

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-><F

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 19x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16km202-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.4 EASY MIGRATION

The PIC24FV16KM204 family devices have two variants. The KM20X variant provides the full feature set of the device, while the KM10X offers a reduced peripheral set, allowing for the balance of features and cost (refer to Table 1-1). Both variants allow for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, different die variants, or even moving from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple to the powerful and complex, yet still selecting a Microchip device.

1.2 Other Special Features

- Communications: The PIC24FV16KM204 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an MSSP module which implements both SPI and I²C™ protocols, and supports both Master and Slave modes of operation for each. Devices also include one of two UARTs with built-in IrDA[®] encoders/decoders.
- Analog Features: Select members of the PIC24FV16KM204 family include two 8-bit Digital-to-Analog Converters which offer support in Idle mode, and left and right justified input data, as well as up to two operational amplifiers with selectable power and speed modes.
- Real-Time Clock/Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- 12-Bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep, to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV16KM204 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation. The CTMU can also be connected to the operational amplifiers to provide active guarding, which provides increased robustness in the presence of noise in capacitive touch applications.

1.3 Details on Individual Family Members

Devices in the PIC24FV16KM204 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

Members of the PIC24FV16KM204 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV16KM204), accommodate an operating VDD range of 2.0V to 5.5V and have an on-board voltage regulator that powers the core. Peripherals operate at VDD.

Standard devices, designated by "F" (such as PIC24F16KM204), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

The PIC24FV16KM204 family may be thought of as two different device groups, both offering slightly different sets of features. These differ from each other in multiple ways:

- · The size of the Flash program memory
- The number of external analog channels available
- The number of Digital-to-Analog Converters
- · The number of operational amplifiers
- The number of analog comparators
- The presence of a Real-Time Clock and Calendar (RTCC)
- The number and type of CCP modules (i.e., MCCP vs. SCCP)
- The number of serial communication modules (both MSSPs and UARTs)
- The number of Configurable Logic Cell (CLC) modules

The general differences between the different sub-families are shown in Table 1-1 and Table 1-2.

A list of the pin features available on the PIC24FV16KM204 family devices, sorted by function, is provided in Table 1-5.

TABLE 4-13: MSSP1 (I²C[™]/SPI) REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SSP1BUF	200h	—	_	_	—	—	—	_	—			MSSP1 Re	eceive Buffer	/Transmit R	egister			00xx
SSP1CON1	202h	_	_	_	_	_	_	_	_	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP1CON2	204h	_	_	_	_	_	_	_	_	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP1CON3	206h	_	_	_	_	_	_	_	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP1STAT	208h	_	_	_	_	_	_	—	_	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000
SSP1ADD	20Ah	—	_	_	—	_	—						ress Registe e Reload Re			de		0000
SSP1MSK	20Ch	_	_	_	_	_	_		_	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	OOFF

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-14: MSSP2 (I²C[™]/SPI) REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SSP2BUF ⁽¹⁾	210h	—	_	—	—		_		_			MSSP2 Re	ceive Buffe	r/Transmit F	Register			00xx
SSP2CON1 ⁽¹⁾	212h	_	_	_	_	_	_	_	_	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000
SSP2CON2 ⁽¹⁾	214h	_	_	_	_	_	_	_	_	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000
SSP2CON3 ⁽¹⁾	216h	_	_	_	_	_	_	_	_	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
SSP2STAT ⁽¹⁾	218h	_	_	_	_	_	_	_	_	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000
SSP2ADD ⁽¹⁾	21Ah	—	_	—	—	_	—	—	_		N MSSP:	/ISSP2 Add 2 Baud Rate	ress Registe e Reload Re	er in I ² C Sla gister in I ²	ave Mode C Master M	lode		0000
SSP2MSK ⁽¹⁾	21Ch	—	_	_	_		_	_	_	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	00FF

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-17: OP AMP 1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
AMP1CON ⁽¹⁾	24Ah	AMPEN	_	AMPSIDL	AMPSLP	_	_	_	—	SPDSEL	_	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: This registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-18: OP AMP 2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
AMP2CON ⁽¹⁾	24Ch	AMPEN	_	AMPSIDL	AMPSLP	_	_	_	_	SPDSEL	—	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: This registers are available only on PIC24F(V)16KM2XX devices.

TABLE 4-19: DAC1 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DAC1CON	1) 274h	DACEN	-	DACSIDL	DACSLP	DACFM	-	SRDIS	DACTRIG	DACOE	DACTSEL4	DACTSEL3	DACTSEL2	DACTSEL1	DACTSEL0	DACREF1	DACREF0	0000
DAC1DAT ⁽) 276h	DACDAT15 ⁽²⁾	DACDAT14 ⁽²⁾	DACDAT13(2)	DACDAT12(2)	DACDAT11(2)	DACDAT10(2)	DACDAT9(2)	DACDAT8(2)	DACDAT7 ⁽²⁾	DACDAT6(2)	DACDAT5(2)	DACDAT4 ⁽²⁾	DACDAT3(2)	DACDAT2(2)	DACDAT1(2)	DACDAT0(2)	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM1XX devices.

2: The 8-bit result format depends on the value of the DACFM control bit.

TABLE 4-20: DAC2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DAC2CON ⁽¹⁾	278h	DACEN	-	DACSIDL	DACSLP	DACFM	-	SRDIS	DACTRIG	DACOE	DACTSEL4	DACTSEL3	DACTSEL2	DACTSEL1	DACTSEL0	DACREF1	DACREF0	0000
DAC2DAT ⁽¹⁾	27Ah	DACDAT15(2)	DACDAT14(2)	DACDAT13(2)	DACDAT12(2)	DACDAT11(2)	DACDAT10(2)	DACDAT9(2)	DACDAT8(2)	DACDAT7(2)	DACDAT6(2)	DACDAT5(2)	DACDAT4(2)	DACDAT3(2)	DACDAT2(2)	DACDAT1(2)	DACDATO(2)	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: These registers are available only on PIC24F(V)16KM2XX devices.

2: The 8-bit result format depends on the value of the DACFM control bit.

TABLE 4-25: A/D REGISTER MAP

File Name	-25: Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
		2.1.10		2	2.4.12	2	20.10	2	2		2	2.1.0		2			2.10	Resets
ADC1BUF0	300h					A/D Da	ata Buffer 0	/Threshold	for Channel 0/	Threshold for	Channel 0 & 1	2 in Window	Compare					xxxx
ADC1BUF1	302h					A/D Da	ata Buffer 1	/Threshold	for Channel 1/	Threshold for	Channel 1 & 1	3 in Window	Compare					xxxx
ADC1BUF2	304h					A/D Da	ata Buffer 2	/Threshold	for Channel 2/	Threshold for	Channel 2 & 1	4 in Window	Compare					XXXX
ADC1BUF3	306h					A/D Da	ata Buffer 3	/Threshold	for Channel 3/	Threshold for	Channel 3 & 1	5 in Window	Compare					XXXX
ADC1BUF4	308h					A/D Da	ata Buffer 4	/Threshold	for Channel 4/	Threshold for	Channel 4 & 1	6 in Window	Compare					xxxx
ADC1BUF5	30Ah					A/D Da	ata Buffer 5	/Threshold	for Channel 5/	Threshold for	Channel 5 & 1	7 in Window	Compare					xxxx
ADC1BUF6	30Ch					A/D Da	ata Buffer 6	/Threshold	for Channel 6/	Threshold for	Channel 6 & 1	8 in Window	Compare					xxxx
ADC1BUF7	30Eh					A/D Da	ata Buffer 7	/Threshold	for Channel 7/	Threshold for	Channel 7 & 1	9 in Window	Compare					xxxx
ADC1BUF8	310h					A/D Da	ata Buffer 8	/Threshold	for Channel 8/	Threshold for	Channel 8 & 2	0 in Window	Compare					xxxx
ADC1BUF9	312h					A/D Da	ata Buffer 9	/Threshold	for Channel 9/	Threshold for	Channel 9 & 2	1 in Window	Compare					xxxx
ADC1BUF10	314h					A/D Data	a Buffer 10/	Threshold	for Channel 10	/Threshold for	r Channel 10 &	22 in Window	w Compare					xxxx
ADC1BUF11	316h					A/D Dat	a Buffer 11/	Threshold	for Channel 11	/Threshold for	Channel 11 &	23 in Window	v Compare					xxxx
ADC1BUF12	318h					A/D Dat	a Buffer 12	/Threshold	for Channel 12	2/Threshold fo	r Channel 0 &	12 in Window	v Compare					xxxx
ADC1BUF13	31Ah					A/D Dat	a Buffer 13	/Threshold	for Channel 13	3/Threshold fo	r Channel 1 &	13 in Window	v Compare					xxxx
ADC1BUF14	31Ch					A/D Dat	a Buffer 14	/Threshold	for Channel 14	4/Threshold fo	r Channel 2 &	14 in Window	v Compare					xxxx
ADC1BUF15	31Eh					A/D Dat	a Buffer 15	/Threshold	for Channel 1	5/Threshold fo	r Channel 3 &	15 in Window	v Compare					xxxx
ADC1BUF16	320h					A/D Dat	a Buffer 16	/Threshold	for Channel 1	6/Threshold fo	r Channel 4 &	16 in Window	v Compare					xxxx
ADC1BUF17	322h					A/D Dat	a Buffer 17	/Threshold	for Channel 1	7/Threshold fo	r Channel 5 &	17 in Window	v Compare					xxxx
ADC1BUF18	324h					A/D Dat	a Buffer 18	/Threshold	for Channel 18	8/Threshold fo	r Channel 6 &	18 in Window	v Compare					xxxx
ADC1BUF19	326h					A/D Dat	a Buffer 19	/Threshold	for Channel 19	9/Threshold fo	r Channel 7 &	19 in Window	v Compare					xxxx
ADC1BUF20	328h					A/D Dat	a Buffer 20	/Threshold	for Channel 20	0/Threshold fo	r Channel 8 &	20 in Window	v Compare					xxxx
ADC1BUF21	32Ah					A/D Dat	a Buffer 21	/Threshold	for Channel 2	1/Threshold fo	r Channel 9 &	21 in Window	v Compare					xxxx
ADC1BUF22	32Ch					A/D Data	a Buffer 22/	Threshold	for Channel 22	2/Threshold for	r Channel 10 &	22 in Window	w Compare					xxxx
ADC1BUF23	32Eh					A/D Data	a Buffer 23/	Threshold	for Channel 23	3/Threshold for	r Channel 11 &	23 in Window	w Compare					xxxx
AD1CON1	340h	ADON	_	ADSIDL	_	_	MODE12	FORM1	FORM0	SSRC3	SSRC2	SSRC1	SSRC0	_	ASAM	SAMP	DONE	0000
AD1CON2	342h	PVCFG1	PVCFG0	NVCFG0	_	BUFREGEN	CSCNA	_	_	BUFS	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS	0000
AD1CON3	344h	ADRC	EXTSAM		SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	348h	CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSH	34Eh	_	CSS30	CSS29	CSS28	CSS27	CSS26	_	_	CSS23	CSS22	CSS21	CSS20 ⁽¹⁾	CSS19 ⁽¹⁾	CSS18	CSS17	CSS16	0000
AD1CSSL	350h	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8 ^(1,2)	CSS7 ^(1,2)	CSS6 ^(1,2)	CSS5 ⁽¹⁾	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON5	354h	ASEN	LPEN	CTMREQ	BGREQ	r	_	ASINT1	ASINT0	_	_	—	_	WM1	WM0	CM1	CM0	0000
AD1CHITH	356h	_	—	—	—	_	_	—	—	CHH23	CHH22	CHH21	CHH20 ⁽¹⁾	CHH19 ⁽¹⁾	CHH18	CHH17	CHH16	0000
AD1CHITL	358h	CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8 ^(1,2)	CHH7 ^(1,2)	CHH6 ^(1,2)	CHH5 ⁽¹⁾	CHH4	CHH3	CHH2	CHH1	CHH0	0000
AD1CTMENH	360h	_	—	—	_	_	_	_	_	CTMEN23	CTMEN22	CTMEN21	CTMEN20 ⁽¹⁾	CTMEN19 ⁽¹⁾	CTMEN18	CTMEN17	CTMEN16	0000
AD1CTMENL	362h	CTMEN15	CTMEN14	CTMEN13	CTMEN12	CTMEN11	CTMEN10	CTMEN9	CTMEN8((1,2)	CTMEN7(1,2)	CTMEN6(1,2)	CTMEN5(1)	CTMEN4	CTMEN3	CTMEN2	CTMEN1	CTMEN0	0000

 $\label{eq:Legend: Legend: Legend: u = unchanged, --= unimplemented, q = value depends on condition, r = reserved.$

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 CNIP2 CNIP1 CNIP0 CMIP2 CMIP1 CMIP0 bit 15 bit 8 U-0 R/W-1 R/W-0 R/W-0 U-0 R/W-1 R/W-0 R/W-0 BCL1IP2 BCL1IP1 BCL1IP0 SSP1IP2 SSP1IP1 SSP1IP0 ____ ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-12 CNIP<2:0>: Input Change Notification Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 CMIP<2:0>: Comparator Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled Unimplemented: Read as '0' bit 7 BCL1IP<2:0>: MSSP1 I²C[™] Bus Collision Interrupt Priority bits bit 6-4 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 **SSP1IP<2:0>:** MSSP1 SPI/I²C Event Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) 001 = Interrupt is Priority 1 000 = Interrupt source is disabled

REGISTER 8-23: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0 U-0 U-0 U-0 U-0 U-0 U-0 - <t< th=""><th>REGISTER</th><th>9-2: CLKL</th><th>DIV: CLOCK L</th><th></th><th>6151EK</th><th></th><th></th><th></th></t<>	REGISTER	9-2: CLKL	DIV: CLOCK L		6151EK			
bit 15 bit 1 U-0 U-0 U-0 U-0 U-0 U-0 - - - - - - bit 7 bit 10 U-0 U-0 U-0 U-0 Egend: R Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 RO: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE DOZE 2:0: CPU and Peripheral Clock Ratio Select bits 111 = 1:28 110 = 1:4 101 = 1:28 100 = 1:16 112 100 = 1:16 011 = 1:1 DOZE 2:0: CPU and peripheral clock ratio are set to 1:1 111 = 13:25 kHz (divide-by-26) 110 = 125 kHz (divide-by-26) 111 = 13:25 kHz (divide-by-26) 111:1 111 = 25 kHz (divide-by-32) 100 = 50 KHz (divide-by-32) 100 = 20 KHz (divide-by-32) 100 = 20 KHz (divide-by-32) 111 = 195 kHz (divide-by-32) 111 = 13:25 kHz (divide-by-32) 100 = 25 kHz (divide-by-32) 111 = 195 kHz (divide-by-3	R/W-0	R/W-0	R/W-1	R/W-1		R/W-0	R/W-0	R/W-1
U-0 U-0 U-0 U-0 U-0 U-0 U-0 -	ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
- -	bit 15							bit 8
- -	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0-: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 110 = 1:132 100 = 1:16 011 = 1:3 100 = 1:16 011 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE-2:0-> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDIV-2:0->: FRC Postscaler Select bits When COSC-2:0-> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-2) 100 = 500 kHz (divide-by-2) 100 = 2 MHz (divide-by-2) - default 001 = 4 MHz (divide-by-2) - default 001 = 4 MHz (divide-by-2) 100 = 8 MHz (divide-by-2) 100 = 15 kHz (divide-by-2) 100 = 15 kHz (divide-by-2) 100 = 125 kHz (divide-by-	0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 101 = 1:64 101 = 1:32 100 = 1:16 001 = 1:1 000 = 1:11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE<2:0>: Dits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE 1 = 1:2 000 = 1:1 111 = 31.25 kHz (divide-by-256) 1 = 250 kHz (divide-by-256) 111 = 31.25 kHz (divide-by-256) 1 = 255 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 1 = 1 = 255 kHz (divide-by-32) 100 = 2 MHz (divide-by-41) 1 = 1 = 152 kHz (divide-by-32) 100 = 2 MHz (divide-by-32) 1 = 1 = 15 kHz (divide-by-32) 110 = 15.62 kHz (divide-by-256) 1 = 1 = 12 111 = 1.18 1 = 1 = 112 111 = 1.18 1 = 1 = 102 kHz (divide-by-32) 100 = 2 kHz (di	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 101 = 1:64 101 = 1:32 100 = 1:16 001 = 1:1 000 = 1:11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE<2:0>: Dits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE 1 = 1:2 000 = 1:1 111 = 31.25 kHz (divide-by-256) 1 = 250 kHz (divide-by-256) 111 = 31.25 kHz (divide-by-256) 1 = 255 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 1 = 1 = 255 kHz (divide-by-32) 100 = 2 MHz (divide-by-41) 1 = 1 = 152 kHz (divide-by-32) 100 = 2 MHz (divide-by-32) 1 = 1 = 15 kHz (divide-by-32) 110 = 15.62 kHz (divide-by-256) 1 = 1 = 12 111 = 1.18 1 = 1 = 112 111 = 1.18 1 = 1 = 102 kHz (divide-by-32) 100 = 2 kHz (di	Logondu							
<pre>in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit bit 14-12 DOZE-2:0>: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:1 001 = 1:4 001 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit⁽¹⁾ 1 = DOZE-2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDIVe2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON(14:12>) = 111: 111 = 31.25 kHz (divide-by-266) 110 = 125 kHz (divide-by-4) 011 = 150 kHz (divide-by-4) 011 = 150 kHz (divide-by-4) 011 = 15.8 kHz (divide-by-4) 011 = 15.8 kHz (divide-by-4) 101 = 15.62 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 25 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 02.5 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-4) 011 = 15.62 kHz (divide-by-2) - default 011 = 02.5 kHz (divide-by-4) 011 = 1.5 kHz (divide-by-4) 011 = 0.5 kH</pre>	-	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
bit 15 ROI: Recover on Interrupt bit 1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1 0 = Interrupts have no effect on the DOZEN bit DOZE-2:00: CPU and Peripheral Clock Ratio Select bits 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1 bit 11 DOZEN: Doze Enable bit ⁽¹⁾ 1 = DOZE-2:00: bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 RCDV-2:00: FRC Postscaler Select bits When COSC-2:00: (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-256) 110 = 125 kHz (divide-by-32) 100 = 500 kHz (divide-by-29) 011 = 1 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-2) - default 101 = 25 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 7.81 kHz (divide-by-32) 100 = 125 kHz (divide-by-2) - default 001 = 125 kHz (divide-by-2) - default 001 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 125 kHz (divide-by-32) 100 = 7.81 kHz (divide-by-32) 100 = 125 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 50.5 kHz (divide-by-4) 011 = 15.5 kHz (divide-by-4) 011 = 15.5 kHz (divide-by-4) 011 = 62.5 kHz (divide-by-4) 011 = 6					-			nown
$\begin{array}{llllllllllllllllllllllllllllllllllll$		1 = Interrupts 0 = Interrupts	s clear the DOZ s have no effect	EN bit, and re t on the DOZE	N bit	d peripheral cl	ock ratio to 1:1	
1 = DOZE<2:0> bits specify the CPU and peripheral clock ratio 0 = CPU and peripheral clock ratio are set to 1:1 bit 10-8 $RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-264) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-32) 100 = 500 kHz (divide-by-4) 011 = 1 MHz (divide-by-4) 010 = 2 MHz (divide-by-2) - default 000 = 8 MHz (divide-by-2) 100 = 8 MHz (divide-by-2) = 110: 111 = 1.95 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-256) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-3) 100 = 31.25 kHz (divide-by-4) 011 = 125 kHz (divide-by-4) 010 = 125 kHz (divide-by-4) 010 = 125 kHz (divide-by-2) - default 000 = 500 kHz (divide-by-1)$		111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2						
bit 10-8 RCDIV-2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12>) = 111: 111 = 31.25 kHz (divide-by-256) 110 = 125 kHz (divide-by-64) 101 = 250 kHz (divide-by-32) 100 = 500 kHz (divide-by-16) 011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-8) 010 = 2 MHz (divide-by-2) – default 000 = 8 MHz (divide-by-2) – default 000 = 8 MHz (divide-by-1) When COSC<2:0> (OSCCON<14:12>) = 110: 111 = 1.95 kHz (divide-by-26) 110 = 7.81 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-32) 100 = 31.25 kHz (divide-by-8) 011 = 62.5 kHz (divide-by-8) 010 = 125 kHz (divide-by-4) 011 = 250 kHz (divide-by-2) – default 000 = 500 kHz (divide-by-1)	bit 11	1 = DOZE<2	:0> bits specify			ratio		
	bit 10-8	When COSC 111 = 31.25 K 110 = 125 K 101 = 250 K 100 = 500 K 011 = 1 MHz 010 = 2 MHz 001 = 4 MHz 000 = 8 MHz When COSC 111 = 1.95 K 100 = 7.81 K 101 = 15.62 K 100 = 31.25 K 011 = 62.5 K 010 = 125 K 001 = 250 K	<2:0> (OSCCO kHz (divide-by-2 dz (divide-by-2 dz (divide-by-32 dz (divide-by-32 dz (divide-by-38) (divide-by-4) (divide-by-4) (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-2) - (divide-by-2) - (z (divide-by-3) dz (divide-by-4) dz (divide-by-4) dz (divide-by-2)	<u>N<14:12>) = 1</u> 256))) default <u>N<14:12>) = 1</u> 56) 4) 32) 16)	-			
	bit 7-0)'				

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

REGISTER 13-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

bit 3-0 MOD<3:0>: CCPx Mode Select bits

For CCSEL = 1 (Input Capture modes):

- 1xxx = Reserved
- 011x = Reserved
- 0101 = Capture every 16th rising edge
- 0100 = Capture every 4th rising edge
- 0011 = Capture every rising and falling edge
- 0010 = Capture every falling edge
- 0001 = Capture every rising edge
- 0000 = Capture every rising and falling edge (Edge Detect mode)
- For CCSEL = 0 (Output Compare/Timer modes):
- 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
- 1110 = Reserved
- 110x = Reserved
- 10xx = Reserved
- 0111 = Variable Frequency Pulse mode
- 0110 = Center-Aligned Pulse Compare mode, buffered
- 0101 = Dual Edge Compare mode, buffered
- 0100 = Dual Edge Compare mode
- 0011 = 16-Bit/32-Bit Single Edge mode, toggle output on compare match
- 0010 = 16-Bit/32-Bit Single Edge mode, drive output low on compare match
- 0001 = 16-Bit/32-Bit Single Edge mode, drive output high on compare match
- 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled
- **Note 1:** Clock options are limited in some operating modes. See Table 13-1 for restrictions.

REGISTER 13-7: CCPxSTATL: CCPx STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—	_	—	
bit 15							bit 8
			5/0.0	5/2.2	5/0.0	5/2.2	5/2.2
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE
bit 7							bit 0
Legend:		C = Clearable	bit				
R = Readabl	e bit	W1 = Write '1'	only	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-8	Unimplemen	ted: Read as '0	,				
bit 7	CCPTRIG: C	CPx Trigger Sta	tus bit				
		s been triggered s not been trigg					
h :# 0				eiu in Resel			
bit 6		x Trigger Set Re		when TRIGEN	= 1 (location a)	wave reade as	: '∩')
bit 5		Px Trigger Clear				ways icaus as	, , ,
bit o		is location to ca	•	Trigger when T	RIGEN = 1 (lo	cation alwavs r	eads as '0').
bit 4		x Auto-Shutdow			- (-	,	····,
	1 = A shutdo	wn event is in p	rogress; CCP	x outputs are in	the shutdown	state	
	0 = CCPx ou	itputs operate n	ormally				
bit 3	•	le Edge Compa					
		edge compare e edge compare e					
bit 2	•	Capture x Disat		occurred			
Dit Z	•	Input Capture :		es not generate	a capture ever	nt	
		Input Capture					
bit 1	ICOV: Input (Capture x Buffer	Overflow Stat	tus bit			
		t Capture x FIF					
		t Capture x FIF		ot overflowed			
bit 0	•	Capture x Buffe		- - -			
		apture x buffer h apture x buffer i		adie			
			c sinply				

REGISTER 14-5: SSPxCON2: MSSPx CONTROL REGISTER 2 (I²C[™] MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		_			_	—	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	lown
		1 Bit io oot		o Bit io olot			
bit 15-8	Unimplemen	ted: Read as '	0'				
bit 7	GCEN: Gene	eral Call Enable	bit (Slave mod	e only)			
		interrupt when a call address is o	0	ddress (0000h)	is received in	the SSPxSR	
bit 6		cknowledge Sta		Transmit mode	≏ onlv)		
		edge was not re			c only)		
		edge was receiv					
bit 5	ACKDT: Ack	nowledge Data	bit (Master Red	ceive mode onl	y) ⁽¹⁾		
	1 = No Ackno	owledge					
	0 = Acknowle	•					
bit 4		nowledge Sequ		-	• •		
				SDAx and SC	CLx pins and	transmits ACI	KDT data bit
		ically cleared by edge sequence					
bit 3		ive Enable bit (mode only)(2)			
bit 0		Receive mode f	-	, mode only)			
	0 = Receive i						
bit 2	PEN: Stop Co	ondition Enable	bit (Master mo	de only) ⁽²⁾			
		Stop condition c	n SDAx and SO	CLx pins; auton	natically cleare	ed by hardware	
	0 = Stop cond				(0)		
bit 1	-	ated Start Cond		-			
		Repeated Start d Start conditio		DAx and SCLx	pins; automati	ically cleared by	/ hardware
bit 0	-	ondition Enable					
	Master Mode		DIC				
		<u></u> Start condition c	on SDAx and S	CLx pins: autor	natically cleare	ed by hardware	
	0 = Start con						
	Slave Mode:						
		etching is enabl etching is disab		ve transmit and	slave receive	(stretch is enab	oled)
Note 1:	The value that wi	ill be transmitte	d when the use	r initiates an Ao	cknowledge se	equence at the e	end of a
2:	receive. If the I ² C module		1.10				

REGISTER 15-3: UXTXREG: UARTX TRANSMIT REGISTER

U-x	U-x	U-x	U-x	U-x	U-x	U-x	W-x
—	—	—	—	—	_	—	UTX8
bit 15							bit 8

W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0
bit 7							bit 0

Legend:			
R = Readable bit	R = Readable bit W = Writable bit		, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

bit 8 **UTX8:** Data of the Transmitted Character bit (in 9-bit mode)

bit 7-0 UTX<7:0>: Data of the Transmitted Character bits

REGISTER 15-4: UxRXREG: UARTx RECEIVE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
—	—	—	—	—	—	_	URX8
bit 15							bit 8

| R-0, HSC |
|----------|----------|----------|----------|----------|----------|----------|----------|
| URX7 | URX6 | URX5 | URX4 | URX3 | URX2 | URX1 | URX0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-9 Unimplemented: Read as '0'

bit 8 URX8: Data of the Received Character bit (in 9-bit mode)

bit 7-0 URX<7:0>: Data of the Received Character bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7				-			bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
bit 15		,	ed automatica	lly after an ala	arm event whe	never ARPT<7	:0> = 00h and
bit 14		ne Enable bit					
DIL 14	1 = Chime is	s enabled; ARP				to FFh	
bit 13-10		>: Alarm Mask					
	0011 = Even 0100 = Even 0101 = Even 0110 = Once 0111 = Once 1000 = Once 1001 = Once 101x = Rese 11xx = Rese	y 10 seconds y minute y 10 minutes y hour e a day e a week e a month e a year (except erved – do not u erved – do not u	se se			very 4 years)	
bit 9-8		1:0>: Alarm Val	-				
		11N VD 1NTH emented : <u>0>:</u> EC IR IR					
bit 7-0	•	Alarm Repeat	Counter Value I	oits			
		Alarm will rep					
	•						
		Alarm will not decrements on		nt; it is prevent	ted from rolling	over from 00h	to FFh unless

REGISTER 16-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

R/W-0	R-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7	I		•		•		bit
Legend:		r = Reserved	bit				
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 13 bit 12-8	0 = A/D is fir Reserved: M	Auto-Sample]	S			
	• • 00001 = 1 T. 00000 = 0 T.						
bit 7-0	11111111-0	A/D Conversio 1000000 = Re: 64 * Tcy = Tad	served	t bits			
	• 00000001 = 00000000 =	2 * TCY = TAD					

REGISTER 19-3: AD1CON3: A/D CONTROL REGISTER 3

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	CSS30	CSS29	CSS28	CSS27	CSS26	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20 ⁽²⁾	CSS19 ⁽²⁾	CSS18	CSS17	CSS16
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	V = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 14-10CSS<30:26>: A/D Input Scan Selection bits1 = Includes the corresponding channel for input scan0 = Skips the channel for input scanbit 9-8Unimplemented: Read as '0'bit 7-0CSS<23:16>: A/D Input Scan Selection bits⁽²⁾1 = Includes the corresponding channel for input scan0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<20:19> bits are not implemented in 20-pin devices.

REGISTER 19-9: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8 ^(2,3)
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS6 ^(2,3)	CSS5 ⁽²⁾	CSS4	CSS3	CSS2	CSS1	CSS0
						bit 0
	R/W-0	CSS14 CSS13 R/W-0 R/W-0	CSS14 CSS13 CSS12 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 R/W-0 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 CSS10 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 CSS10 CSS9 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CSS<15:0>: A/D Input Scan Selection bits^(2,3)

1 = Includes the corresponding ANx input for scan

- 0 = Skips the channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.
 - 2: The CSS<8:5> bits are not implemented in 20-pin devices.
 - 3: The CSS<8:6> bits are not implemented in 28-pin devices.

26.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

26.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHA	RACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min	Тур ⁽¹⁾	Мах	Conditions		
		Data EEPROM Memory						
D140	Epd	Cell Endurance	100,000	—	—	E/W		
D141	Vprd	VDD for Read	Vmin	—	3.6	V	Vмın = Minimum operating voltage	
D143A	Tiwd	Self-Timed Write Cycle Time	—	4	—	ms		
D143B	TREF	Number of Total Write/Erase Cycles Before Refresh	—	10M	_	E/W		
D144	TRETDD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated	
D145	IDDPD	Supply Current During Programming	—	7	—	mA		

TABLE 27-12: DC CHARACTERISTICS: DATA EEPROM MEMORY

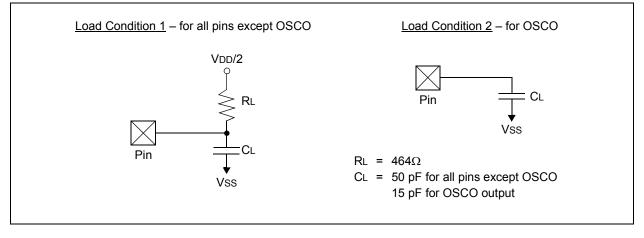
Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 27-13: DC CHARACTERISTICS: COMPARATOR

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
D300	VIOFF	Input Offset Voltage		20	40	mV	
D301	VICM	Input Common-Mode Voltage	0	—	Vdd	V	
D302	CMRR	Common-Mode Rejection Ratio	55			dB	

TABLE 27-14: DC CHARACTERISTICS: COMPARATOR VOLTAGE REFERENCE

DC CHARACTERISTICS			$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
VRD310	CVRES	Resolution	_	_	VDD/32	LSb	
VRD311	CVRAA	Absolute Accuracy	—		1	LSb	AVDD = 3.3V-5.5V
VRD312	CVRur	Unit Resistor Value (R)	_	2k		Ω	


27.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FV16KM204 family AC characteristics and timing parameters.

TABLE 27-18: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions	: 1.8V to 3.6V
AC CHARACTERISTICS	Operating temperature	-40°C \leq TA \leq +85°C for Industrial
AC CHARACTERISTICS		-40°C \leq TA \leq +125°C for Extended
	Operating voltage VDD range as de	escribed in Section 27.1 "DC Characteristics".

FIGURE 27-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

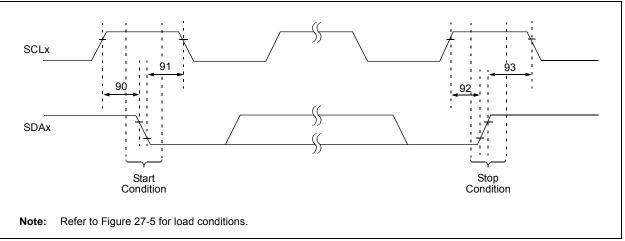


TABLE 27-19: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_	—	15	pF	In XT and HS modes when External Clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	—	400	pF	In l ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

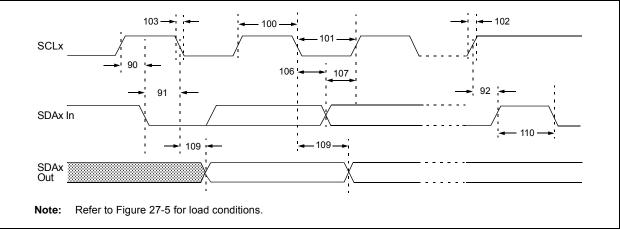
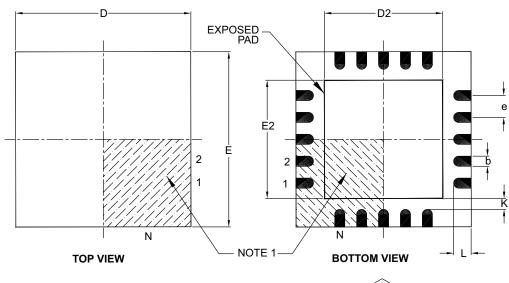
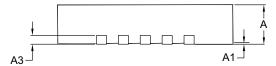
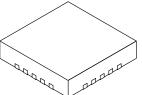


TABLE 27-33: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)


Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	4700		ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	_		Start condition
91	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first
		Hold Time	400 kHz mode	600	_		clock pulse is generated
92	Tsu:sto	Stop Condition	100 kHz mode	4700	_	ns	
		Setup Time	400 kHz mode	600	—		
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600	_		


FIGURE 27-16: I²C[™] BUS DATA TIMING



20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

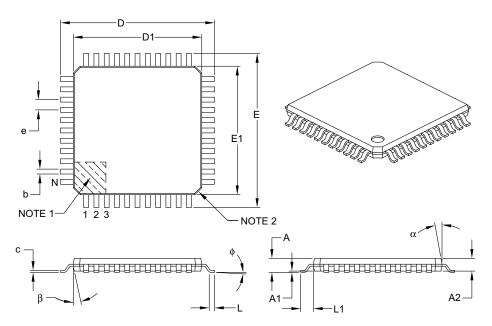
	Units	MILLIMETERS			
Dimensi	Dimension Limits		NOM	MAX	
Number of Pins	Ν	20			
Pitch	е		0.50 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00 0.02 0.05			
Contact Thickness	A3	0.20 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	2.60	2.70	2.80	
Overall Length	D		4.00 BSC		
Exposed Pad Length	D2	2.60	2.70	2.80	
Contact Width	b	0.18 0.25 0.30			
Contact Length	L	0.30 0.40 0.50			
Contact-to-Exposed Pad	К	0.20	-	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS			
Dimens	sion Limits	MIN	NOM	MAX		
Number of Leads	mber of Leads N 44					
Lead Pitch	е		0.80 BSC			
Overall Height	А	-	-	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	ф	0°	3.5°	7°		
Overall Width	E		12.00 BSC			
Overall Length	D		12.00 BSC			
Molded Package Width	E1		10.00 BSC			
Molded Package Length	D1		10.00 BSC			
Lead Thickness	С	0.09	_	0.20		
Lead Width	b	0.30	0.37	0.45		
Mold Draft Angle Top	α	11°	12°	13°		
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support