

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5V
Data Converters	A/D 22x10b/12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16km204-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

PIC24FV16KM204 FAMILY

NOTES:

TABLE 4-3:CPU CORE REGISTERS MAP

IADLL	-т-Ј.		0.00															
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0h								W	/REG0								0000
WREG1	2h								W	/REG1								0000
WREG2	4h								W	/REG2								0000
WREG3	6h								W	/REG3								0000
WREG4	8h								W	/REG4								0000
WREG5	Ah								W	/REG5								0000
WREG6	Ch								W	/REG6								0000
WREG7	Eh								W	/REG7								0000
WREG8	10h								W	/REG8								0000
WREG9	12h								W	/REG9								0000
WREG10	14h								W	REG10								0000
WREG11	16h								W	REG11								0000
WREG12	18h								W	REG12								0000
WREG13	1Ah								W	REG13								0000
WREG14	1Ch								W	REG14								0000
WREG15	1Eh								W	REG15								0800
SPLIM	20h								SPLI	M Register								xxxx
PCL	2Eh								PCL	Register								0000
PCH	30h	_	—	_	_	_	_	_	_	PCH7	PCH6	PCH5	PCH4	PCH3	PCH2	PCH1	PCH0	0000
TBLPAG	32h	_	—	_	_	_	_	_	_	TBLPAG7	TBLPAG6	TBLPAG5	TBLPAG4	TBLPAG3	TBLPAG2	TBLPAG1	TBLPAG0	0000
PSVPAG	34h	_	—	_	_	_	_	_	_	PSVPAG7	PSVPAG6	PSVPAG5	PSVPAG4	PSVPAG3	PSVPAG2	PSVPAG1	PSVPAG0	0000
RCOUNT	36h								RCOU	NT Register								xxxx
SR	42h	_	—	_	_	_	_	_	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	44h	_	_	_	_	_	_	—	—	_	—	_	_	IPL3	PSV	—	—	0000
DISICNT	52h	_	_	DISICNT13	DISICNT12	DISICNT11	DISICNT10	DISICNT9	DISICNT8	DISICNT7	DISICNT6	DISICNT5	DISICNT4	DISICNT3	DISICNT2	DISICNT1	DISICNT0	xxxx

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

TABLE 4-21: PORTA REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ^(4,5)	Bit 10 ^(4,5)	Bit 9 ^(4,5)	Bit 8 ^(4,5)	Bit 7 ⁽⁴⁾	Bit 6 ⁽³⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	2C0h	_	—	_	_	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	TRISA6	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	0FDF ⁽¹⁾
PORTA	2C2h	_	_	_	_	RA11	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	2C4h	_	_	_	_	LATA11	LATA10	LATA9	LATA8	LATA7	LATA6		LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	2C6h	_	_	_	-	ODA11	ODA10	ODA9	ODA8	ODA7	ODA6	_	ODA4	ODA3	ODA2	ODA1	ODA0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are only available when MCLRE (FPOR<7>) = 0.

3: These bits are not implemented in FV devices.

4: These bits are not implemented in 20-pin devices.

5: These bits are not implemented in 28-pin devices.

TABLE 4-22: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ⁽²⁾	Bit 10 ⁽²⁾	Bit 9	Bit 8	Bit 7	Bit 6 ⁽²⁾	Bit 5 ⁽²⁾	Bit 4	Bit 3 ⁽²⁾	Bit 2	Bit 1	Bit 0	All Resets
TRISB	2C8h	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	_{FFFF} (1)
PORTB	2CAh	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	2CCh	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	2CEh	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

TABLE 4-23: PORTC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9 ^(2,3)	Bit 8 ^(2,3)	Bit 7 ^(2,3)	Bit 6 ^(2,3)	Bit 5 ^(2,3)	Bit 4 ^(2,3)	Bit 3 ^(2,3)	Bit 2 ^(2,3)	Bit 1 ^(2,3)	Bit 0 ^(2,3)	All Resets
TRISC	2D0h	—	_		_		_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF ⁽¹⁾
PORTC	2D2h	_	_	_		—		RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATTC	2D4h	_	_	_	_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	2D6h	_	_	_	_	_	_	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition, r = reserved.

Note 1: Reset value depends on the device type; the PIC24F16KM204 value is shown.

2: These bits are not implemented in 20-pin devices.

3: These bits are not implemented in 28-pin devices.

6.0 DATA EEPROM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on data EEPROM, refer to the *"PIC24F Family Reference Manual"*, **"Data EEPROM"** (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFE00h to 7FFFFh. The size of the data EEPROM is 256 words in PIC24FXXXXX devices.

The data EEPROM is organized as 16-bit-wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

//Disable Interrupts For 5 instructions										
asm volatile	("disi #5");									
//Issue Unlock	Sequence									
asm volatile	("mov #0x55, W0	\n"								
	"mov W0, NVMKEY	\n"								
	"mov #0xAA, W1	\n"								
	"mov W1, NVMKEY	\n");								
// Perform Writ	e/Erase operations									
asm volatile	("bset NVMCON, #WR	\n"								
	"nop	\n"								
	"nop	\n");								

6.4.1 ERASE DATA EEPROM

The data EEPROM can be fully erased, or can be partially erased, at three different sizes: one word, four words or eight words. The bits, NVMOP<1:0> (NVMCON<1:0>), decide the number of words to be erased. To erase partially from the data EEPROM, the following sequence must be followed:

- 1. Configure NVMCON to erase the required number of words: one, four or eight.
- 2. Load TBLPAG and WREG with the EEPROM address to be erased.
- 3. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 4. Write the key sequence to NVMKEY.
- 5. Set the WR bit to begin the erase cycle.
- 6. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical erase sequence is provided in Example 6-2. This example shows how to do a one-word erase. Similarly, a four-word erase and an eight-word erase can be done. This example uses C library procedures to manage the Table Pointer (builtin_tblpage and builtin_tbloffset) and the Erase Page Pointer (builtin_tblwt1). The memory unlock sequence (builtin_write_NVM) also sets the WR bit to initiate the operation and returns control when complete.

EXAMPLE 6-2: SINGLE-WORD ERASE

```
int __attribute__ ((space(eedata))) eeData = 0x1234;
/*_____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the erase
_____
*/
   unsigned int offset;
   // Set up NVMCON to erase one word of data EEPROM
   NVMCON = 0 \times 4058;
   // Set up a pointer to the EEPROM location to be erased
   TBLPAG = __builtin_tblpage(&eeData); // Initialize EE Data page pointer
   offset = __builtin_tbloffset(&eeData);
                                           // Initizlize lower word of address
   __builtin_tblwtl(offset, 0);
                                           // Write EEPROM data to write latch
   asm volatile ("disi #5");
                                            // Disable Interrupts For 5 Instructions
   __builtin_write_NVM();
                                            // Issue Unlock Sequence & Start Write Cycle
   while(NVMCONbits.WR=1);
                                            // Optional: Poll WR bit to wait for
                                            // write sequence to complete
```

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

TABLE 8-1:TRAP VECTOR DETAILS

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS

			ΑΙΥΤ	Int	errupt Bit Loc	ations
Interrupt Source	Vector Number	IVT Address	Address	Flag	Enable	Priority
ADC1 – ADC1 Convert Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>
CLC1	96	0000D4h	0001D4h	IFS6<0>	IEC6<0>	IPC24<2:0>
CLC2	97	0000D6h	0001D6h	IFS6<1>	IEC6<1>	IPC24<6:4>
Comparator Interrupt	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>
СТМИ	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>
DAC1 – Buffer Update	78	0000B0h	0001B0h	IFS4<14>	IEC4<14>	IPC19<10:8>
DAC2 – Buffer Update	79	0000B2h	0001B2h	IFS4<15>	IEC4<15>	IPC19<14:12>
HLVD – High/Low-Voltage Detect	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC18<2:0>
ICN – Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>
INT0 – External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>
INT1 – External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>
INT2 – External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>
MCCP1 – Capture/Compare	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>
MCCP1 – Time Base	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
MCCP2 – Capture/Compare	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>
MCCP2 – Time Base	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
MCCP3 – Capture/Compare	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>
MCCP3 – Time Base	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
MSSP1 – Bus Collision Interrupt	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>
MSSP1 – I ² C™/SPI Interrupt	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>
MSSP2 – Bus Collision Interrupt	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>
MSSP2 – I ² C/SPI Interrupt	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>
NVM – NVM Write Complete	15	000032h	000132h	IFS0<15>	IEC0<15>	IPC3<14:12>
RTCC – Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>
SCCP4 – Capture/Compare	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>
SCCP4 – Time Base	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
SCCP5 – Capture/Compare	22	000040h	000140h	IFS1<6>	IEC1<6>	IPC5<10:8>
SCCP5 – Time Base	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>
TMR1 – Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART1RX – UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1TX – UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2RX – UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2TX – UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>
ULPWU – Ultra Low-Power Wake-up	80	0000B4h	0001B4h	IFS5<0>	IEC5<0>	IPC20<2:0>

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROEN		ROSSLP	ROSEL	RODIV3	RODIV2		RODIVO
bit 15		ROOOLI	ROOLL	Robivo	ROBIVE	ROBIVI	hit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	_	—	—
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	x = Bit is unkr	iown	
bit 15	ROEN: Refer	ence Oscillator e Oscillator is e	Output Enable nabled on the	e bit REFO pin			
hit 1/		tod: Pead as '	n'				
bit 13		ference Oscilla	, tor Output Sto	n in Sleen hit			
bit 15	1 = Reference	- Oscillator con	tinues to run ir	n Sleen			
	0 = Reference	e Oscillator is d	isabled in Slee	ep			
bit 12	ROSEL: Refe	erence Oscillato	or Source Sele	ct bit			
	1 = Primary (0 = System c	Oscillator is use	ed as the base	clock ⁽¹⁾ k: base clock re	flects any cloc	k switching of t	he device
bit 11-8		Reference Os	cillator Divisor	Select hits			
bit 11-0	1111 = Base	clock value div	ided by 32,768	3			
	1110 = Base	clock value div	ided by 16,362	ŧ			
	1100 = Base	clock value div	ided by 4,096				
	1011 = Base	clock value div	ided by 2,048				
	1010 = Base	clock value div	ided by 1,024				
	1001 = Base	clock value div	ided by 256				
	0111 = Base	clock value div	ided by 128				
	0110 = Base	clock value div	ided by 64				
	0101 = Base	clock value div	ided by 32				
	0011 = Base	clock value div	ided by 10				
	0010 = Base	clock value div	ided by 4				
	0001 = Base	clock value div	ided by 2				
	0000 = Base	clock value					
bit 7-0	Unimplemen	ted: Read as ')'				

REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Note 1: The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

PIC24FV16KM204 FAMILY

11.2.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation, and a read operation of the same port. Typically, this instruction would be a NOP.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC24FXXXXX family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 37 external signals (CN0 through CN36) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the CN module. The CNEN1 and CNEN3 registers contain the interrupt enable control bits for each of the CNx input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CNx pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately using the CNPU1 and CNPU3 registers, which contain the control bits for each of the CNx pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately using the CNPD1 and CNPD3 registers, which contain the control bits for each of the CNx pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to Vss by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on Change Notification (CN) pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0; MOV W0, TRISB;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP;	//Delay 1 cycle
BTSS PORTB, #13;	//Next Instruction
<pre>Equivalent `C' Code TRISB = 0xFF00; NOP(); if(PORTBbits.RB13 == 1) { }</pre>	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs //Delay 1 cycle // execute following code if PORTB pin 13 is set.

REGISTER 13-7: CCPxSTATL: CCPx STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
_	—		—		_	—	_						
bit 15							bit 8						
R-0	W1-0	W1-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0						
CCPTRIG	TRSET	TRCLR	ASEVT	SCEVT	ICDIS	ICOV	ICBNE						
bit 7							bit 0						
r													
Legend:		C = Clearable	bit										
R = Readable	e bit	W1 = Write '1'	only	U = Unimplem	ented bit, read	l as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown						
bit 15-8	Unimplemen	ted: Read as '0	,										
bit 7	CCPTRIG: C	CCPTRIG: CCPx Trigger Status bit											
	1 = Timer has been triggered and is running												
bit 6	TRSET: CCP	x Trigger Set Re	equest bit										
	Write '1' to th	is location to trig	ger the timer	when TRIGEN	= 1 (location a	lways reads as	; 'O').						
bit 5	TRCLR: CCF	x Trigger Clear	Request bit			-							
	Write '1' to th	is location to ca	ncel the timer	Trigger when T	RIGEN = 1 (lo	cation always r	eads as '0').						
bit 4	ASEVT: CCP	x Auto-Shutdow	n Event Statu	s/Control bit									
	1 = A shutdo	wn event is in p	rogress; CCP	x outputs are in	the shutdown	state							
	0 = CCPx ou	tputs operate no	ormally										
bit 3	SCEVT: Sing	le Edge Compai	e Event Statu	ıs bit									
	1 = A single	edge compare e	vent has occ	urred									
h:+ 0		edge compare e	vent nas not	occurrea									
DIT 2		Capture x Disab	le Dit unin (ICx) day										
	1 = Event on 0 = Event on 1	Input Capture x	pin (ICX) doe	rate a capture e	a capture ever	11							
bit 1	ICOV: Input C	Capture x Buffer	Overflow Sta	tus bit									
	1 = The Input Capture x FIFO buffer has overflowed												
	0 = The Inpu	t Capture x FIF	D buffer has r	not overflowed									
bit 0	ICBNE: Input	Capture x Buffe	er Status bit										
	1 = Input Ca 0 = Input Ca	apture x buffer h apture x buffer is	as data avail s empty	able									

'1' = Bit is set

REGISTER 14-8: SSPxADD: MSSPx SLAVE ADDRESS/BAUD RATE GENERATOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	

'0' = Bit is cleared

x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

-n = Value at POR

 bit 7-0
 ADD<7:0>: Slave Address/Baud Rate Generator Value bits

 SPI Master and I²C™ Master modes:
 Reload value for the Baud Rate Generator. Clock period is (([SPxADD] + 1) * 2)/Fosc.

 I²C Slave modes:
 Represents 7 or 8 bits of the slave address, depending on the addressing mode used:

 7-Bit mode:
 Address is ADD<7:1>; ADD<0> is ignored.

 10-Bit LSb mode:
 ADD<7:0> are the Least Significant bits of the address.

 10-Bit MSb mode:
 ADD<2:1> are the two Most Significant bits of the address; ADD<7:3> are always '11110' as a specification requirement; ADD<0> is ignored.

REGISTER 14-9: SSPxMSK: I²C[™] SLAVE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	—	—	—	—	
bit 15							bit 8

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|---------------------|
| MSK7 | MSK6 | MSK5 | MSK4 | MSK3 | MSK2 | MSK1 | MSK0 ⁽¹⁾ |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7-0	MSK<7:0>: Slave Address Mask Select bits ⁽¹⁾
	1 = Masking of corresponding bit of SSPxADD is enabled
	0 = Masking of corresponding bit of SSPxADD is disabled

Note 1: MSK0 is not used as a mask bit in 7-bit addressing.

17.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Source Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

REGISTER 17-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
LCEN		<u> </u>		INTP	INTN		
bit 15							bit 8
R-0	R-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
LCOE	LCOUT	LCPOL	—	—	MODE2	MODE1	MODE0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable b	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	LCEN: CLCx	Enable bit					
	1 = CLCx is $0 = CLCx$ is 0	enabled and mix	king input sign s loaic zero o	ials utputs			
bit 14-12	Unimplemen	ted: Read as '0	,				
bit 11	INTP: CLCx F	Positive Edge In	terrupt Enable	e bit			
	1 = Interrupt	will be generate	d when a risir	ng edge occurs	on LCOUT		
	0 = Interrupt	will not be gene	rated				
bit 10	INTN: CLCx I	Negative Edge I	nterrupt Enab	le bit			
	1 = Interrupt 0 = Interrupt	will be generate will not be gene	ed when a falli rated	ng edge occurs	s on LCOUT		
bit 9-8	Unimplemen	ted: Read as '0	,				
bit 7	LCOE: CLCx	Port Enable bit					
	1 = CLCx por	t pin output is e	nabled				
	0 = CLCx por	t pin output is d	isabled				
bit 6	LCOUT: CLC	x Data Output S	status bit				
	1 = CLCx out	put high					
bit 5		y Output Polarit	v Control hit				
bit 0	1 = The outp	ut of the module	e is inverted				
	0 = The outp	ut of the module	e is not inverte	ed			
bit 4-3	Unimplemen	ted: Read as '0	,				

REGISTER 17-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
bit 15	1				1		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N
bit 7							bit 0
Legend:	. 1. 11					1 (0)	
R = Readable		vv = vvritable i	DIT	0 = 0	iented dit, read	as U v = Ditio unkr	
	FUK	I – DILIS SEL			areu	X – DIL IS ULIKI	IOWIT
bit 15	G4D4T: Gate	4 Data Source	4 True Enable	bit			
	1 = The Data	Source 4 invert	ted signal is er	habled for Gate	4		
	0 = The Data	Source 4 invert	ted signal is di	sabled for Gate	e 4		
bit 14	G4D4N: Gate	4 Data Source	4 Negated Er	nable bit			
	1 = The Data	Source 4 invert	ted signal is er	habled for Gate	4		
hit 13	G4D3T: Gate	4 Data Source	3 True Enable	hit	; 4		
bit 10	1 = The Data	Source 3 invert	ted signal is er	nabled for Gate	4		
	0 = The Data	Source 3 invert	ted signal is di	sabled for Gate	e 4		
bit 12	G4D3N: Gate	4 Data Source	3 Negated Er	nable bit			
	1 = The Data	Source 3 inver	ted signal is er	nabled for Gate	4		
bit 11	0 = 1 ne Data	4 Data Source	ed signal is di 2 True Encelo	sabled for Gate	9 4		
	1 = The Data	Source 2 invert	ed signal is er	abled for Gate	4		
	0 = The Data	Source 2 invert	ted signal is di	sabled for Gate	24		
bit 10	G4D2N: Gate	4 Data Source	2 Negated Er	nable bit			
	1 = The Data	Source 2 invert	ted signal is er	nabled for Gate	4		
h it 0	0 = 1 ne Data	Source 2 Inven	ted signal is di	sabled for Gate	9 4		
DIL 9	1 = The Data	4 Data Source Source 1 invert	I True Enable ted signal is er	: DIL Dabled for Gate	4		
	0 = The Data	Source 1 invert	ted signal is di	sabled for Gate	+ • 4		
bit 8	G4D1N: Gate	4 Data Source	1 Negated Er	nable bit			
	1 = The Data	Source 1 invert	ted signal is er	nabled for Gate	4		
h:+ 7	0 = 1 he Data	Source 1 invert	ted signal is di	sabled for Gate	e 4		
DIT /	G3D41: Gate	3 Data Source	4 True Enable	e DIT Dabled for Cate	3		
	0 = The Data	Source 4 invert	ted signal is di	sabled for Gate	3		
bit 6	G3D4N: Gate	3 Data Source	4 Negated Er	nable bit			
	1 = The Data	Source 4 invert	ted signal is er	nabled for Gate	3		
	0 = The Data	Source 4 invert	ted signal is di	sabled for Gate	93		
bit 5	G3D3T: Gate	3 Data Source	3 Irue Enable	e bit	2		
	1 = 110 Data 0 = The Data	Source 3 inven	ted signal is di	sabled for Gate	3		
bit 4	G3D3N: Gate	3 Data Source	3 Negated Er	nable bit			
	1 = The Data	Source 3 invert	ted signal is er	nabled for Gate	3		
	0 = The Data	Source 3 invert	ted signal is di	sabled for Gate	e 3		

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
AMPEN	<u> </u>	AMPSIDL	AMPSLP	—	—	—	_		
bit 15						1	bit 8		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SPDSE	L —	NINSEL2	NINSEL1	NINSEL0	PINSEL2	PINSEL1	PINSEL0		
bit 7									
Legend:									
R = Reada	able bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	AMPEN: Op 1 = Module 0 = Module	Amp x Control I is enabled is disabled	Module Enable	e bit					
bit 14	Unimpleme	nted: Read as '0)'						
bit 13	AMPSIDL: C	Op Amp x Periph	eral Stop in Id	lle Mode bit					
	1 = Disconti	nues module op	eration when	device enters Id	le mode				
hit 12		es mouule opera	allon in fule file	Due Sloop Modo bi	+				
DIL 12		p Amp x Penphe as module opera		vice enters Slee	ı n mode				
	0 = Disconti	nues module opera	eration in Slee	ep mode	pinioue				
bit 11-8	Unimpleme	nted: Read as '0)'						
bit 7	SPDSEL: Op	o Amp x Power/S	Speed Select I	bit					
	1 = Higher p 0 = Lower p	ower and bandw ower and bandw	vidth (faster re vidth (slower re	esponse time) esponse time)					
bit 6	Unimpleme	nted: Read as 'o)'	. ,					
bit 5-3	NINSEL<2:0	>: Negative Op	Amp Input Se	lect bits					
	111 = Reser	ved; do not use							
	110 = Reser	ved; do not use							
	101 = Op an	np negative inpu	it is connected	to the op amp	output (voltage	e follower)			
	011 = Reser	ved; do not use							
	010 = Op an	np negative inpu	it is connected	to the OAxIND	pin				
	001 = Op an	np negative inpu	it is connected	to the OAxINB	pin				
bit 2.0		np negative inpu		1 10 AVSS					
DIL Z-U	FINSEL<2.0	>. Positive Op P	is connected	to the output of	the A/D input r	multiplever			
	110 = Reser	ved; do not use				nditiplexei			
	101 = Op an	np positive input	is connected	to the DAC1 ou	tput for OA1 (E	DAC2 output for	OA2)		
	100 = Reser	ved; do not use							
	010 = Op an	np positive input	is connected	to the OAxINC	pin				
	001 = Op an	np positive input	is connected	to the OAxINA	pin				
	000 = Op an	np positive input	is connected	to AVss					
Note 1:	This register is a	vailable only on	PIC24F(V)16	KM2XX devices					

REGISTER 21-1: AMPxCON: OP AMP x CONTROL REGISTER⁽¹⁾

PIC24FV16KM204 FAMILY

REGISTER 22-1: CMxCON: COMPARATOR x CONTROL REGISTERS

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R-0
CON	COE	CPOL	CLPWR			CEVT	COUT
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0(2)		CREF1	CREF0		CCH1	CCH0
DIT 7							DIT U
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	CON: Compa	rator x Enable l	oit				
	1 = Compara	tor is enabled					
L:1 4 4	0 = Compara	tor is disabled					
DIC 14	1 - Compara	tor output is pre	nable bit				
	0 = Compara	tor output is int	ernal only				
bit 13	CPOL: Comp	arator x Output	Polarity Selec	ct bit			
	1 = Compara	tor output is inv	verted				
	0 = Compara	tor output is no	t inverted				
bit 12	CLPWR: Con	nparator x Low-	Power Mode S	Select bit			
	1 = Comparat	or operates in l	_ow-Power mo	ower mode			
bit 11-10	Unimplemen	ted: Read as '(
bit 9	CEVT: Compa	arator x Event b	, pit				
	1 = Compara	tor event, defin	ed by EVPOL<	<1:0>, has occu	Irred; subseque	ent Triggers and	l interrupts are
	disabled	until the bit is c	leared				-
	0 = Compara	tor event has n	ot occurred				
bit 8	COUI: Comp	arator x Output	bit				
	1 = VIN + > VI	<u>= 0.</u> N-					
	0 = VIN + < VI	N-					
	When CPOL :	<u>= 1:</u>					
	1 = VIN + < VI	N-					
bit 7-6		• Trigger/Event	Interrunt Pola	rity Select hits	2)		
Sit Y O	11 = Trigger/e	event/interrupt i	s generated of	n anv change o	of the comparat	or output (while	e CEVT = 0
	10 = Trigger/e	event/interrupt i	s generated o	n the high-to-lo	w transition of	the comparator	output
	01 = Trigger/e	event/interrupt i	s generated or	n the low-to-hig	h transition of	the comparator	output
bit 5		ted: Read as 'o	, ,	IISADIEU			
bit 4-3	CRFF<1.0	Comparator y F	, Reference Sele	ect bits (non-inv	erting input)		
Sit 10	11 = Non-inve	erting input con	nects to the D	AC2 output	erting input)		
	10 = Non-inve	erting input con	nects to the D	AC1 output			
	01 = Non-inve	erting input con	nects to the in	ternal CVREF vo	oltage		
	00 = 1000-1006	erang input con	nects to the C	xinvA pin			
Note 1:	BGBUF1 voltage	is configured by	y BUFREF1<1	:0> (BUFCON	0<1:0>).		

2: If the EVPOL<1:0> bits are set to a value other than '00', the first interrupt generated will occur on any transition of COUT. Subsequent interrupts will occur based on the EVPOLx bits setting.

24.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Time Measurement Unit, refer to the "PIC24F Family Reference Manual", "Charge Time Measurement Unit (CTMU) with Threshold Detect" (DS39743).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

- Thirteen external edge input Trigger sources
- · Polarity control for each edge source
- · Control of edge sequence
- Control of response to edge levels or edge transitions
- · Time measurement resolution of one nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 enables the module and controls the mode of operation of the CTMU, as well as controlling edge sequencing. CTMUCON2 controls edge source selection and edge source polarity selection. The CTMUICON register selects the current range of current source and trims the current.

24.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from several internal peripheral modules (OC1, Timer1, any input capture or comparator module) and up to 13 external pins (CTED1 through CTED13). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

EQUATION 24-1:

$$I = C \cdot \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an External Capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 24-1 illustrates the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

25.0 SPECIAL FEATURES

- **Note:** This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watchdog Timer, High-Level Device Integration and Programming Diagnostics, refer to the individual sections of the *"PIC24F Family Reference Manual"* provided below:
 - "Watchdog Timer (WDT)" (DS39697)
 - "Programming and Diagnostics" (DS39716)

PIC24FXXXXX family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

25.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list of Configuration register locations is provided in Table 25-1. A detailed explanation of the various bit functions is provided in Register 25-1 through Register 25-9.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using Table Reads and Table Writes.

TABLE 25-1: CONFIGURATION REGISTERS LOCATIONS

Configuration Register	Address			
FBS	F80000			
FGS	F80004			
FOSCSEL	F80006			
FOSC	F80008			
FWDT	F8000A			
FPOR	F8000C			
FICD	F8000E			

REGISTER 25-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	BSS2	BSS1	BSS0	BWRP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

- bit 3-1 BSS<2:0>: Boot Segment Program Flash Code Protection bits
 - 111 = No boot program Flash segment
 - 011 = Reserved
 - 110 = Standard security, boot program Flash segment starts at 200h, ends at 000AFEh
 - 010 = High-security, boot program Flash segment starts at 200h, ends at 000AFEh
 - 101 = Standard security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 001 = High-security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾
 - 100 = Reserved
 - 000 = Reserved

bit 0 BWRP: Boot Segment Program Flash Write Protection bit

- 1 = Boot Segment may be written
- 0 = Boot Segment is write-protected

Note 1: This selection should not be used in PIC24FV08KMXXX devices.

25.4 Program Verification and Code Protection

For all devices in the PIC24FXXXXX family, code protection for the Boot Segment is controlled by the Configuration bit, BSS0, and the General Segment by the Configuration bit, GCP. These bits inhibit external reads and writes to the program memory space This has no direct effect in normal execution mode.

Write protection is controlled by bit, BWRP, for the Boot Segment and bit, GWRP, for the General Segment in the Configuration Word. When these bits are programmed to '0', internal write and erase operations to program memory are blocked.

25.5 In-Circuit Serial Programming

PIC24FXXXXX family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

25.6 In-Circuit Debugger

When MPLAB[®] ICD 3, MPLAB REAL ICE[™] or PICkit[™] 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx and PGEDx pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGECx, PGEDx and the pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		3.93	
Contact Pad Spacing	C2		3.93	
Contact Pad Width	X1			0.30
Contact Pad Length	Y1			0.73
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A

PIC24FV16KM204 FAMILY

NOTES: