

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16km202-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

	28-Pin QFN ⁽¹⁾	22 21 RB13 20 RB12
	RB3 4 Vss 5 RA2 6 RA3 7 <u>8 9 10 11 12 13 1</u>	18 RB10 17 RA6 or VDDcore 16 RA7 15 RB9
	R 85 R 85 R 85 R 82 R 82 R 82 R 82 R 82 R 82 R 82 R 82	5 0 2 2
Pin	Pin Features	Pin Features
	PIC24FXXKMX02	PIC24FVXXKMX02
1	PGED1/AN2/CTCMP/ULPWU/C1IND/ / / /CN4/I	RB0
2	PGEC1/ / /AN3/C1INC/ / /CTED12/CN	I5/RB1
3	/ /AN4/C1INB/ / /U1RX/TCKIB/CTED1	13/CN6/RB2
4	/AN5/C1INA/ / /CN7/RB3	
5	Vss	
6	OSCI/CLKI/AN13/CN30/RA2	
7	OSCO/CLKO/AN14/CN29/RA3	
8	SOSCI/AN15/ / /CN1/RB4	
9	SOSCO/SCLKI/AN16/PWRLCLK/ /CN0/RA4	
10		
11	PGED3/AN17/ASDA1/ / /OC1E/CLCINA/CN27/RB5	
12	PGEC3/AN18/ASCL1/ / /OC1F/CLCINB/CN24/RB6 AN19/U1TX/INT0/CN23/RB7	AN19/U1TX/ /OC1A/INT0/CN23/RB7
13 14	AN19/0112/IN10/CN23/RB7 AN20/SCL1/U1CTS/C3OUT/OC1B/CTED10/CN22/RB8	AN 19/011X/ /OCTA/IN10/CN23/RB7
14	AN21/SDA1/T1CK/U1RTS/U1BCLK/IC2/ /CLC10/CTED4/CN	121/PB0
16	/IC1/ / /CTED3/CN9/RA7	vz //KD9
17	/OC1A/CTED1/INT2/CN8/RA6	VDDCORE/VCAP
18	PGED2/SDI1/ /OC1C/CTED11/CN16/RB10	
19	PGEC2/SCK1/OC2A/CTED9/CN15/RB11	<u></u>
20	/AN12/HLVDIN/ / / /CTED2/CN14/RB12	/AN12/HLVDIN/SS2/ / /CTED2/INT2/CN14/RB12
21	/ /AN11/SDO1/OCFB/OC3B/OC1D/CTPLS/CN13	3/RB13
22	/CVREF/ / /AN10/ / /C1OUT	OCFA/CTED5/INT1/CN12/RB14
23	/ /AN9/ /REFO/SS1/TCKIA/CTED6/CN	I11/RB15
24	Vss	
25	Vdd	
26	MCLR/Vpp/RA5	
	CVREF+/VREF+/ /AN0/ /CN2/RA0	CVREF+/VREF+/ /AN0/ /CTED1/CN2/RA0
27		

Legend:Values inindicate pin function differences between PIC24F(V)XXKM202 and PIC24F(V)XXKM102 devices.Note 1:Exposed pad on underside of device is connected to Vss.

REGISTER 8-29: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	_	—		RTCIP2	RTCIP1	RTCIP0
bit 15	-	-					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 7						-	bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-11	Unimplemen	ted: Read as ')'				
bit 10-8	RTCIP<2:0>:	Real-Time Clo	ck and Calend	ar Interrupt Pric	ority bits		
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	•						
		pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7-0	Unimplemen	ted: Read as ')'				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	DAC2IP2	DAC2IP1	DAC2IP0		DAC1IP2	DAC1IP1	DAC1IP0			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
_	CTMUIP2	CTMUIP1	CTMUIP0	_		_	_			
bit 7							bit (
Legend:										
Legena. R = Readab	le hit	W = Writable	hit	II = Unimple	mented bit, read	las 'O'				
-n = Value a		'1' = Bit is set	on	'0' = Bit is cle		x = Bit is unkr				
					aleu					
bit 15	Unimplemen	ted: Read as ')'							
bit 14-12	-			2 Event Interr	unt Priority hits					
	DAC2IP<2:0>: Digital-to-Analog Converter 2 Event Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
	•									
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled							
bit 11	Unimplemen	ted: Read as ')'							
bit 10-8	DAC1IP<2:0>: Digital-to-Analog Converter 1 Event Interrupt Priority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
	•									
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled									
bit 7	-	ted: Read as '								
bit 6-4	-			s						
	CTMUIP<2:0>: CTMU Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
	•									
	001 = Interru	pt is Priority 1 pt source is dis	ahlad							
hit 2 0										
bit 3-0	Unimplemented: Read as '0'									

REGISTER 8-32: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, "Power-Saving Features with VBAT" (DS30622).
 This FRM describes some features which

are not implemented in this device. Sections related to the VBAT pin and Deep Sleep do not apply to the PIC24FV16KM204 family.

The PIC24FV16KM204 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0** "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The 'C' syntax of the $\ensuremath{\mathtt{PWRSAV}}$ instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT or RTCC with LPRC as the clock source is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification on the I/O ports or peripherals that use an External Clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: 'C' POWER-SAVING ENTRY

10.4 Voltage Regulator-Based Power-Saving Features

The PIC24FV16KM204 family series devices have a voltage regulator that has the ability to alter functionality to provide power savings. The on-chip regulator is made up of two basic modules: the Voltage Regulator (VREG) and the Retention Regulator (RETREG). With the combination of VREG and RETREG, the following power modes are available:

10.4.1 RUN MODE

In Run mode, the main VREG is providing a regulated voltage with enough current to supply a device running at full speed and the device is not in Sleep mode. The RETREG may or may not be running, but is unused.

10.4.2 SLEEP MODE

In Sleep mode, the device is in Sleep and the main VREG is providing a regulated voltage to the core. By default, in Sleep mode, the regulator enters a low-power standby state which consumes reduced quiescent current. The PMSLP bit (RCON<8>) controls the regulator state in Sleep mode. If the PMSLP bit is set, the program Flash memory will stay powered on during Sleep mode and the regulator will stay in its full-power mode.

10.4.3 RETENTION REGULATOR

The Retention Regulator, sometimes referred to as the low-voltage regulator, is designed to provide power to the core at a lower voltage than the standard voltage regulator, while consuming significantly lower quiescent current. Refer to **Section 27.0** "Electrical Characteristics" for the voltage output range of the RETREG. This regulator is only used in Sleep mode, and has limited output current to maintain the RAM and provide power for limited peripherals, such as the WDT, while the device is in Sleep. It is controlled by the RETCFG Configuration bit (FPOR<2>) and in firmware by the RETEN bit (RCON<12>). RETCFG must be programmed (= 0) and the RETEN bit must be set (= 1) for the Retention Regulator to be enabled.

10.4.4 RETENTION SLEEP MODE

In Retention Sleep mode, the device is in Sleep and all regulated voltage is provided solely by the RETREG, while the main VREG is disabled. Consequently, this mode provides the lowest Sleep power consumption, but has a trade-off of a longer wake-up time. The low-voltage Sleep wake-up time is longer than Sleep mode due to the extra time required to re-enable the VREG and raise the VDDCORE supply rail back to normal regulated levels.

Note: The PIC24F16KM204 family devices do not have any internal voltage regulation, and therefore, do not support Retention Sleep mode.

TABLE 10-1: VOLTAGE REGULATION CONFIGURATION SETTINGS FOR PIC24FXXXXX FAMILY DEVICES

RETCFG Bit (FPOR<2>)	RETEN Bit (RCON<12>	PMSLP Bit (RCON<8>)	Power Mode During Sleep	Description
0	0	1	Sleep	VREG mode (normal) is unchanged during Sleep.
				RETREG is unused.
0	0	0	Sleep	VREG goes to Low-Power Standby mode during Sleep.
			(Standby)	RETREG is unused.
0	1	0	Retention	VREG is off during Sleep.
			Sleep	RETREG is enabled and provides Sleep voltage regulation.
1	x	1	Sleep	VREG mode (normal) is unchanged during Sleep.
				RETREG is disabled at all times.
1	х	0	Sleep	VREG goes to Low-Power Standby mode during Sleep.
			(Standby)	RETREG is disabled at all times.

11.2.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation, and a read operation of the same port. Typically, this instruction would be a NOP.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC24FXXXXX family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 37 external signals (CN0 through CN36) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the CN module. The CNEN1 and CNEN3 registers contain the interrupt enable control bits for each of the CNx input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CNx pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately using the CNPU1 and CNPU3 registers, which contain the control bits for each of the CNx pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately using the CNPD1 and CNPD3 registers, which contain the control bits for each of the CNx pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to Vss by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on Change Notification (CN) pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0; MOV W0, TRISB;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP ;	//Delay 1 cycle
BTSS PORTB, #13;	//Next Instruction
<pre>Equivalent `C' Code TRISB = 0xFF00; NOP(); if(PORTBbits.RB13 == 1) { }</pre>	<pre>//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs //Delay 1 cycle // execute following code if PORTB pin 13 is set.</pre>

REGISTER 13-7: CCPxSTATL: CCPx STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_	—	_	—	_	—				
bit 15							bit 8			
			5/2.2	5/2.2	5/0.0	5/2.2	5/2.2			
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0			
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE			
bit 7							bit 0			
Legend:		C = Clearable	bit							
R = Readabl	e bit	W1 = Write '1'	only	U = Unimplem	nented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-8	Unimplemen	ted: Read as '0	,							
bit 7	CCPTRIG: C	CPx Trigger Sta	tus bit							
		s been triggered s not been trigg								
h :# 0				eiu in Resel						
bit 6		x Trigger Set Re		when TRIGEN	= 1 (location a)	wave reade as	: '∩')			
bit 5		Px Trigger Clear				ways icaus as	, , ,			
bit o		is location to ca	•	Trigger when T	RIGEN = 1 (lo	cation alwavs r	eads as '0').			
bit 4		x Auto-Shutdow			- (-	,	,			
	1 = A shutdo	wn event is in p	rogress; CCP	x outputs are in	the shutdown	state				
	0 = CCPx ou	itputs operate n	ormally							
bit 3	•	le Edge Compa								
		edge compare e edge compare e								
bit 2	•	Capture x Disat		occurred						
Dit Z	•	Input Capture :		es not generate	a capture ever	nt				
		Input Capture								
bit 1	ICOV: Input Capture x Buffer Overflow Status bit									
		1 = The Input Capture x FIFO buffer has overflowed								
		t Capture x FIF		ot overflowed						
bit 0	•	Capture x Buffe		- - -						
		apture x buffer h apture x buffer i		adie						
			c sinply							

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		—		_	
bit 15							bit 8
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE ⁽¹⁾	D/Ā	Р	S	R/W	UA	BF
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit. rea	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15-8	Unimplemen	ted: Read as '0)'				
bit 7	SMP: Sample	e bit					
	SPI Master m						
		is sampled at					
	•	•	the middle of o	data output time			
	SMP must be	de: cleared when \$	SPI is used in	Slave mode			
bit 6		ck Select bit ⁽¹⁾					
	1 = Transmit o	occurs on trans	ition from acti	ve to Idle clock s	state		
	0 = Transmit	occurs on trans	ition from Idle	to active clock s	state		
bit 5	D/A: Data/Ad						
	Used in I ² C™	mode only.					
bit 4	P: Stop bit						
		node only. This	bit is cleared v	when the MSSP:	x module is di	sabled; SSPEN	l bit is cleared
bit 3	S: Start bit						
	Used in I ² C m	•					
bit 2		rite Information	bit				
	Used in I ² C m						
bit 1	UA: Update Address bit						
	Used in I ² C m	,					
bit 0	BF: Buffer Fu						
		s complete, SS s not complete,		emntv			
		-					
	plarity of clock s	tata ia aat by th		DUCONIA (A)			

REGISTER 14-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

REGISTER 14-3: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—		—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾
bit 7							bit 0

Legend:								
R = Read	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is c				x = Bit is unknown				
bit 15-8	Unimple	mented: Read as '0'						
bit 7	WCOL: \	WCOL: Write Collision Detect bit						
		•	while it is still transmitting the	previous word (must be cleared in				
	softw 0 = No c	,						
bit 6			Port Receive Overflow Indicate	or bit(1)				
bit 0								
		<u>SPI Slave mode:</u> 1 = A new byte is received while the SSPxBUF register is still holding the previous data. In case of over-						
				ave mode. The user must read the				
SSPxBUF, even if only transmitting data, to avoid setting overflow (must be cleared in softw 0 = No overflow								
bit 5		Master Synchronous Serial F	Port Enable bit(2)					
DIL 5		•	ures SCKx, SDOx, SDIx and	SSx as serial nort nins				
			jures these pins as I/O port pi	· ·				
bit 4	CKP: Clo	ock Polarity Select bit						
	1 = Idle s	state for clock is a high level						
		state for clock is a low level						
bit 3-0	SSPM<3	:0>: Master Synchronous Se	rial Port Mode Select bits ⁽³⁾					
		SPI Master mode, Clock = Fo						
		0101 = SPI Slave mode, Clock = SCKx pin; \overline{SSx} pin control is disabled, \overline{SSx} can be used as an I/O pin 0100 = SPI Slave mode, Clock = SCKx pin; \overline{SSx} pin control is enabled						
		SPI Master mode, Clock = TM						
		SPI Master mode, Clock = Fo	•					
		PI Master mode, Clock = Fo						
	0000 = 5	SPI Master mode, Clock = Fo	SC/2					
Note 1:	In Master mo	de, the overflow bit is not set	t since each new reception (a	nd transmission) is initiated by				
writing to the SSPxBUF register.								

- 2: When enabled, these pins must be properly configured as inputs or outputs.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I^2C^{TM} mode only.

REGISTER 14-5: SSPxCON2: MSSPx CONTROL REGISTER 2 (I²C[™] MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		_			_	—	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	lown
		1 Bit io oot		o Bit io olot			
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7	GCEN: Gene	eral Call Enable	bit (Slave mod	e only)			
		interrupt when a call address is o	0	ddress (0000h)	is received in	the SSPxSR	
bit 6		cknowledge Sta		Transmit mode	≏ onlv)		
		edge was not re			c only)		
		edge was receiv					
bit 5	ACKDT: Ack	nowledge Data	bit (Master Red	ceive mode onl	y) ⁽¹⁾		
	1 = No Ackno	owledge					
	0 = Acknowle	•					
bit 4		nowledge Sequ					
				SDAx and SC	CLx pins and	transmits ACI	KDT data bit
		ically cleared by edge sequence					
bit 3		ive Enable bit (mode only)(2)			
bit 0		Receive mode f	-	, mode only)			
	0 = Receive i						
bit 2	PEN: Stop Co	ondition Enable	bit (Master mo	de only) ⁽²⁾			
		Stop condition c	n SDAx and SO	CLx pins; auton	natically cleare	ed by hardware	
	0 = Stop cond				(0)		
bit 1	-	ated Start Cond		-			
		Repeated Start d Start conditio		DAx and SCLx	pins; automati	ically cleared by	/ hardware
bit 0	-	ondition Enable					
	Master Mode		DIC				
		<u></u> Start condition c	on SDAx and S	CLx pins: autor	natically cleare	ed by hardware	
	0 = Start con						
	Slave Mode:						
		etching is enabl etching is disab		ve transmit and	slave receive	(stretch is enab	oled)
Note 1:	The value that wi	ill be transmitte	d when the use	r initiates an Ao	cknowledge se	equence at the e	end of a
2:	receive. If the I ² C module		1.10				

REGISTER 14-10: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—		_	SDO2DIS ⁽¹⁾	SCK2DIS ⁽¹⁾	SDO1DIS	SCK1DIS		
bit 15							bit		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—				—	_	—		
bit 7							bit (
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15-12	Unimplemen	ted: Read as '0	,						
bit 11	SDO2DIS: MS	SSP2 SDO2 Pir	n Disable bit ⁽¹⁾)					
		output data (SD	,	•					
		output data (SD			e pin				
bit 10		SSP2 SCK2 Pir							
		clock (SCK2) of clock (SCK2) of			נ				
bit 9		SSP1 SDO1 Pir							
		output data (SD		1 to the pin is d	isabled				
		output data (SD	,						
bit 8	SCK1DIS: MS	SCK1DIS: MSSP1 SCK1 Pin Disable bit							
	1 = The SPI	clock (SCK1) of	MSSP1 to the	e pin is disabled	t				
	0 = The SPI	clock (SCK1) of	MSSP1 is ou	tput to the pin					
bit 7-0	Unimplemen	ted: Read as '0	,						

Note 1: These bits are implemented only on PIC24FXXKM20X devices.

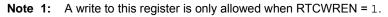
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾
UARTEN	—	USIDL	IREN ⁽¹⁾	RTSMD	_	UEN1	UEN0
bit 15							bit 8
R/C-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7	LIDAON		UIXIIIV	BRGH	TDSELT	T DOLLO	bit 0
Legend:		C = Clearable			are Clearable bi		
R = Readabl		W = Writable	oit		mented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	UARTEN: UA	ARTx Enable bit					
		s enabled; all U		e controlled by l	JARTx. as defir	ned by UEN<1:	0>
		s disabled; all L					
bit 14	Unimplemen	ted: Read as 'd)'				
bit 13	USIDL: UAR	Tx Stop in Idle N	/lode bit				
		nues module op			ers Idle mode		
		s module opera					
bit 12		Encoder and D					
		oder and decoo oder and decoo					
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bi	t			
		in is in Simplex in is in Flow Co					
bit 10	Unimplemen	ted: Read as 'd)'				
bit 9-8	UEN<1:0>: U	IARTx Enable b	its ⁽²⁾				
	10 = UxTX, U 01 = UxTX, U	JxRX and UxBC JxRX, UxCTS a JxRX and UxRT nd UxRX pins are	nd UxRTS pin S pins are en	is are enabled a abled <u>and us</u> ec	an <u>d used</u> I; <u>UxCTS</u> pin is	controlled by p	ort latches
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	Enable bit		
	cleared in	vill continue to n hardware on t	•		rupt is generate	ed on the fallin	ig edge, bit is
hit C		-up is enabled	Mada Salaat	hit			
bit 6		ARTx Loopback Loopback mode		DIL			
		k mode is disab					
bit 5	-	o-Baud Enable					
	cleared in	baud rate meas n hardware upo	n completion		er – requires re	ception of a Sy	nc field (55h);
		e measurement		•			
bit 4		RTx Receive Po	plarity Inversio	n dit			
	1 = UxRX IdI 0 = UxRX IdI						
Note 1: Th	nis feature is is	only available fo	or the 16x BR	G mode (BRGF	I = 0).		
		, donondo on th		-			

REGISTER 15-1: UXMODE: UARTX MODE REGISTER

2: The bit availability depends on the pin availability.

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0	
bit 15	-			-			bit 8	
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	SECTEN2	SECTEN1	SECTEN0	SECONE3 SECONE2		SECONE1	SECONE0	
bit 7	-						bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	iown	
bit 15	Unimplement	ted: Read as '0	3					
bit 14-12	MINTEN<2:0	>: Binary Code	d Decimal Valu	ue of Minute's T	ens Digit bits			
	Contains a va	lue from 0 to 5						
bit 11-8	MINONE<3:0	>: Binary Code	ed Decimal Val	ue of Minute's (Ones Digit bits			
	Contains a va	lue from 0 to 9						
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits							
	Contains a va	lue from 0 to 5						
bit 3-0	SECONE<3:0	>: Binary Code	ed Decimal Val	lue of Second's	Ones Digit bit	5		
	Contains a va	lue from 0 to 9						

REGISTER 16-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER


REGISTER 16-11: RTCCSWT: RTCC CONTROL/SAMPLE WINDOW TIMER REGISTER⁽¹⁾

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 15 | • | | | | | | bit 8 |

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSAMP7 | PWCSAMP6 | PWCSAMP5 | PWCSAMP4 | PWCSAMP3 | PWCSAMP2 | PWCSAMP1 | PWCSAMP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

01010-8	PWCSTAB<7:0>: PWW Stability Window Timer bits
	11111111 = Stability window is 255 TPWCCLK clock periods
	00000000 = Stability window is 0 TPWCCLK clock periods
	The sample window starts when the alarm event triggers. The stability window timer starts counting from every alarm event when PWCEN = 1.
bit 7-0	PWCSAMP<7:0>: PWM Sample Window Timer bits
	11111111 = Sample window is always enabled, even when PWCEN = 0
	11111110 = Sample window is 254 TPWCCLK clock periods
	00000000 = Sample window is 0 TPWCCLK clock periods
	The sample window timer starts counting at the end of the stability window when PWCEN = 1. If $PWCSTAB<7:0> = 00000000$, the sample window timer starts counting from every alarm event when $PWCEN = 1$.

REGISTER 19-1: AD1CON1: A/DA/D CONTROL REGISTER 1 (CONTINUED)

- bit 3
 Unimplemented: Read as '0'

 bit 2
 ASAM: A/D Sample Auto-Start bit

 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set

 0 = Sampling begins when the SAMP bit is manually set

 bit 1
 SAMP: A/D Sample Enable bit

 1 = A/D Sample-and-Hold amplifiers are sampling
 0 = A/D Sample-and-Hold amplifiers are holding
- bit 0 DONE: A/D Conversion Status bit
 - 1 = A/D conversion cycle has completed
 - 0 = A/D conversion cycle has not started or is in progress
- **Note 1:** This version of the TMR1 Trigger allows A/D conversions to be triggered from TMR1 while the device is operating in Sleep mode. The SSRC<3:0> = 0101 option allows conversions to be triggered in Run or Idle modes only.

R/W-0	R-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADRC	EXTSAM	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0			
bit 7	I		•		•		bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown				
bit 13 bit 12-8	0 = A/D is fir Reserved: M	Auto-Sample]	S						
	• • 00001 = 1 T. 00000 = 0 T.									
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits 11111111-0100000 = Reserved 00111111 = 64 * Tcy = TAD •									
	• 00000001 = 00000000 =	2 * TCY = TAD								

REGISTER 19-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0					
bit 15							bit					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CH0NA2	CH0NA1	CHONAO	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0					
bit 7							bit					
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set										
L: 45 40		· Comple D Ch	annal O Nagati	va Innut Calant	h:to							
bit 15-13	111 = AN6 ⁽¹⁾	•	annei 0 Negati	ve Input Select	DIIS							
	$111 = AN6^{(1)}$ $110 = AN5^{(2)}$											
	101 = AN3											
	101 - AN4 100 = AN3											
	011 = AN2 010 = AN1											
	010 = AN1 001 = AN0											
	000 = AVss											
bit 12-8	CH0SB<4:0>: S/H Amplifier Positive Input Select for MUX B Multiplexer Setting bits											
	11111 = Unii	mplemented, d	o not use			-						
	$11110 = AVDD^{(3)}$											
	$11101 = AVss^{(3)}$											
	11100 = Upper guardband rail (0.785 * VDD)											
		ver guardband i										
		rnal Band Gap										
		1 = Unimpleme										
				puts are floating								
				puts are floatin								
						/U temperature	sensor input					
	does not require the corresponding CTMEN22 (AD1CTMENH<6>) bit)											
	10101 = Channel 0 positive input is AN21											
	10100 = Channel 0 positive input is AN20 10011 = Channel 0 positive input is AN19											
	10011 = Channel 0 positive input is AN19 10010 = Channel 0 positive input is AN18 ⁽²⁾											
	10001 = Channel 0 positive input is $AN17^{(2)}$											
	•											
	•											
		annel 0 positive										
		annel 0 positive										
		annel 0 positive										
		annel 0 positive										
		annel 0 positive		,								
		annel 0 positive										
		annel 0 positive annel 0 positive										
		annel 0 positive										
		annel 0 positive										
Note 1: T	his is implement		•									
	his is implement	-	-	es only								
Z . 1				So only.								

3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

REGISTER 19-5: AD1CHS: A/D SAMPLE SELECT REGISTER

DS30003030B-page 218

25.4 Program Verification and Code Protection

For all devices in the PIC24FXXXXX family, code protection for the Boot Segment is controlled by the Configuration bit, BSS0, and the General Segment by the Configuration bit, GCP. These bits inhibit external reads and writes to the program memory space This has no direct effect in normal execution mode.

Write protection is controlled by bit, BWRP, for the Boot Segment and bit, GWRP, for the General Segment in the Configuration Word. When these bits are programmed to '0', internal write and erase operations to program memory are blocked.

25.5 In-Circuit Serial Programming

PIC24FXXXXX family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

25.6 In-Circuit Debugger

When MPLAB[®] ICD 3, MPLAB REAL ICE[™] or PICkit[™] 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx and PGEDx pins.

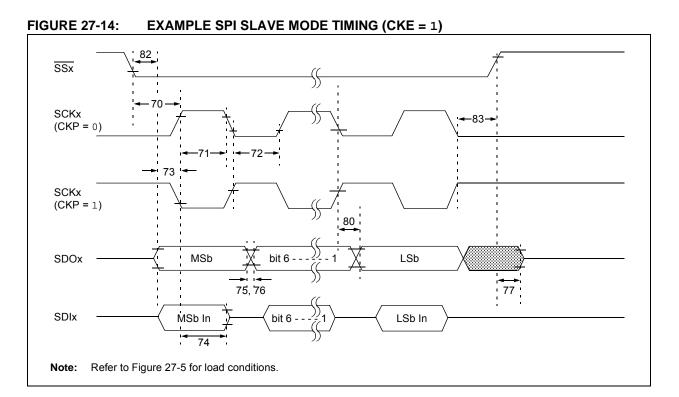
To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGECx, PGEDx and the pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

TABLE 27-4: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

	andard Operating Conditions: 1.8V to 3.6V (PIC24F16KM204) 2.0V to 5.5V (PIC24FV16KM204) -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for ExtendedtramSymbolCharacteristicMinTypMaxUnitsConditions										
Param No.	Symbol	Chara	aracteristic		Тур	Max	Units	Conditions			
DC18	Vhlvd	HLVD Voltage on	HLVDL<3:0> = 0000 ⁽²⁾	_	_	1.90	V				
		VDD Transition	HLVDL<3:0> = 0001	1.88	—	2.13	V				
			HLVDL<3:0> = 0010	2.09	—	2.35	V				
		HLVDL<3:0> = 0011	2.25	—	2.53	V					
			HLVDL<3:0> = 0100	2.35	—	2.62	V				
			HLVDL<3:0> = 0101	2.55	—	2.84	V				
			HLVDL<3:0> = 0110	2.80	—	3.10	V				
			HLVDL<3:0> = 0111	2.95	_	3.25	V				
			HLVDL<3:0> = 1000	3.09	—	3.41	V				
			HLVDL<3:0> = 1001	3.27	—	3.59	V				
			HLVDL<3:0> = 1010 ⁽¹⁾	3.46	_	3.79	V				
			HLVDL<3:0> = 1011 ⁽¹⁾	3.62	_	4.01	V				
			HLVDL<3:0> = 1100 ⁽¹⁾	3.91	—	4.26	V				
			HLVDL<3:0> = 1101 ⁽¹⁾	4.18		4.55	V				
			HLVDL<3:0> = 1110 ⁽¹⁾	4.49		4.87	V				

Note 1: These trip points should not be used on PIC24FXXKMXXX devices.

2: This trip point should not be used on PIC24FVXXKMXXX devices.


TABLE 27-5:BOR TRIP POINTS

Standard Operating Conditions: 1.8V to 3.6V (PIC24F16KM204)2.0V to 5.5V (PIC24FV16KM204)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended										
Param No.	Sym	Characte	eristic	Min	Тур	Max	Units	Conditions		
DC15		BOR Hysteresis	BOR Hysteresis		5	_	mV			
DC19		BOR Voltage on VDD	BORV<1:0> = 00	—	_	_	—	Valid for LPBOR (Note 1)		
		Transition	BORV<1:0> = 01	2.90	3	3.38	V			
			BORV<1:0> = 10	2.53	2.7	3.07	V			
			BORV<1:0> = 11	1.75	1.85	2.05	V	(Note 2)		
			BORV<1:0> = 11	1.95	2.05	2.16	V	(Note 3)		

Note 1: LPBOR re-arms the POR circuit but does not cause a BOR.

2: This is valid for PIC24F (3.3V) devices.

3: This is valid for PIC24FV (5V) devices.

TABLE 27-32: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input		3 Тсү		ns	
70A	TssL2WB	SSx to Write to SSPxBUF		3 TCY	_	ns	
71	TscH	SCKx Input High Time (Slave mode)	Continuous	1.25 Tcy + 30		ns	
71A			Single Byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time (Slave mode)	Continuous	1.25 Tcy + 30	—	ns	
72A			Single Byte	40	_	ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40	—	ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge		40	_	ns	
75	TDOR	SDOx Data Output Rise Time			25	ns	
76	TDOF	SDOx Data Output Fall Time			25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance		10	50	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge		—	50	ns	
82	TssL2DoV	SDOx Data Output Valid After $\overline{SSx} \downarrow Edge$		_	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge		1.5 Tcy + 40	_	ns	
	FSCK	SCK SCKx Frequency		—	10	MHz	

Note 1: Requires the use of Parameter 73A.

2: Only if Parameters 71A and 72A are used.