

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 22x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16km204-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ГABLE 4-29:	COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	630h	CMIDL		—	—		C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT	—	—			_	C3OUT ⁽¹⁾	C2OUT ⁽¹⁾	C10UT	0000
CVRCON	632h	_	_	_	_	_	_	_	_	CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	634h	CON	COE	CPOL	CLPWR	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF1	CREF0	_	CCH1	CCH0	0000
CM2CON ⁽¹⁾	636h	CON	COE	CPOL	CLPWR		_	CEVT	COUT	EVPOL1	EVPOL0		CREF1 ⁽¹⁾	CREF0	_	CCH1	CCH0	0000
CM3CON ⁽¹⁾	638h	CON	COE	CPOL	CLPWR	_		CEVT	COUT	EVPOL1	EVPOL0	_	CREF1 ⁽¹⁾	CREF0	_	CCH1	CCH0	0000

 $\label{eq:legend: second condition, u = unchanged, --= unimplemented, q = value depends on condition, r = reserved.$

Note 1: These registers and bits are available only on PIC24F(V)16KM2XX devices.

TABLE 4-30: BAND GAP BUFFER CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BUFCON0	670h	_	_				_			—	—			—		BUFREF1	BUFREF0	0001

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	;	Block all interrupts for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	;	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set $\ensuremath{\mathtt{WR}}$

R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY		—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0
bit 7	•	·		-			bit 0
Legend:		HC = Hardware	Clearable bit	U = Unimple	mented bit, re	ead as '0'	
R = Readable	bit	W = Writable bit		S = Settable	Only bit		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
L							
bit 15	WR: Write Co	ontrol bit (program	or erase)				
-	1 = Initiates	a data EEPROM e	erase or write cv	cle (can be set	, but not clea	red in softwar	e)
	0 = Write cyc	cle is complete (cle	eared automatica	ally by hardwa	re)		,
bit 14	WREN: Write	e Enable bit (erase	or program)				
	1 = Enables a	an erase or progra	im operation				
	0 = No opera	tion allowed (devi	ce clears this bit	on completion	of the write/e	erase operatio	n)
bit 13	WRERR: Fla	sh Error Flag bit					
	1 = A write	operation is prem	naturely termina	ted (any MCL	R or WDT F	Reset during	programming
	operation	n)					
1.11.40	0 = The write		eted successfully	/			
bit 12	PGMONLY: H	Program Only Ena	ble bit				
	1 = VVrite ope	eration is executed	d without erasing	g target addres	s(es) first		
	Write operation	ons are preceded	automatically by	an erase of th	e target addr	ess(es).	
bit 11-7	Unimplemen	ited: Read as '0'				().	
bit 6	ERASE: Fras	se Operation Sele	ct bit				
2.1. 0	1 = Performs	s an erase operatio	on when WR is s	set			
	0 = Performs	a write operation	when WR is set	t			
bit 5-0	NVMOP<5:0	Programming C	peration Comm	and Byte bits			
	Erase Operat	tions (when ERAS	<u>E bit is '1'):</u>	-			
	011010 = Era	ase 8 words					
	011001 = Era	ase 4 words					
	011000 = Er	ase 1 word					
		ase entire udid EE		o') .			
	$\frac{10001}{100}$	rite 1 word	II ERAJE DILIS (<u>. j.</u>			

REGISTER 6-1: NVMCON: NONVOLATILE MEMORY CONTROL REGISTER

R/W-0, HS DAC2IF bit 15 U-0 bit 7 Legend:												
DAC2IF bit 15 U-0 bit 7 Legend:	R/W-0, HS	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS					
bit 15 U-0 bit 7 Legend:	DAC1IF	CTMUIF	—	—	—	—	HLVDIF					
U-0 — bit 7							bit 8					
U-0 — bit 7 Legend:												
bit 7	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0					
bit 7 Legend:		—	—	—	U2ERIF	U1ERIF	—					
Legend:							bit 0					
Legend:												
		HS = Hardwar	rdware Settable bit									
R = Readable b	oit	W = Writable I	Writable bit U = Unimplemented bit, read as '0'									
-n = value at PC	JR	"1" = Bit is set		$0^{\circ} = Bit is clea$	ared	x = Bit is unkr	iown					
bit 15		tal to Analog C	onvortor 2 Into	rrunt Eloa Stati	ue hit							
	JACZIF. Digit	equest has occ		Hupt Flag Statt								
)) = Interrupt r	equest has not	occurred									
bit 14 🛛 🛛	DAC1IF: Digit	tal-to-Analog C	onverter 1 Inte	rrupt Flag Stati	us bit							
1	L = Interrupt r	equest has occ	urred									
C) = Interrupt r	equest has not	occurred									
bit 13 C	CTMUIF: CTM	MU Interrupt Fla	ag Status bit									
1	L = Interrupt r	equest has occ	urred									
bit 12-9		ted: Read as '(,									
bit 8	H VDIF · High	/I ow-Voltage D	,)etect Interrunt	Flag Status bi	t							
1	= Interrupt r	equest has occ	urred		·							
-	= Interrupt r	equest has not	occurred									
bit 7-3 l	Jnimplemen	ted: Read as 'o)'									
bit 2 L	J2ERIF: UAF	RT2 Error Interro	upt Flag Status	s bit								
1	L = Interrupt r	equest has occ	urred									
0) = Interrupt r	equest has not	occurred									
bit 1 L	J1ERIF: UAF	RI1 Error Interro	upt Flag Status	bit								
] (Interrupt r Interrupt r	equest has occ	urred									
bit 0 L		Equest has not	occurred									

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_	CCT1IP2	CCT1IP1	CCT1IP0	_	CCP4IP2	CCP4IP1	CCP4IP0		
bit 15	•						bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
	CCP3IP2	CCP3IP1	CCP3IP0	—			—		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 15	Unimplemer	ted: Read as '	0'						
bit 14-12	CCT1IP<2:0:	Capture/Con	npare 1 Timer	Interrupt Priorit	ty bits				
	111 = Interrupt is Priority 7 (highest priority interrupt)								
	•								
	•								
	001 = Interru	pt is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 11	Unimplemer	ted: Read as '	0'						
bit 10-8	CCP4IP<2:0	Capture/Con	npare 4 Event	Interrupt Priori	ty bits				
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)					
	•								
	•								
	001 = Interru	pt is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 7	Unimplemer	ted: Read as '	0'						
bit 6-4	CCP3IP<2:0	>: Capture/Con	npare 3 Event	Interrupt Priori	ty bits				
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)					
	•								
	•								
	• 001 = Interru	nt is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 3-0	Unimplemer	ted: Read as '	0'						

REGISTER 8-20: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

REGISTER 8-31: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	—	—	—	HLVDIP2	HLVDIP1	HLVDIP0
bit 7							bit 0
Laward							

Leg	end	
-----	-----	--

bit 2-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

HLVDIP<2:0>: High/Low-Voltage Detect Interrupt Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- •

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	DAC2IP2	DAC2IP1	DAC2IP0		DAC1IP2	DAC1IP1	DAC1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	CTMUIP2	CTMUIP1	CTMUIP0		<u> </u>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	כי				
bit 14-12	DAC2IP<2:0>	Digital-to-Ana	alog Converter	2 Event Interr	upt Priority bits		
	111 = Interru	pt is Priority 7(highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as ')'				
bit 10-8	DAC1IP<2:0>	>: Digital-to-Ana	alog Converter	1 Event Interr	upt Priority bits		
	111 = Interru	pt is Priority 7 (highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '	כ'				
bit 6-4	CTMUIP<2:0	>: CTMU Interr	upt Priority bit	S			
	111 = Interru	pt is Priority 7(highest priority	/ interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	כ'				

REGISTER 8-32: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
bit 15					•	· · · · · ·	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	ROI: Recover 1 = Interrupts 0 = Interrupts	on Interrupt bi clear the DOZ have no effect	t EN bit, and res t on the DOZE	set the CPU an N bit	d peripheral clo	ock ratio to 1:1	
bit 14-12	DOZE<2:0>: 111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1	CPU and Perip	heral Clock Ra	atio Select bits			
bit 11	DOZEN: Doze	e Enable bit ⁽¹⁾					
	1 = DOZE<2 0 = CPU and	:0> bits specify peripheral cloc	the CPU and p k ratio are set	peripheral clock to 1:1	< ratio		
bit 10-8	RCDIV<2:0>:	FRC Postscale	er Select bits				
bit 10-0	When COSC 111 = 31.25 k 100 = 125 kH 101 = 250 kH 101 = 2 MHz 010 = 2 MHz 001 = 4 MHz 000 = 8 MHz When COSC 111 = 1.95 kH 100 = 7.81 kH 101 = 15.62 kH 001 = 425 kH 001 = 250 kH 001 = 250 kH 001 = 500 kH	$\frac{<2:0>}{OSCCO}$ $\frac{<2:0>}{OSCCO}$ $\frac{<2:0>}{COSCCO}$ $\frac{<1}{C}$	$\frac{N<14:12>) = 1}{256}$) default $\frac{N<14:12>) = 1}{56}$ 4) $\frac{N<14:12>) = 1}{56}$	<u>11:</u> 10:			
bit 7-0	Unimplemen	ted: Read as 'o)'				

REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

REGISTER	12-1: T1CC	ON: TIMER1 C	ONTROL R	EGISTER			
R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON		TSIDL			_	TECS1 ⁽¹⁾	TECS0 ⁽¹⁾
bit 15				·			bit 8
U-0	R/W-0	R/W-0	R/W-0	11-0	R/W-0	R/W-0	U-0
			TCKPS0			TCS	
bit 7	TO/TE				Torno	100	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	TON: Timer1 1 = Starts 16 0 = Stops 16	On bit 5-bit Timer1 5-bit Timer1					
bit 14	Unimplemen	ted: Read as ')'				
bit 13	TSIDL: Time	r1 Stop in Idle N	lode bit		1 1.		
	1 = Discontin0 = Continue	ues module opera s module opera	tion in Idle mo	ievice enters id	le mode		
bit 12-10	Unimplemen	ted: Read as ')'				
bit 9-8	TECS<1:0>: 11 = Reserve 10 = Timer1 01 = Timer1 00 = Timer1	Timer1 Extende ed; do not use uses the LPRC uses the Extern uses the Secon	ed Clock Select as the clock s al Clock (EC) dary Oscillato	ct bits ⁽¹⁾ ource from T1CK r (SOSC) as the	e clock source		
bit 7	Unimplemen	ted: Read as ')'				
bit 6	TGATE: Time	er1 Gated Time	Accumulation	Enable bit			
	When TCS = This bit is ign <u>When TCS =</u> 1 = Gated tir 0 = Gated tir	<u>1:</u> ored. <u>0:</u> ne accumulatio ne accumulatio	n is enabled n is disabled				
bit 5-4	TCKPS<1:0> 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1	: Timer1 Input	Clock Prescal	e Select bits			
bit 3	Unimplemen	ted: Read as ')'				
bit 2	TSYNC: Time <u>When TCS =</u> 1 = Synchro 0 = Does no <u>When TCS =</u> This bit is ign	er1 External Clo <u>1:</u> nizes External ot synchronize E <u>0:</u> ored	ock Input Sync Clock input External Clock	hronization Sel input	ect bit		
bit 1	TCS: Timer1 1 = Timer1 c 0 = Internal c	Clock Source S lock source is s clock (Fosc/2)	Select bit elected by TE	CS<1:0>			
bit 0	Unimplemen	ted: Read as ')'				
Note 1: T	he TECSx bits a	are valid only wi	nen TCS = 1.				

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
OPSSRC	(1) RTRGEN ⁽²⁾	_	_	OPS3 ⁽³⁾	OPS2 ⁽³⁾	OPS1 ⁽³⁾	OPS0 ⁽³⁾
bit 15							bit 8
r							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TRIGEN ⁽	4) ONESHOT	ALTSYNC	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0
bit 7							bit 0
Legend:							
R = Reada	ible bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	OPSSRC: Ou 1 = Output po	tput Postscaler ostscaler scales	Source Selec module Trigg	t bit ⁽¹⁾ er output event	s		
hit 14		trigger Enable	hit(2)	enupievenis			
DIL 14	1 = Time bas	e can be retrige	pered when TF	RIGEN bit = 1			
	0 = Time base may not be retriggered when TRIGEN bit = 1						
bit 13-12	Unimplement	ted: Read as 'o)'				
bit 11-8	OPS3<3:0>: (CCPx Interrupt	Output Postsc	ale Select bits ^{(;}	3)		
	1111 = Interro 1110 = Interro	upt every 16th t upt every 15th t	ime base perio ime base perio	od match od match			
0100 = Interrupt every 5th time base period match 0011 = Interrupt every 4th time base period match or 4th input capture event 0010 = Interrupt every 3rd time base period match or 3rd input capture event 0001 = Interrupt every 2nd time base period match or 2nd input capture event							
bit 7	TRIGEN: CCI	Px Trigger Enat	ole bit ⁽⁴⁾				
	1 = Trigger o 0 = Trigger o	peration of time peration of time	e base is enabl e base is disab	ed led			
bit 6	ONESHOT: O	ne-Shot Mode	Enable bit				
	1 = One-Sho 0 = One-Sho	t Trigger mode t Trigger mode	is enabled; Tri IS disabled	gger duration is	s set by OSCN	Γ<2:0>	
bit 5	ALTSYNC: C	CPx Clock Sele	ect bits				
	1 = An alterna 0 = The mode	ate signal is us ule synchroniza	ed as the mod ation output sig	ule synchroniza Inal is the Time	ation output sig Base Reset/ro	nal llover event	
bit 4-0	SYNC<4:0>:	CCPx Synchro	nization Sourc	e Select bits			
	See Table 13-	6 for the definit	ion of inputs.				
Note 1.	This control bit ha	s no function in	n Input Canture	e modes			
2:	This control bit ha	s no function w	hen TRIGEN	= 0.			
3:	Output postscale	settings from 1:	5 to 1:16 (0100	-1111) will resu	ılt in a FIFO buf	fer overflow for	Input Capture
	modes	5	`	,			

REGISTER 13-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

4: Clock source options are limited when Trigger operation is enabled; refer to Table 13-1.

14.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on MSSP, refer to the *"PIC24F Family Reference Manual"*.

The Master Synchronous Serial Port (MSSP) module is an 8-bit serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, Shift registers, display drivers, A/D Converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
- Slave mode (with general address call)

The SPI interface supports these modes in hardware:

- Master mode
- Slave mode
- · Daisy-Chaining Operation in Slave mode
- Synchronized Slave Operation

The I²C interface supports the following modes in hardware:

- Master mode
- · Multi-Master mode
- Slave mode with 10-Bit and 7-Bit Addressing and Address Masking
- Byte NACKing
- Selectable Address and Data Hold, and Interrupt Masking

14.1 I/O Pin Configuration for SPI

In SPI Master mode, the MSSP module will assert control over any pins associated with the SDOx and SCKx outputs. This does not automatically disable other digital functions associated with the pin and may result in the module driving the digital I/O port inputs. To prevent this, the MSSP module outputs must be disconnected from their output pins while the module is in SPI Master mode. While disabling the module temporarily may be an option, it may not be a practical solution in all applications.

The SDOx and SCKx outputs for the module can be selectively disabled by using the SDOxDIS and SCKxDIS bits in the PADCFG1 register (Register 14-10). Setting the bit disconnects the corresponding output for a particular module from its assigned pin.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—		—		
bit 15							bit 8	
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
SMP	CKE ⁽¹⁾	D/Ā	Р	S	R/W	UA	BF	
bit 7	·						bit 0	
Legend:								
R = Reada	able bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15-8	Unimplemen	ted: Read as '0	,					
bit 7	SMP: Sample	e bit						
	<u>SPI Master m</u>	<u>iode:</u>						
	1 = Input data	a is sampled at t a is sampled at t	he end of data	a output time lata output time	`			
	SPI Slave mo	de.			•			
	SMP must be	cleared when S	PI is used in S	Slave mode.				
bit 6	CKE: SPI Clo	ock Select bit ⁽¹⁾						
	1 = Transmit 0 = Transmit	occurs on transi occurs on transi	tion from activ tion from Idle	e to Idle clock to active clock	state state			
bit 5	D/A: Data/Ad	dress bit						
	Used in I ² C™	¹ mode only.						
bit 4	P: Stop bit							
	Used in I ² C m	node only. This b	oit is cleared w	hen the MSSP	x module is di	sabled; SSPEN	bit is cleared.	
bit 3	S: Start bit							
	Used in I ² C m	node only.						
bit 2	R/W: Read/W	/rite Information	bit					
	Used in I ² C m	node only.						
bit 1	UA: Update A	Address bit						
	Used in I ² C m	node only.						
bit 0	BF: Buffer Fu	III Status bit						
	1 = Receive is complete, SSPxBUF is full							
		s not complete,	SSAXROF IS 6	empty				
Note 1:	Polarity of clock s	state is set by the	e CKP bit (SS	PxCON1<4>).				

REGISTER 14-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

REGISTER 20-1: DACxCON: DACx CONTROL REGISTER (CONTINUED)

- bit 6-2 DACTSEL<4:0>: DACx Trigger Source Select bits
 - 11101-11111 = Unused 11100 = CTMU 11011 = A/D 11010 = Comparator 3 11001 = Comparator 2 11000 = Comparator 1 10011 to 10111 = Unused 10010 = CLC2 output 10001 = CLC1 output 01100 to 10000 = Unused 01011 = Timer1 Sync output 01010 = External Interrupt 2 01001 = External Interrupt 1 01000 = External Interrupt 0 0011x = Unused 00101 = MCCP5 or SCCP5 Sync output 00100 = MCCP4 or SCCP4 Sync output 00011 = MCCP3 or SCCP3 Sync output 00010 = MCCP2 or SCCP2 Sync output 00001 = MCCP1 or SCCP1 Sync output 00000 = Unused DACREF<1:0>: DACx Reference Source Select bits 11 = Internal Band Gap Buffer 1 (BGBUF1)⁽¹⁾
 - 10 = AVDD

bit 1-0

- 01 = DVREF+
- 00 = Reference is not connected (lowest power but no DAC functionality)
- **Note 1:** BGBUF1 voltage is configured by BUFREF<1:0> (BUFCON0<1:0>).

25.0 SPECIAL FEATURES

- **Note:** This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watchdog Timer, High-Level Device Integration and Programming Diagnostics, refer to the individual sections of the *"PIC24F Family Reference Manual"* provided below:
 - "Watchdog Timer (WDT)" (DS39697)
 - "Programming and Diagnostics" (DS39716)

PIC24FXXXXX family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

25.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list of Configuration register locations is provided in Table 25-1. A detailed explanation of the various bit functions is provided in Register 25-1 through Register 25-9.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using Table Reads and Table Writes.

TABLE 25-1: CONFIGURATION REGISTERS LOCATIONS

Configuration Register	Address
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E

REGISTER 25-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	BSS2	BSS1	BSS0	BWRP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

- bit 3-1 BSS<2:0>: Boot Segment Program Flash Code Protection bits
 - 111 = No boot program Flash segment
 - 011 = Reserved
 - 110 = Standard security, boot program Flash segment starts at 200h, ends at 000AFEh
 - 010 = High-security, boot program Flash segment starts at 200h, ends at 000AFEh
 - 101 = Standard security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 001 = High-security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 100 = Reserved
 - 000 = Reserved

bit 0 BWRP: Boot Segment Program Flash Write Protection bit

- 1 = Boot Segment may be written
- 0 = Boot Segment is write-protected

Note 1: This selection should not be used in PIC24FV08KMXXX devices.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled in hardware (FWDTEN<1:0> = 11), it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3:2>) will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

25.3.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the Configuration bit, WINDIS (FWDT<6>), to '0'.

25.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits. When both of the FWDTEN<1:0> Configuration bits are set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN<1:0> Configuration bits have been programmed to '10'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments, and disable the WDT during non-critical segments, for maximum power savings. When the FWDTEN<1:0> bits are set to '01', the WDT is only enabled in Run and Idle modes, and is disabled in Sleep. Software control of the SWDTEN bit (RCON<5>) is disabled with this setting.

FIGURE 25-2: WDT BLOCK DIAGRAM

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		0.65 BSC				
Overall Height	А	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1		1.25 REF				
Lead Thickness	С	0.09	-	0.25			
Foot Angle	¢	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		48	
Pitch	е		0.40 BSC	
Overall Height	А	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.127 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	4.45	4.60	4.75
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	4.45	4.60	4.75
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	ĸ	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2

Comparator Voltage Reference	239
Configuring	239
Configurable Logic Cell (CLC)	195
Configuration Bits	249
CPU	
ALU	39
Control Registers	38
Core Registers	36
Programmer's Model	35
CTMU	
Measuring Capacitance	241
Measuring Time	242
Pulse Generation and Delay	243
Customer Change Notification Service	332
Customer Notification Service	332
Customer Support	332
D	

Data EEPROM Memory73 Erasing76 Operations75 Programming Reading Data EEPROM78 Single-Word Write77 Programming Control Registers NVMADR(U)75 NVMKEY73 Data Memory SFR Space44 Data Space **DC** Characteristics I/O Pin Input Specifications274 Operating Current (IDD)270 Operational Amplifier278 Power-Down Current (IPD)272 Program Memory275 Demo/Development Boards, Evaluation and **Device Features** PIC24F16KM104 Family16 PIC24F16KM204 Family15 PIC24FV16KM104 Family18 PIC24FV16KM204 Family17

Device Overview	13
Core Features	13
Other Special Features	14
Pinout Description	20
Dual Operational Amplifier	233
E	
Electrical Characteristics	
Absolute Maximum Ratings	265
Thermal Operating Conditions	
Thermal Packaging	268
Equations	
A/D Conversion Clock Period	223
UARTx Baud Rate with BRGH = 0	174
UARTx Baud Rate with BRGH = 1	174
Errata	11
Examples	
Baud Rate Error Calculation (BRGH = 0)	174
F	
- Flash Program Memory	
Control Registers	68
Enhanced ICSP Operation	
Programming Algorithm	
Programming Operations	
RTSP Operation	68
Table Instructions	67
G	
Getting Started Guidelines	
	ວວ ວວ
Master Clear (MCLP) Pin	ےد ۵۵
Power Supply Pins	
Voltage Regulator Pin (VCAP)	
••	
н	
High/Low-Voltage Detect (HLVD)	207
1	
- I/O Ports	
Analog Port Pins Configuration	138
Analog Selection Registers	138
Input Change Notification	140
Open-Drain Configuration	138
Parallel (PIO)	137
In-Circuit Debugger	259
In-Circuit Serial Programming (ICSP)	259
Inter-Integrated Circuit. See I ² C.	
Internet Address	332
Interrupts	
Alternate Interrupt Vector Table (AIVT)	85
Control and Status Registers	
Implemented Vectors	
Interrupt Vector Table (IVT)	
Reset Sequence	
Setup Procedures	119
I rap vectors	

NOTES: