

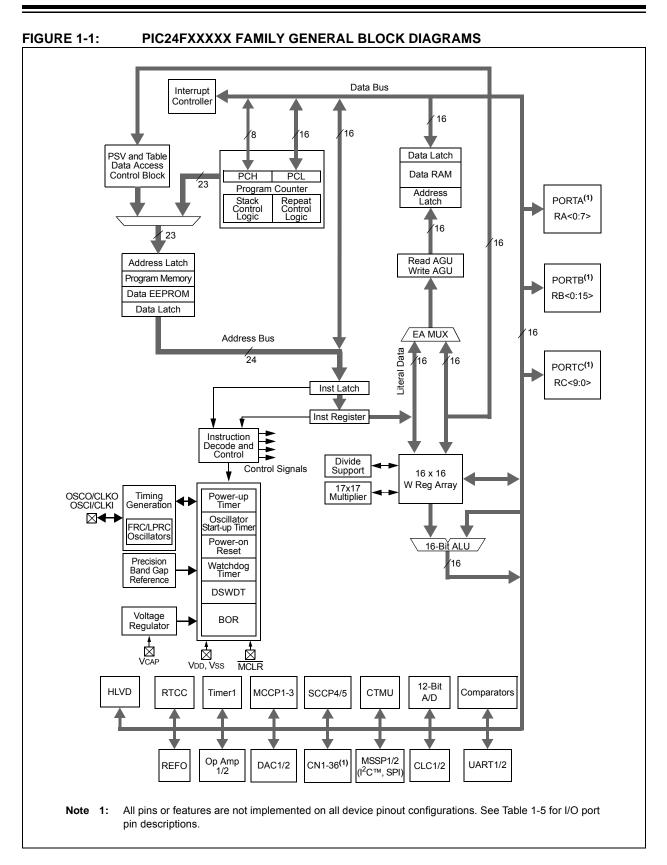
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 22x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16km104-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		N	lemory	1						Pe	riphe	rals					
Device	Pins	Flash Program (bytes)	SRAM (bytes)	EE Data (bytes)	Voltage Range (V)	16-Bit Timer	16-Bit MCCP/SCCP	MSSP	UART	12-Bit A/D Channels	8-Bit DAC	Op Amp	Comparators	CTMU	RTCC	CLC	ICD BRKPT
						5V	Devic	es									
PIC24FV16KM204	44	16K	2K	512	2.0-5.5	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24FV16KM202	28	16K	2K	512	2.0-5.5	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24FV08KM204	44	8K	2K	512	2.0-5.5	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24FV08KM202	28	8K	2K	512	2.0-5.5	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24FV16KM104	44	16K	1K	512	2.0-5.5	1	1/1	1	1	22	—	_	1	Yes	_	1	3
PIC24FV16KM102	28	16K	1K	512	2.0-5.5	1	1/1	1	1	19	_	_	1	Yes	_	1	3
PIC24FV08KM102	28	8K	1K	512	2.0-5.5	1	1/1	1	1	19	_	_	1	Yes	_	1	3
PIC24FV08KM101	20	8K	1K	512	2.0-5.5	1	1/1	1	1	16	_	-	1	Yes	_	1	3
						3V	Devic	es									
PIC24F16KM204	44	16K	2K	512	1.8-3.6	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24F16KM202	28	16K	2K	512	1.8-3.6	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24F08KM204	44	8K	2K	512	1.8-3.6	1	3/2	2	2	22	2	2	3	Yes	Yes	2	3
PIC24F08KM202	28	8K	2K	512	1.8-3.6	1	3/2	2	2	19	2	2	3	Yes	Yes	2	3
PIC24F16KM104	44	16K	1K	512	1.8-3.6	1	1/1	1	1	22	_	—	1	Yes	—	1	3
PIC24F16KM102	28	16K	1K	512	1.8-3.6	1	1/1	1	1	19	_	_	1	Yes	_	1	3
PIC24F08KM102	28	8K	1K	512	1.8-3.6	1	1/1	1	1	19	—	—	1	Yes	—	1	3
PIC24F08KM101	20	8K	1K	512	1.8-3.6	1	1/1	1	1	16			1	Yes	_	1	3

TABLE 1-5: PIC24FV16KM204 FAMILY PINOUT DESCRIPTION (CONTINUED)

			F					FV					
		I	Pin Numb	ber			I	Pin Numb	er				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin PDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
SCL1	12	17	14	44	48	12	17	14	44	48	I/O	I2C	MSSP1 I ² C Clock
SDA1	13	18	15	1	1	13	18	15	1	1	I/O	I2C	MSSP1 I ² C Data
SCL2	_	7	4	24	26	_	7	4	24	26	I/O	I2C	MSSP2 I ² C Clock
SDA2	_	6	3	23	25	_	6	3	23	25	I/O	I2C	MSSP2 I ² C Data
SCLKI	10	12	9	34	37	10	12	9	34	37	Ι	ST	Secondary Clock Digital Input
SOSCI	9	11	8	33	36	9	11	8	33	36	Ι	ANA	Secondary Oscillator Input
SOSCO	10	12	9	34	37	10	12	9	34	37	Ι	ANA	Secondary Oscillator Output
T1CK	13	18	15	1	1	13	18	15	1	1	Ι	ST	Timer1 Digital Input Cock
TCKIA	18	26	23	15	16	18	26	23	15	16	Ι	ST	MCCP/SCCP Time Base Clock Input A
TCKIB	6	6	3	23	25	6	6	3	23	25	Ι	ST	MCCP/SCCP Time Base Clock Input B
U1CTS	12	17	14	44	48	12	17	14	44	48	Ι	ST	UART1 Clear-To-Send Input
U1RTS	13	18	15	1	1	13	18	15	1	1	0	_	UART1 Request-To-Send Output
U1BCLK	13	18	15	1	1	13	18	15	1	1	0	—	UART1 16x Baud Rate Clock Output
U1RX	6	6	3	2	2	6	6	3	2	2	Ι	ST	UART1 Receive
U1TX	11	16	13	3	3	11	16	13	3	3	0	_	UART1 Transmit
U2CTS	_	12	9	34	37	_	12	9	34	37	I	ST	UART2 Clear-To-Send Input
U2RTS	_	11	8	33	36	_	11	8	33	36	0	_	UART2 Request-To-Send Output
U2BCLK	13	18	15	1	1	13	18	15	1	1	0	_	UART2 16x Baud Rate Clock Output
U2RX	_	5	2	22	24	—	5	2	22	24	Ι	ST	UART2 Receive
U2TX	_	4	1	21	23	—	4	1	21	23	0	_	UART2 Transmit
ULPWU	4	4	1	21	23	4	4	1	21	23	Ι	ANA	Ultra Low-Power Wake-up Input
VCAP	_	_		—	_	14	20	17	7	7	Р	—	Regulator External Filter Capacitor Connection
Vdd	20	28	25	17,28,28	18,30,30	20	28	25	17,28,28	18,30,30	Р	—	Device Positive Supply Voltage
VDDCORE	_	_	_	—	_	14	20	17	7	7	Р	—	Microcontroller Core Supply Voltage
Vpp	1	1	26	18	19	1	1	26	18	19	Р	—	High-Voltage Programming Pin
VREF+	2	2	27	19	21	2	2	27	19	21	I	ANA	A/D Reference Voltage Positive Input
VREF-	3	3	28	20	22	3	3	28	20	22	Ι	ANA	A/D Reference Voltage Negative Input
Vss	19	27	24	16,29,29	17,31,31	19	27	24	16,29,29	17,31,31	Р	—	Device Ground Return Voltage

Legend: ANA = Analog level input/output, ST = Schmitt Trigger input buffer, I²C[™] = I²C/SMBus input buffer

NOTES:

TABLE 4-9: MCCP2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CCP2CON1L	164h	CCPON	_	CCPSIDL	r	TMRSYNC	CLKSEL2	CLKSEL1	CLKSEL0	TMRPS1	TMRPS0	T32	CCSEL	MOD3	MOD2	MOD1	MOD0	0000
CCP2CON1H	166h	OPSSRC	RTRGEN	_	_	IOPS3	IOPS2	IOPS1	IOPS0	TRIGEN	ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	0000
CCP2CON2L	168h	PWMRSEN	ASDGM		SSDG			_	_	ASDG7	ASDG6	ASDG5	ASDG4	ASDG3	ASDG2	ASDG1	ASDG0	0000
CCP2CON2H	16Ah	OENSYNC	-	OCFEN ⁽¹⁾	OCEEN ⁽¹⁾	OCDEN ⁽¹⁾	OCCEN ⁽¹⁾	OCBEN ⁽¹⁾	OCAEN	ICGSM1	ICGSM0	_	AUXOUT1	AUXOUT0	ICSEL2	ICSEL1	ICSEL0	0100
CCP2CON3L	16Ch	_	_	_	_	_	_	_	_	_		DT5	DT4	DT3	DT2	DT1	DT0	0000
CCP2CON3H	16Eh	OETRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾	_	_	POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0(1)	0000
CCP2STATL	170h	_	-		_			_	_	CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE	0000
CCP2TMRL	174h							MCC	P2 Time Ba	ase Register	r Low Word							0000
CCP2TMRH	176h							MCC	P2 Time Ba	se Register	High Word							0000
CCP2PRL	178h							MCCP2	Time Base	Period Regi	ister Low Wo	rd						FFFF
CCP2PRH	17Ah							MCCP2	Time Base I	Period Regi	ster High Wo	rd						FFFF
CCP2RAL	17Ch							0	utput Comp	oare 2 Data	Word A							0000
CCP2RBL	180h							0	utput Comp	oare 2 Data	Word B							0000
CCP2BUFL	184h							Input	Capture 2	Data Buffer	Low Word							0000
CCP2BUFH	186h							Input	Capture 2	Data Buffer	High Word							0000

PIC24FV16KM204 FAMILY

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These bits are available only on PIC24F(V)16KM2XX devices.

7.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer (OST) has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

7.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

7.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSCx bits in the Flash Configuration Word (FOSCSEL<2:0>); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

7.4 Brown-out Reset (BOR)

The PIC24FXXXXX family devices implement a BOR circuit, which provides the user several configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits (FPOR<6:5,1:0>). There are a total of four BOR configurations, which are provided in Table 7-3.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below the set threshold point will reset the device. The chip will remain in BOR until VDD rises above the threshold.

If the Power-up Timer is enabled, it will be invoked after VDD rises above the threshold. Then, it will keep the chip in Reset for an additional time delay, TPWRT, if VDD drops below the threshold while the Power-up Timer is running. The chip goes back into a BOR and the Power-up Timer will be initialized. Once VDD rises above the threshold, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the Brown-out Reset does not automatically enable the PWRT.

7.4.1 LOW-POWER BOR (LPBOR)

The Low-Power BOR is an alternate setting for the BOR, designed to consume minimal power. In LPBOR mode, BORV<1:0> (FPOR<6:5>) = 00. The BOR trip point is approximately 2.0V. Due to the low current consumption, the accuracy of the LPBOR mode can vary.

Unlike the other BOR modes, LPBOR mode will not cause a device Reset when VDD drops below the trip point. Instead, it re-arms the POR circuit to ensure that the device will reset properly in the event that VDD continues to drop below the minimum operating voltage.

The device will continue to execute code when VDD is below the level of the LPBOR trip point. A device that requires falling edge BOR protection to prevent code from improperly executing should use one of the other BOR voltage settings.

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readab	le bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	ALTIVT: Enat	ole Alternate Int	errupt Vector 7	Table bit			
		rnate Interrupt	•	,			
		ndard (default) I	•	r Table (IVT)			
bit 14	21011 2101	struction Status					
		ruction is active					
bit 13-3		ted: Read as '0					
bit 2	•	ernal Interrupt 2		Polarity Solact k	ait		
		s on the negativ	-		JIL		
	•	s on the positive	•				
bit 1		ernal Interrupt 1	•	Polarity Select b	oit		
	1 = Interrupt i	s on the negativ	ve edge	-			
	0 = Interrupt i	s on the positive	e edge				
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect F	Polarity Select b	oit		
		s on the negativ	U U				
	0 = Interrupt i	s on the positive	e edge				

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 8-19: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T1IP2	T1IP1	T1IP0	_	CCP2IP2	CCP2IP1	CCP2IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	CCP1IP2	CCP1IP1	CCP1IP0		INT0IP2	INT0IP1	INT0IP0
bit 7							bit C
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x						x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '()'				
bit 14-12	-	imer1 Interrupt					
		ot is Priority 7 (h	-	interrupt)			
	•						
	•						
	001 = Interrup	ot is Priority 1					
		ot source is disa	abled				
bit 11	Unimplemen	ted: Read as '()'				
bit 10-8	CCP2IP<2:0>	Capture/Com	pare 2 Event	Interrupt Priority	y bits		
	111 = Interrup	ot is Priority 7 (h	ighest priority	interrupt)			
	•						
	• •						
	• • 001 = Interrup 000 = Interrup	ot is Priority 1 ot source is disa	abled				
bit 7	000 = Interrup						
bit 7 bit 6-4	000 = Interrup Unimplemen	ot source is disa ted: Read as '()'	Interrupt Priority	y bits		
	000 = Interrup Unimplemen CCP1IP<2:0>	ot source is disa ted: Read as '()' ipare 1 Event		y bits		
	000 = Interrup Unimplemen CCP1IP<2:0>	ot source is disa t ed: Read as '(>: Capture/Com)' ipare 1 Event		y bits		
	000 = Interrup Unimplemen CCP1IP<2:0>	ot source is disa t ed: Read as '(>: Capture/Com)' ipare 1 Event		y bits		
	000 = Interrup Unimplemen CCP1IP<2:0>	ot source is disa ted: Read as '(>: Capture/Com ot is Priority 7 (h)' ipare 1 Event		y bits		
	000 = Interrup Unimplemen CCP1IP<2:0> 111 = Interrup • • • 001 = Interrup	ot source is disa ted: Read as '(>: Capture/Com ot is Priority 7 (h) [,] Ipare 1 Event Iighest priority		y bits		
	000 = Interrup Unimplemen CCP1IP<2:0> 111 = Interrup • • 001 = Interrup 000 = Interrup	ot source is disa ted: Read as '(>: Capture/Com ot is Priority 7 (h ot is Priority 1	_{)'} npare 1 Event nighest priority abled		y bits		
bit 6-4	000 = Interrup Unimplemen CCP1IP<2:0> 111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen INT0IP<2:0>	ot source is disa ted: Read as '(: Capture/Com ot is Priority 7 (h ot is Priority 1 ot source is disa ted: Read as '(: External Interr)' Ipare 1 Event Iighest priority abled)' upt 0 Interrupt	interrupt) Priority bits	y bits		
bit 6-4 bit 3	000 = Interrup Unimplemen CCP1IP<2:0> 111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen INT0IP<2:0>	ot source is disa ted: Read as '(: Capture/Comot ot is Priority 7 (h ot is Priority 1 ot source is disa ted: Read as '()' Ipare 1 Event Iighest priority abled)' upt 0 Interrupt	interrupt) Priority bits	y bits		
bit 6-4 bit 3	000 = Interrup Unimplemen CCP1IP<2:0> 111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen INT0IP<2:0>	ot source is disa ted: Read as '(: Capture/Com ot is Priority 7 (h ot is Priority 1 ot source is disa ted: Read as '(: External Interr)' Ipare 1 Event Iighest priority abled)' upt 0 Interrupt	interrupt) Priority bits	y bits		
bit 6-4 bit 3	000 = Interrup Unimplemen CCP1IP<2:0> 111 = Interrup • • 001 = Interrup 000 = Interrup Unimplemen INT0IP<2:0>	ot source is disa ted: Read as '(: Capture/Com ot is Priority 7 (h ot is Priority 1 ot source is disa ted: Read as '(: External Interr)' Ipare 1 Event Iighest priority abled)' upt 0 Interrupt	interrupt) Priority bits	y bits		
bit 6-4 bit 3	000 = Interrup Unimplemen CCP1IP<2:0> 111 = Interrup 001 = Interrup 000 = Interrup Unimplemen INT0IP<2:0>: 111 = Interrup 001 = Interrup	ot source is disa ted: Read as '(: Capture/Com ot is Priority 7 (h ot is Priority 1 tot source is disa ted: Read as '(: External Interr pt is Priority 7 ()' ipare 1 Event ighest priority abled)' upt 0 Interrupt highest priority	interrupt) Priority bits	y bits		

NOTES:

NOTES:

10.2.2 IDLE MODE

Idle mode includes these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.3.1 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. When a true POR occurs, the entire device is reset.

10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

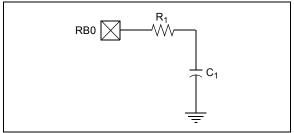
- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RB0.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source.


See Example 10-2 for initializing the ULPWU module.

EXAMPLE 10-2: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//********
// 1. Charge the capacitor on RBO
TRISBbits.TRISB0 = 0;
  LATBbits.LATB0 = 1;
  for(i = 0; i < 10000; i++) Nop();</pre>
//2. Stop Charging the capacitor
   on RBO
11
//*******************************
  TRISBbits.TRISB0 = 1;
//3. Enable ULPWU Interrupt
IFS5bits.ULPWUIF = 0;
IEC5bits.ULPWUIE = 1;
IPC21bits.ULPWUIP = 0x7;
//*********************************
//4. Enable the Ultra Low Power
11
   Wakeup module and allow
11
  capacitor discharge
ULPWCONbits.ULPEN = 1;
  ULPWCONbit.ULPSINK = 1;
//5. Enter Sleep Mode
 11
  Sleep();
//for sleep, execution will
//resume here
```

A series resistor, between RB0 and the external capacitor provides overcurrent protection for the AN2/ULPWU/RB0 pin and enables software calibration of the time-out (see Figure 10-1).

FIGURE 10-1: SERIES RESISTOR

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

REGISTER 13-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
OETRIG	OSCNT2	OSCNT1	OSCNT0	_	OUTM2 ⁽¹⁾	OUTM1 ⁽¹⁾	OUTM0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		POLACE	POLBDF ⁽¹⁾	PSSACE1	PSSACE0	PSSBDF1 ⁽¹⁾	PSSBDF0 ⁽¹⁾
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
							-
bit 15	OETRIG: CC	Px Dead-Time	Select bit				
	1 = For Trigg	ered mode (TF	RIGEN = 1): Mo	dule does not	drive enabled o	output pins until	triggered
		output pin opera					
bit 14-12	OSCNT<2:0>	: One-Shot Ev	ent Count bits				
			nt by 7 time ba				
			nt by 6 time ba				
			nt by 5 time bas nt by 4 time bas				
			nt by 3 time bas				
			nt by 2 time ba				
			nt by 1 time ba				
	000 = Do no	t extend one-sl	not Trigger ever	nt			
bit 11	-	ted: Read as '					
bit 10-8	OUTM<2:0>:	PWMx Output	Mode Control I	oits ⁽¹⁾			
	111 = Reserv						
	110 = Output		1. f				
		DC Output mod DC Output mod					
	011 = Reserv	•					
	010 = Half-Br	idge Output me	ode				
		Pull Output mod					
	000 = Steera l	ble Single Outp	out mode				
bit 7-6	-	ted: Read as '					
bit 5		-	s, OCxA, OCxC	and OCxE, P	olarity Control	bit	
		in polarity is ac in polarity is ac					
bit 4			s, OCxB, OCxE	and OCxF Po	plarity Control b	_{Dit} (1)	
		in polarity is ac					
		in polarity is ac					
bit 3-2	PSSACE<1:0	>: PWMx Outp	out Pins, OCxA	, OCxC and O	CxE, Shutdowr	State Control b	oits
	11 = Pins are	driven active v	vhen a shutdow	n event occur	S		
			when a shutdo		urs		
			n a shutdown e				(4)
bit 1-0						State Control b	oits ⁽¹⁾
			vhen a shutdov				
			when a shutdo				
	ux = Pins are	па пуп-тпре	dance state wh	ien a shuluowi	i eveni occurs		

Note 1: These bits are implemented in MCCPx modules only.

14.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on MSSP, refer to the "PIC24F Family Reference Manual".

The Master Synchronous Serial Port (MSSP) module is an 8-bit serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, Shift registers, display drivers, A/D Converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
- Slave mode (with general address call)

The SPI interface supports these modes in hardware:

- Master mode
- Slave mode
- · Daisy-Chaining Operation in Slave mode
- Synchronized Slave Operation

The I^2C interface supports the following modes in hardware:

- Master mode
- · Multi-Master mode
- Slave mode with 10-Bit and 7-Bit Addressing and Address Masking
- Byte NACKing
- Selectable Address and Data Hold, and Interrupt Masking

14.1 I/O Pin Configuration for SPI

In SPI Master mode, the MSSP module will assert control over any pins associated with the SDOx and SCKx outputs. This does not automatically disable other digital functions associated with the pin and may result in the module driving the digital I/O port inputs. To prevent this, the MSSP module outputs must be disconnected from their output pins while the module is in SPI Master mode. While disabling the module temporarily may be an option, it may not be a practical solution in all applications.

The SDOx and SCKx outputs for the module can be selectively disabled by using the SDOxDIS and SCKxDIS bits in the PADCFG1 register (Register 14-10). Setting the bit disconnects the corresponding output for a particular module from its assigned pin.

REGISTER 14-3: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—		—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	СКР	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit 0

Legend:				
R = Read	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimple	mented: Read as '0'		
bit 7	WCOL: \	Vrite Collision Detect bit		
		•	while it is still transmitting the	previous word (must be cleared in
	softw 0 = No c	,		
bit 6			Port Receive Overflow Indicate	or bit(1)
bit 0	SPI Slav			
			SPxBUF register is still holding	g the previous data. In case of over-
				ave mode. The user must read the
	0 = No c		g data, to avoid setting overflo	w (must be cleared in software).
bit 5		Master Synchronous Serial F	Port Enable bit(2)	
DIL 5		•	ures SCKx, SDOx, SDIx and	SSx as serial nort nins
			jures these pins as I/O port pi	· ·
bit 4	CKP: Clo	ock Polarity Select bit		
	1 = Idle s	state for clock is a high level		
		state for clock is a low level		
bit 3-0	SSPM<3	:0>: Master Synchronous Se	rial Port Mode Select bits ⁽³⁾	
		SPI Master mode, Clock = Fo		
			x pin; <u>SSx</u> pin control is disabl (x pin; <u>SSx</u> pin control is enab	ed, \overline{SSx} can be used as an I/O pin
		SPI Master mode, Clock = TM		
		SPI Master mode, Clock = Fo	•	
		PI Master mode, Clock = Fo		
	0000 = 5	SPI Master mode, Clock = Fo	SC/2	
Note 1:	In Master mo	de, the overflow bit is not set	t since each new reception (a	nd transmission) is initiated by
	writing to the	SSPxBUF register.		

- 2: When enabled, these pins must be properly configured as inputs or outputs.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I^2C^{TM} mode only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7				-			bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
bit 15		,	ed automatica	lly after an ala	arm event whe	never ARPT<7	:0> = 00h and
bit 14		ne Enable bit					
DIL 14	1 = Chime is	s enabled; ARP				to FFh	
bit 13-10		>: Alarm Mask					
	0011 = Even 0100 = Even 0101 = Even 0110 = Once 0111 = Once 1000 = Once 1001 = Once 101x = Rese 11xx = Rese	y 10 seconds y minute y 10 minutes y hour e a day e a week e a month e a year (except erved – do not u erved – do not u	se se			very 4 years)	
bit 9-8		1:0>: Alarm Val	-				
		11N VD 1NTH emented : <u>0>:</u> EC IR IR					
bit 7-0	•	Alarm Repeat	Counter Value I	oits			
		Alarm will rep					
	•						
		Alarm will not decrements on		nt; it is prevent	ted from rolling	over from 00h	to FFh unless

REGISTER 16-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

REGISTER 16-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 16-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0	
bit 15		•					bit 8	
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					
bit 15	Unimplemen	ted: Read as 'd)'					

bit 14-12MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
Contains a value from 0 to 5.bit 11-8MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
Contains a value from 0 to 9.bit 7Unimplemented: Read as '0'bit 6-4SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
Contains a value from 0 to 5.bit 3-0SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits

Contains a value from 0 to 9.

DC CHARACTERISTICS		Standard C			$\begin{array}{l} \textbf{s: 1.8V to 3.6V (PIC24F16KM204)} \\ \textbf{2.0V to 5.5V (PIC24FV16KM204)} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} \end{array}$			
Parameter No.	Device	Typical ⁽¹⁾	Max	Units		Conditions		
Module Diff	erential Current (Alf	סי ⁽³⁾						
DC71	PIC24FV16KMXXX	0.50	_	μA	2.0V			
		0.70	1.5	μA	5.0V	Watchdog Timer Current:		
	PIC24F16KMXXX	0.50	—	μA	1.8V			
		0.70	1.5	μA	3.3V			
DC72	PIC24FV16KMXXX	0.80	—	μA	2.0V	32 kHz Crystal with RTCC,		
		1.50	2.0	μA	5.0V	DSWDT or Timer1:		
	PIC24F16KMXXX	0.70	—	μA	1.8V			
		1.0	1.5	μA	3.3V	(SOSCSEL = 0)		
DC75	PIC24FV16KMXXX	5.4	—	μA	2.0V			
		8.1	14.0	μA	5.0V			
	PIC24F16KMXXX	4.9	_	μA	1.8V			
		7.5	14.0	μA	3.3V			
DC76	PIC24FV16KMXXX	5.6	—	μA	2.0V			
		6.5	11.2	μA	5.0V	ΔBOR		
	PIC24F16KMXXX	5.6	—	μA	1.8V			
		6.0	11.2	μA	3.3V			
DC78	PIC24FV16KMXXX	0.03	_	μA	2.0V			
		0.05	0.3	μA	5.0V	Low-Power BOR:		
	PIC24F16KMXXX	0.03	_	μA	1.8V	∆LPBOR		
		0.05	0.3	μA	3.3V			

TABLE 27-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Legend: Unshaded rows represent PIC24F16KMXXX devices and shaded rows represent PIC24FV16KMXXX devices.

Note 1: Data in the Typical column is at 3.3V, +25°C (PIC24F16KMXXX) or 5.0V, +25°C (PIC24FV16KMXXX) unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low. PMSLP is set to '0' and WDT, etc., are all switched off.

3: The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

DC CHARACTERISTICS			$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym Characteristic Min Tyr			Тур ⁽¹⁾	Мах	Units	Conditions
		Data EEPROM Memory					
D140	Epd	Cell Endurance	100,000	—	—	E/W	
D141	Vprd	VDD for Read	Vmin	—	3.6	V	Vмın = Minimum operating voltage
D143A	Tiwd	Self-Timed Write Cycle Time	—	4	—	ms	
D143B	TREF	Number of Total Write/Erase Cycles Before Refresh	—	10M	_	E/W	
D144	TRETDD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D145	IDDPD	Supply Current During Programming	—	7	—	mA	

TABLE 27-12: DC CHARACTERISTICS: DATA EEPROM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 27-13: DC CHARACTERISTICS: COMPARATOR

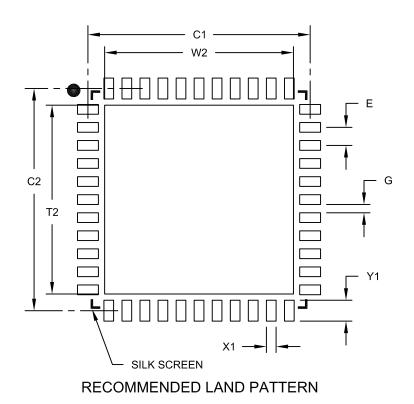

DC CHARACTERISTICS			$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min Typ		Max	Units	Conditions
D300	VIOFF	Input Offset Voltage		20	40	mV	
D301	VICM	Input Common-Mode Voltage	0	—	Vdd	V	
D302	CMRR	Common-Mode Rejection Ratio	55			dB	

TABLE 27-14: DC CHARACTERISTICS: COMPARATOR VOLTAGE REFERENCE

DC CHARACTERISTICS			$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
VRD310	CVRES	Resolution	_	_	VDD/32	LSb	
VRD311	CVRAA	Absolute Accuracy	—		1	LSb	AVDD = 3.3V-5.5V
VRD312	CVRur	Unit Resistor Value (R)	_	2k		Ω	

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N		s
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		0.65 BSC	
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85

G

0.25

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

Distance Between Pads

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

APPENDIX A: REVISION HISTORY

Revision A (February 2013)

Original data sheet for the PIC24FV16KM204 family of devices.

Revision B (July 2013)

Updates all references to PGCx and PGDx pin functions throughout the document to PGECx and PGEDx.

Updates **Section 4.0** "**Memory Organization**" to change bit 12 in the following registers to reserved ("r" designation):

- CCP1CON1L (Table 4-8)
- CCP2CON1L (Table 4-9)
- CCP3CON1L (Table 4-10)
- CCP4CON1L (Table 4-11)
- CCP5CON1L (Table 4-12)

Updates Section 13.0 "Capture/Compare/PWM/ Timer Modules (MCCP and SCCP)":

- Replaces bit 12 of CCPxCON1L (CCPSLP) and its description with a reserved bit
- Removes references to asynchronous operation in Sleep mode (and in other occurrences throughout the document)
- Modifies Section 13.1 "Time Base Generator" to add synchronous operation limitations; adds Table 13-1 to list valid clock options for all operating modes
- Removes the system clock as a time base input option
- Removes external input sources, comparators and CTMU as synchronization sources in Table 13-6; clarifies that other selected sources must be synchronous

Removes the input buffer from the band gap reference input in Figure 20-1.

Adds BUFCON0 register description (Register 20-2) to Section 20.0 "8-Bit Digital-to-Analog Converter (DAC)".

Changes references to internal band gap voltages (VBG, VBG/2 and BGBUF0) in Section 20.0 "8-Bit Digital-to-Analog Converter (DAC)" and Section 22.0 "Comparator Module" to BGBUF1.

Adds minimum VDD conditions for VBG specification in Table 27-15 (Internal Voltage Regulator Specifications).

Other minor typographical corrections throughout the document.