daisy-Chaining Operation in Slave mode
- Synchronized Slave Operation

The I^2C interface supports the following modes in hardware:


- Master mode
- · Multi-Master mode
- Slave mode with 10-Bit and 7-Bit Addressing and Address Masking
- Byte NACKing
- Selectable Address and Data Hold, and Interrupt Masking

14.1 I/O Pin Configuration for SPI


In SPI Master mode, the MSSP module will assert control over any pins associated with the SDOx and SCKx outputs. This does not automatically disable other digital functions associated with the pin and may result in the module driving the digital I/O port inputs. To prevent this, the MSSP module outputs must be disconnected from their output pins while the module is in SPI Master mode. While disabling the module temporarily may be an option, it may not be a practical solution in all applications.

The SDOx and SCKx outputs for the module can be selectively disabled by using the SDOxDIS and SCKxDIS bits in the PADCFG1 register (Register 14-10). Setting the bit disconnects the corresponding output for a particular module from its assigned pin.

FIGURE 14-4: MSSPx BLOCK DIAGRAM (I²C[™] MASTER MODE)

15.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
 - a) Write the appropriate values for data, parity and Stop bits.
 - b) Write the appropriate baud rate value to the UxBRG register.
 - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write the data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0, and then, the user may set UTXEN. This will cause the serial bit stream to begin immediately, because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

15.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in **Section 15.2** "**Transmitting in 8-Bit Data Mode**").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

15.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an Auto-Baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK this sets up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

15.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 15.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. A receive interrupt will be generated when one or more data characters have been received, as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

15.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-To-Send (UxCTS) and Request-To-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx module. These two pins allow the UARTx to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

15.7 Infrared Support

The UARTx module provides two types of infrared UARTx support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder.

As the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

15.7.1 EXTERNAL IrDA SUPPORT – IrDA CLOCK OUTPUT

To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

15.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

REGISTER 16-2:	RTCPWC: RTCC CONFIGURATION REGISTER 2 ⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLK1 ⁽²⁾	RTCCLK0 ⁽²⁾	RTCOUT1	RTCOUT0				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—		—	—	—	—				
bit 7							bit C				
Legend:											
R = Reada	hle hit	W = Writable	hit	II = I Inimpleme	nted bit, read as	ʻ ∩ '					
-n = Value		'1' = Bit is set		'0' = Bit is cleare		x = Bit is unkr	own				
					50						
bit 15	PWCEN: Po	wer Control Er	able bit								
		ontrol is enable									
	0 = Power co	ontrol is disable	ed								
bit 14	PWCPOL: P	ower Control F	Polarity bit								
		ontrol output is									
		ontrol output is									
bit 13		Power Control	2								
				by-2 of source R ⁻ by-1 of source R ⁻							
bit 12		Power Control		2							
			•	by-2 of source R	CC clock						
				by-1 of source R							
bit 11-10	RTCCLK<1:	0>: RTCC Clo	ck Select bits ⁽²	2)							
				CC clock, which i	s used for all RT	CC timer opera	itions.				
		00 = External Secondary Oscillator (SOSC) 01 = Internal LPRC Oscillator									
	10 = External power line source – 50 Hz										
		al power line so									
bit 9-8	RTCOUT<1:	0>: RTCC Out	put Select bits	5							
		Determines the source of the RTCC pin output.									
		00 = RTCC alarm pulse 01 = RTCC seconds clock									
	10 = RTCC (
	11 = Power (control									
bit 7-0	Unimpleme	nted: Read as	' 0 '								
Note 1:	The RTCPWC	register is only	affected by a	POR							
	The RTCPWC register is only affected by a POR.										

2: When a new value is written to these register bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.

R/W-0	R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	R/W-0				
ASEN ⁽¹⁾	LPEN	CTMREQ	BGREQ	r	—	ASINT1	ASINT0				
bit 15							bit 8				
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	_	_	_	WM1	WM0	CM1	CM0				
bit 7							bit 0				
Legend:		r = Reserved b	bit								
R = Reada	able bit	W = Writable b	oit	U = Unimplem	nented bit, read	as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15	ASEN. A/D A	Auto-Scan Enable	<u> hit(1)</u>								
	1 = Auto-sca										
	0 = Auto-sca	in is disabled									
bit 14	LPEN: A/D L	ow-Power Enabl	e bit								
		to Low-Power me in Full-Power m									
bit 13	CTMREQ: C	TMU Request bit									
	 1 = CTMU is enabled when the A/D is enabled and active 0 = CTMU is not enabled by the A/D 										
bit 12	BGREQ: Band Gap Request bit										
		p is enabled whe p is not enabled		nabled and acti	ve						
bit 11	Reserved: M	•									
bit 10		nted: Read as '0'									
bit 9-8	-	: Auto-Scan (Thr		Interrupt Mode	e bits						
	11 = Interrup	t after a Thresho	Id Detect sequ	ience has comp	pleted and a val	lid compare has	occurred				
	•	t after a valid cor	•								
	01 = Interrup 00 = No inter	t after a Thresho	ld Detect sequ	ience has comp	bleted						
bit 7-4		nted: Read as '0'									
bit 3-2	-	/D Write Mode bi									
	11 = Reserve	ed									
	10 = Auto-compare only (conversion results are not saved, but interrupts are generated when a valid										
		match, as defined by the CMx and ASINTx bits, occurs) 01 = Convert and save (conversion results are saved to locations as determined by the register bits when									
		n, as defined by t				miled by the reg					
		operation (conve			ion determined	by the buffer re	gister bits)				
bit 1-0		D Compare Mod									
		Window mode (curs if the conve	ersion result is o	utside of the win	dow defined by				
	10 = Inside V	esponding buffer Vindow mode (va	lid match occu	urs if the conver	sion result is in	side the window	defined by the				
		onding buffer pair Than mode (valio	,	if the result is a	reater than the v	alue in the corre	sponding buffer				
	register)			-							
Note 1:						-					
NUCE 1:	Auto-Convert	uto-scan with Thi mode (SSRC<3:0 ock source (SSR0	0> = 7). Any ot	her available S	SRC selection i						

REGISTER 19-4: AD1CON5: A/D CONTROL REGISTER 5

REGISTER 19-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8 ^(2,3)		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CHH7 ^(2,3)	CHH6 ^(2,3)	CHH5 ⁽²⁾	CHH4	CHH3	CHH2	CHH1	CHH0		
bit 7					·		bit 0		
Legend:									
R = Readable	e bit	W = Writable b	pit	U = Unimpler	nented bit, read	d as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unk			nown		
bit 15-0	CHH<15:0>:	A/D Compare H	lit bits ^(2,3)						
	<u>If CM<1:0> = 11:</u> 1 = A/D Result Buffer x has been written with data or a match has occurred								

0 = A/D Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

1 = A match has occurred on A/D Result Channel x

0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

2: The CHH<8:5> bits are not implemented in 20-pin devices.

3: The CHH<8:6> bits are not implemented in 28-pin devices.

DC CHARACTERISTICS		Standard Operating Conditions: Operating temperature			s: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Parameter No.	Device	Typical ⁽¹⁾	Max	Units		С	onditions	
Power-Dow	n Current (IPD)							
DC60	PIC24FV16KMXXX				-40°C			
			8.0		+25°C			
		6.0	8.5	μA	+60°C	2.0V		
			9.0		+85°C			
			15.0		+125°C			
			—		-40°C			
			8.0		+25°C			
		6.0	9.0	μA	+60°C	5.0V		
			10.0		+85°C			
			15.0		+125°C		Sleep Mode ⁽²⁾	
	PIC24F16KMXXX		—		-40°C			
			0.80		+25°C			
		0.025	1.5	μA	+60°C	1.8V		
			2.0		+85°C			
			7.5		+125°C			
			—		-40°C			
			1.0		+25°C			
		0.040	2.0	μA	+60°C	3.3V		
			3.0		+85°C			
			7.5		+125°C			
DC61	PIC24FV16KMXXX	0.25	_	μA	+85°C	2.0V		
			7.5	P.7 1	+125°C	2.5 V	Low-Voltage	
		0.35	3.0	μA	+85°C	5.0V	Sleep Mode ⁽²⁾	
			7.5		+125°C			

TABLE 27-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Legend: Unshaded rows represent PIC24F16KMXXX devices and shaded rows represent PIC24FV16KMXXX devices.

Note 1: Data in the Typical column is at 3.3V, +25°C (PIC24F16KMXXX) or 5.0V, +25°C (PIC24FV16KMXXX) unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low. PMSLP is set to '0' and WDT, etc., are all switched off.

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

NOTES: