

Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

E·XFI

| Product Status             | Obsolete                                                                      |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | H8/300L                                                                       |
| Core Size                  | 8-Bit                                                                         |
| Speed                      | 8MHz                                                                          |
| Connectivity               | SCI                                                                           |
| Peripherals                | LCD, PWM, WDT                                                                 |
| Number of I/O              | 39                                                                            |
| Program Memory Size        | 16KB (16K x 8)                                                                |
| Program Memory Type        | ОТР                                                                           |
| EEPROM Size                | -                                                                             |
| RAM Size                   | 1K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                   |
| Data Converters            | A/D 4x10b                                                                     |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -20°C ~ 75°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 64-LQFP                                                                       |
| Supplier Device Package    | 64-LFQFP (10x10)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/hd6473802fpv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|       | 8.10.1  | How to Handle Unused Pin                       |  |  |  |
|-------|---------|------------------------------------------------|--|--|--|
| Secti | on 9 '  | Timers                                         |  |  |  |
| 9.1   | Overvi  | ew                                             |  |  |  |
| 9.2   | Timer A | A                                              |  |  |  |
|       | 9.2.1   | Features                                       |  |  |  |
|       | 9.2.2   | Register Descriptions                          |  |  |  |
|       | 9.2.3   | Operation                                      |  |  |  |
|       | 9.2.4   | Timer A Operating States                       |  |  |  |
| 9.3   | Timer l | F                                              |  |  |  |
|       | 9.3.1   | Features                                       |  |  |  |
|       | 9.3.2   | Input/Output Pins                              |  |  |  |
|       | 9.3.3   | Register Descriptions                          |  |  |  |
|       | 9.3.4   | CPU Interface                                  |  |  |  |
|       | 9.3.5   | Operation                                      |  |  |  |
|       | 9.3.6   | Timer F Operating States                       |  |  |  |
|       | 9.3.7   | Usage Notes                                    |  |  |  |
| 9.4   | Asynch  | nronous Event Counter (AEC)                    |  |  |  |
|       | 9.4.1   | Features                                       |  |  |  |
|       | 9.4.2   | Input/Output Pins                              |  |  |  |
|       | 9.4.3   | Register Descriptions                          |  |  |  |
|       | 9.4.4   | Operation                                      |  |  |  |
|       | 9.4.5   | Operating States of Asynchronous Event Counter |  |  |  |
|       | 9.4.6   | Usage Notes                                    |  |  |  |
| 9.5   | Watch   | log Timer                                      |  |  |  |
|       | 9.5.1   | Features                                       |  |  |  |
|       | 9.5.2   | Register Descriptions                          |  |  |  |
|       | 9.5.3   | Operation                                      |  |  |  |
|       | 9.5.4   | Operating States of Watchdog Timer             |  |  |  |
| Secti | on 10   | Serial Communication Interface 3 (SCI3)        |  |  |  |
| 10.1  | Feature | 28                                             |  |  |  |
| 10.2  | Input/C | Dutput Pins                                    |  |  |  |
| 10.3  | Registe | r Descriptions                                 |  |  |  |
|       | 10.3.1  | Receive Shift Register (RSR)                   |  |  |  |
|       | 10.3.2  | Receive Data Register (RDR)                    |  |  |  |
|       | 10.3.3  | Transmit Shift Register (TSR)                  |  |  |  |
|       | 10.3.4  | Transmit Data Register (TDR)                   |  |  |  |
|       | 10.3.5  | Serial Mode Register (SMR)                     |  |  |  |
|       | 10.3.6  | Serial Control Register 3 (SCR3)               |  |  |  |
|       | 10.3.7  | Serial Status Register (SSR)                   |  |  |  |

| Table 10.2  | Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (2)273 |
|-------------|---------------------------------------------------------------------------|
| Table 10.3  | Relation between n and Clock                                              |
| Table 10.4  | Maximum Bit Rate for Each Frequency (Asynchronous Mode)274                |
| Table 10.5  | BRR Settings for Various Bit Rates (Clocked Synchronous Mode) (1)274      |
| Table 10.5  | BRR Settings for Various Bit Rates (Clocked Synchronous Mode) (2)275      |
| Table 10.6  | Relation between n and Clock                                              |
| Table 10.7  | Data Transfer Formats (Asynchronous Mode)                                 |
| Table 10.8  | SMR Settings and Corresponding Data Transfer Formats                      |
| Table 10.9  | SMR and SCR3 Settings and Clock Source Selection                          |
| Table 10.10 | SSR Status Flags and Receive Data Handling                                |
| Table 10.11 | SCI3 Interrupt Requests                                                   |
| Table 10.12 | Transmit/Receive Interrupts                                               |
| Section 11  | 10-Bit PWM                                                                |
| Table 11.1  | Pin Configuration                                                         |
| Table 11.2  | PWM Operating States                                                      |
| Section 12  | A/D Converter                                                             |
| Table 12.1  | Pin Configuration                                                         |
| Table 12.2  | Operating States of A/D Converter                                         |
| Section 13  | LCD Controller/Driver                                                     |
| Table 13.1  | Pin Configuration                                                         |
| Table 13.2  | Duty Cycle and Common Function Selection                                  |
| Table 13.3  | Segment Driver Selection                                                  |
| Table 13.4  | Frame Frequency Selection                                                 |
| Table 13.5  | Output Levels                                                             |
| Table 13.6  | Power-Down Modes and Display Operation                                    |
| Section 14  | Power-On Reset and Low-Voltage Detection Circuits (H8/38104 Group Only)   |
| Table 14.1  | LVDCR Settings and Select Functions                                       |
| Section 17  | Electrical Characteristics                                                |
| Table 17.1  | Absolute Maximum Ratings                                                  |
| Table 17.2  | DC Characteristics (1)                                                    |
| Table 17.2  | DC Characteristics (2)                                                    |
| Table 17.2  | DC Characteristics (3)                                                    |
| Table 17.2  | DC Characteristics (4)                                                    |
| Table 17.2  | DC Characteristics (5)                                                    |
| Table 17.2  | DC Characteristics (6)                                                    |
| Table 17.3  | Control Signal Timing                                                     |
|             |                                                                           |





Figure 1.7 Pad Arrangement of HCD6433802, HCD6433801, and HCD6433800 (Top View)

### 2.5.2 Arithmetic Operations Instructions

Table 2.4 describes the arithmetic operations instructions.

| Instructio   | n Size <sup>*</sup> | Function                                                                                                                                                                                                                                                                                                                                                    |  |  |
|--------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ADD<br>SUB   | B/W                 | $Rd \pm Rs \rightarrow Rd, Rd + \#IMM \rightarrow Rd$<br>Performs addition or subtraction on data in two general registers, or<br>addition on immediate data and data in a general register. Immediate<br>data cannot be subtracted from data in a general register. Word data can<br>be added or subtracted only when both words are in general registers. |  |  |
| ADDX<br>SUBX | В                   | $Rd \pm Rs \pm C \rightarrow Rd, Rd \pm \#IMM \pm C \rightarrow Rd$<br>Performs addition or subtraction with carry on byte data in two general<br>registers, or addition or subtraction with carry on immediate data and<br>data in a general register.                                                                                                     |  |  |
| INC<br>DEC   | В                   | $Rd \pm 1 \rightarrow Rd$<br>Increments or decrements a general register by 1.                                                                                                                                                                                                                                                                              |  |  |
| ADDS<br>SUBS | W                   | $Rd \pm 1 \rightarrow Rd$ , $Rd \pm 2 \rightarrow Rd$<br>Adds or subtracts 1 or 2 to or from a general register.                                                                                                                                                                                                                                            |  |  |
| DAA<br>DAS   | В                   | Rd (decimal adjust) $\rightarrow$ Rd<br>Decimal-adjusts an addition or subtraction result in a general register by<br>referring to the CCR to produce 4-bit BCD data.                                                                                                                                                                                       |  |  |
| MULXU        | В                   | $Rd \times Rs \rightarrow Rd$<br>Performs 8-bit × 8-bit unsigned multiplication on data in two general registers, providing a 16-bit result.                                                                                                                                                                                                                |  |  |
| DIVXU        | В                   | Rd $\div$ Rs $\rightarrow$ Rd<br>Performs 16-bit $\div$ 8-bit unsigned division on data in two general<br>registers, providing an 8-bit quotient and 8-bit remainder.                                                                                                                                                                                       |  |  |
| CMP          | B/W                 | Rd – Rs, Rd – #IMM<br>Compares data in a general register with data in another general register<br>or with immediate data, and sets CCR bits according to the result. Word<br>data can be compared only between two general registers.                                                                                                                      |  |  |
| NEG          | В                   | $0 - Rd \rightarrow Rd$<br>Obtains the two's complement (arithmetic complement) of data in a general register.                                                                                                                                                                                                                                              |  |  |
| Note: *      | Refers to the       | operand size.                                                                                                                                                                                                                                                                                                                                               |  |  |
|              | B: Byte             |                                                                                                                                                                                                                                                                                                                                                             |  |  |
|              | W: Word             |                                                                                                                                                                                                                                                                                                                                                             |  |  |

### Table 2.4 Arithmetic Operations Instructions

### 2.5.3 Logic Operations Instructions

Table 2.5 describes the logic operations instructions.

### Table 2.5 Logic Operations Instructions

| Instructio | n Size <sup>*</sup>   | Function                                                                                                                                                                            |  |  |  |  |
|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| AND        | В                     | $Rd \land Rs \rightarrow Rd, Rd \land \#IMM \rightarrow Rd$<br>Performs a logical AND operation on a general register and another<br>general register or immediate data.            |  |  |  |  |
| OR         | В                     | $Rd \lor Rs \rightarrow Rd, Rd \lor \#IMM \rightarrow Rd$<br>Performs a logical OR operation on a general register and another<br>general register or immediate data.               |  |  |  |  |
| XOR        | В                     | $Rd \oplus Rs \rightarrow Rd, Rd \oplus \#IMM \rightarrow Rd$<br>Performs a logical exclusive OR operation on a general register and<br>another general register or immediate data. |  |  |  |  |
| NOT        | В                     | $\neg$ (Rd) $\rightarrow$ (Rd)<br>Obtains the one's complement (logical complement) of general register<br>contents.                                                                |  |  |  |  |
| Note: *    | Refers to the B: Byte | operand size.                                                                                                                                                                       |  |  |  |  |

### 2.5.4 Shift Instructions

Table 2.6 describes the shift instructions.

### Table 2.6Shift Instructions

| Instructio     | n Size*       | Function                                                                                  |
|----------------|---------------|-------------------------------------------------------------------------------------------|
| SHAL<br>SHAR   | В             | Rd (shift) $\rightarrow$ Rd<br>Performs an arithmetic shift on general register contents. |
| SHLL<br>SHLR   | В             | Rd (shift) $\rightarrow$ Rd<br>Performs a logical shift on general register contents.     |
| ROTL<br>ROTR   | В             | Rd (rotate) $\rightarrow$ Rd<br>Rotates general register contents.                        |
| ROTXL<br>ROTXR | В             | Rd (rotate) $\rightarrow$ Rd<br>Rotates general register contents through the carry flag. |
| Note: *        | Refers to the | operand size.                                                                             |

B: Byte

BCLR instruction executed

| BCLR | #1, | @PCR3 |
|------|-----|-------|
|------|-----|-------|

The BCLR instruction is executed for PCR3.

After executing BCLR

|              | P37          | P36           | P35          | P34          | P33          | P32          | P31           | _ |
|--------------|--------------|---------------|--------------|--------------|--------------|--------------|---------------|---|
| Input/output | Output       | Output        | Output       | Output       | Output       | Output       | Input         | _ |
| Pin state    | Low<br>level | High<br>Ievel | Low<br>level | Low<br>level | Low<br>level | Low<br>level | High<br>level |   |
| PCR3         | 1            | 1             | 1            | 1            | 1            | 1            | 0             | 1 |
| PDR3         | 1            | 0             | 0            | 0            | 0            | 0            | 0             | 1 |

Description on operation

When the BCLR instruction is executed, first the CPU reads PCR3. Since PCR3 is a write-only register, the CPU reads a value of H'FF, even though the PCR3 value is actually H'3F.

Next, the CPU clears bit 1 in the read data to 0, changing the data to H'FD.

Finally, H'FD is written to PCR3 and BCLR instruction execution ends.

As a result of this operation, bit 1 in PCR3 becomes 0, making P31 an input port. However, bits 7 and 6 in PCR3 change to 1, so that P37 and P36 change from input pins to output pins. To prevent this problem, store a copy of the PCR3 data in a work area in memory and manipulate data of the bit in the work area, then write this data to PCR3.

Prior to executing BCLR

| MOV.B | #3F, | ROL   |
|-------|------|-------|
| MOV.B | ROL, | @RAM0 |
| MOV.B | ROL, | @PCR3 |

The PCR3 value (H'3F) is written to a work area in memory (RAM0) as well as to PCR3.

## Renesas

In the above example, an IRQ0 interrupt occurs while the AND.B instruction is executed. Since not only the original target IRRI1, but also IRRI0 is cleared to 0, the IRQ0 interrupt becomes invalid.

### 3.5.4 Notes on Rewriting Port Mode Registers

When a port mode register is rewritten to switch the functions of external interrupt pins, IRQAEC,  $\overline{IRQ1}$ ,  $\overline{IRQ0}$ , and  $\overline{WKP7}$  to  $\overline{WKP0}$ , the interrupt request flag may be set to 1.

When switching a pin function, mask the interrupt before setting the bit in the port mode register. After accessing the port mode register, execute at least one instruction (e.g., NOP), then clear the interrupt request flag from 1 to 0.

Table 3.3 lists the interrupt request flags which are set to 1 and the conditions.

| Table 3.3 | Conditions under which Interrupt Request Flag Is Set to 1 |
|-----------|-----------------------------------------------------------|
|-----------|-----------------------------------------------------------|

| Interrupt Request Flags<br>Set to 1 |        | Conditions                                                                                                |  |  |
|-------------------------------------|--------|-----------------------------------------------------------------------------------------------------------|--|--|
| IRR1                                | IRREC2 | When the edge designated by AIEGS1 and AIEGS0 in AEGSR is input while IENEC2 in IENRI is set to 1.        |  |  |
|                                     | IRRI1  | When IRQ1 bit in PMRB is changed from 0 to 1 while pin $\overline{IRQ1}$ is low and IEG1 bit in IEGR = 0. |  |  |
|                                     |        | When IRQ1 bit in PMRB is changed from 1 to 0 while pin $\overline{IRQ1}$ is low and IEG1 bit in IEGR = 1. |  |  |
|                                     | IRRI0  | When IRQ0 bit in PMR2 is changed from 0 to 1 while pin $\overline{IRQ0}$ is low and IEG0 bit in IEGR = 0. |  |  |
|                                     |        | When IRQ0 bit in PMR2 is changed from 1 to 0 while pin $\overline{IRQ0}$ is low and IEG0 bit in IEGR = 1. |  |  |



# Section 4 Clock Pulse Generators

## 4.1 Features

Clock oscillator circuitry (CPG: clock pulse generator) is provided on-chip, including both a system clock pulse generator and a subclock pulse generator. In the H8/38104 Group, the system clock pulse generator includes an on-chip oscillator. The system clock pulse generator consists of a system clock oscillator and system clock dividers. The subclock pulse generator consists of a subclock oscillator and a subclock divider.

Figure 4.1 shows a block diagram of the clock pulse generators of the H8/3802, H8/38004 and H8/38002S Group. Figure 4.2 shows a block diagram of the clock pulse generators of the H8/38104 Group.



Figure 4.1 Block Diagram of Clock Pulse Generators (H8/3802, H8/38004, H8/38002S Group)

## Renesas



Figure 4.14 Negative Resistor Measurement and Proposed Changes in Circuit

### 4.6.2 Notes on Board Design

When using a crystal resonator (ceramic resonator), place the resonator and its load capacitors as close as possible to the OSC1 and OSC2 pins. Other signal lines should be routed away from the resonator circuit to prevent induction from interfering with correct oscillation (see figure 4.15).



Figure 4.15 Example of Incorrect Board Design

#### 6.6.1 Flash Memory Control Register 1 (FLMCR1)

FLMCR1 is a register that makes the flash memory change to program mode, program-verify mode, erase mode, or erase-verify mode. For details on register setting, refer to section 6.8, Flash Memory Programming/Erasing.

| Bit   | Bit Name    | Initial<br>Value | R/W       | Description                                                                                                                                                                                                    |
|-------|-------------|------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7     | _           | 0                | _         | Reserved                                                                                                                                                                                                       |
|       |             |                  |           | This bit is always read as 0.                                                                                                                                                                                  |
| 6     | SWE         | 0                | R/W       | Software Write Enable                                                                                                                                                                                          |
|       |             |                  |           | When this bit is set to 1, flash memory<br>programming/erasing is enabled. When this bit is cleared<br>to 0, flash memory programming/erasing is invalid. Other<br>FLMCR1 bits and all EBR bits cannot be set. |
| 5     | ESU         | 0                | R/W       | Erase Setup                                                                                                                                                                                                    |
|       |             |                  |           | When this bit is set to 1, the flash memory changes to the erase setup state. When it is cleared to 0, the erase setup state is cancelled. Set this bit to 1 before setting the E bit to 1 in FLMCR1.          |
| 4     | PSU         | 0                | R/W       | Program Setup                                                                                                                                                                                                  |
|       |             |                  |           | When this bit is set to 1, the flash memory changes to the program setup state. When it is cleared to 0, the program setup state is cancelled. Set this bit to 1 before setting the P bit in FLMCR1.           |
| 3     | EV          | 0                | R/W       | Erase-Verify                                                                                                                                                                                                   |
|       |             |                  |           | When this bit is set to 1, the flash memory changes to erase-verify mode. When it is cleared to 0, erase-verify mode is cancelled.                                                                             |
| 2     | PV          | 0                | R/W       | Program-Verify                                                                                                                                                                                                 |
|       |             |                  |           | When this bit is set to 1, the flash memory changes to program-verify mode. When it is cleared to 0, program-verify mode is cancelled.                                                                         |
| 1     | E           | 0                | R/W       | Erase                                                                                                                                                                                                          |
|       |             |                  |           | When this bit is set to 1, and while the SWE = 1 and ESU = 1 bits are 1, the flash memory changes to erase mode. When it is cleared to 0, erase mode is cancelled.                                             |
| 0     | Р           | 0                | R/W       | Program                                                                                                                                                                                                        |
|       |             |                  |           | When this bit is set to 1, and while the SWE = 1 and PSU = 1 bits are 1, the flash memory changes to program mode. When it is cleared to 0, program mode is cancelled.                                         |
| Note: | Bits SWE. P | SU, EV. P        | V. E. and | P should not be set at the same time.                                                                                                                                                                          |





### Table 6.14 AC Characteristics in Memory Read Mode

(Conditions:  $V_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{ss} = 0 \text{ V}$ ,  $Ta = 25^{\circ}C \pm 5^{\circ}C$ )

| Item                      | Symbol           | Min | Max | Unit | Test Condition        |
|---------------------------|------------------|-----|-----|------|-----------------------|
| Access time               | t <sub>acc</sub> | _   | 20  | μs   | Figures 6.15 and 6.16 |
| CE output delay time      | t <sub>ce</sub>  | _   | 150 | ns   | -                     |
| OE output delay time      | t <sub>oe</sub>  | _   | 150 | ns   | -                     |
| Output disable delay time | t <sub>df</sub>  | _   | 100 | ns   |                       |
| Data output hold time     | t <sub>oh</sub>  | 5   | _   | ns   | -                     |



Figure 6.15 Timing Waveforms in  $\overline{\text{CE}}$  and  $\overline{\text{OE}}$  Enable State Read

### 8.7.1 Port Data Register 9 (PDR9)

| Bit  | Bit Name | Initial<br>Value | R/W | Description                                          |
|------|----------|------------------|-----|------------------------------------------------------|
| 7, 6 | _        | All 1            | _   | Reserved                                             |
|      |          |                  |     | The initial value should not be changed.             |
| 5    | P95      | 1                | R/W | If PDR9 is read, the values stored in PDR9 are read. |
| 4    | P94*     | 1                | R/W |                                                      |
| 3    | P93      | 1                | R/W |                                                      |
| 2    | P92      | 1                | R/W |                                                      |
| 1    | P91      | 1                | R/W |                                                      |
| 0    | P90      | 1                | R/W |                                                      |

PDR9 is a register that stores data of port 9.

Note: \* There is no pin 94, and its function is not implemented, on the H8/38104 Group. However, the register is read/write enabled.





Figure 9.2 Block Diagram of Timer F



Figure 9.7 Block Diagram of Asynchronous Event Counter

**Event Counter PWM Data Register H (ECPWDRH):** ECPWDRH controls data of the event counter PWM waveform generator.

| Bit | Bit Name | Initial<br>Value | R/W | Description                                |
|-----|----------|------------------|-----|--------------------------------------------|
| 7   | ECPWDRH7 | 0                | W   | Data control of event counter PWM waveform |
| 6   | ECPWDRH6 | 0                | W   | generator                                  |
| 5   | ECPWDRH5 | 0                | W   | —                                          |
| 4   | ECPWDRH4 | 0                | W   | —                                          |
| 3   | ECPWDRH3 | 0                | W   | —                                          |
| 2   | ECPWDRH2 | 0                | W   | —                                          |
| 1   | ECPWDRH1 | 0                | W   | _                                          |
| 0   | ECPWDRH0 | 0                | W   |                                            |

Notes: When ECPWME in AEGSR is 1, the event counter PWM is operating and therefore ECPWDRH should not be modified.

When changing the data, the event counter PWM must be halted by clearing ECPWME to 0 in AEGSR before modifying ECPWDRH.

**Event Counter PWM Data Register L (ECPWDRL):** ECPWDRL controls data of the event counter PWM waveform generator.

| Bit | Bit Name | Initial<br>Value | R/W | Description                                |
|-----|----------|------------------|-----|--------------------------------------------|
| 7   | ECPWDRL7 | 0                | W   | Data control of event counter PWM waveform |
| 6   | ECPWDRL6 | 0                | W   | generator                                  |
| 5   | ECPWDRL5 | 0                | W   | _                                          |
| 4   | ECPWDRL4 | 0                | W   | _                                          |
| 3   | ECPWDRL3 | 0                | W   | _                                          |
| 2   | ECPWDRL2 | 0                | W   | _                                          |
| 1   | ECPWDRL1 | 0                | W   | _                                          |
| 0   | ECPWDRL0 | 0                | W   | _                                          |

Notes: When ECPWME in AEGSR is 1, the event counter PWM is operating and therefore ECPWDRL should not be modified.

When changing the data, the event counter PWM must be halted by clearing ECPWME to 0 in AEGSR before modifying ECPWDRL.

### **10.4.3** Data Transmission

Figure 10.5 shows an example of operation for transmission in asynchronous mode. In transmission, the SCI3 operates as described below.

- 1. The SCI3 monitors the TDRE flag in SSR. If the flag is cleared to 0, the SCI3 recognizes that data has been written to TDR, and transfers the data from TDR to TSR.
- 2. After transferring data from TDR to TSR, the SCI3 sets the TDRE flag to 1 and starts transmission. If the TIE bit is set to 1 at this time, a TXI interrupt request is generated. Continuous transmission is possible because the TXI interrupt routine writes next transmit data to TDR before transmission of the current transmit data has been completed.
- 3. The SCI3 checks the TDRE flag at the timing for sending the stop bit.
- 4. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, and then serial transmission of the next frame is started.
- 5. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the "mark state" is entered, in which 1 is output. If the TEIE bit in SCR3 is set to 1 at this time, a TEI interrupt request is generated.



6. Figure 10.6 shows a sample flowchart for transmission in asynchronous mode.

Figure 10.5 Example SCI3 Operation in Transmission in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit)

## Renesas

transmitter is initialized regardless of the current transmission state, the TXD32 pin becomes an I/O port, and 0 is output from the TXD32 pin.

### 10.7.3 Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only)

Transmission cannot be started when a receive error flag (OER, PER, or FER) is set to 1, even if the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared to 0.

### 10.7.4 Receive Data Sampling Timing and Reception Margin in Asynchronous Mode

In asynchronous mode, the SCI3 operates on a basic clock with a frequency of 16 times the transfer rate. In reception, the SCI3 samples the falling edge of the start bit using the basic clock, and performs internal synchronization. Receive data is latched internally at the rising edge of the 8th pulse of the basic clock as shown in figure 10.16.

Thus, the reception margin in asynchronous mode is given by formula (1) below.

$$M = \left\{ (0.5 - \frac{1}{2N}) - \frac{D - 0.5}{N} - (L - 0.5) F \right\} \times 100(\%)$$

... Formula (1)

Where N : Ratio of bit rate to clock (N = 16)

- D : Clock duty (D = 0.5 to 1.0)
- L : Frame length (L = 9 to 12)
- F : Absolute value of clock rate deviation

Assuming values of F (absolute value of clock rate deviation) = 0 and D (clock duty) = 0.5 in formula (1), the reception margin can be given by the formula.

 $M = \{0.5 - 1/(2 \times 16)\} \times 100 \,[\%] = 46.875\%$ 

However, this is only the computed value, and a margin of 20% to 30% should be allowed for in system design.

# Section 11 10-Bit PWM

This LSI has a two-channel 10-bit PWM. The PWM with a low-path filter connected can be used as a D/A converter. Figure 11.1(1) shows a block diagram of the 10-bit PWM of the H8/3802 Group, H8/38004 Group and H8/38002S Group. Figure 11.1(2) shows a block diagram of the 10-bit PWM of the H8/38104 Group.

## 11.1 Features

• Choice of four conversion periods

A conversion period of 4096/ $\phi$  with a minimum modulation width of 4/ $\phi$ , a conversion period of 2048/ $\phi$  with a minimum modulation width of 2/ $\phi$ , a conversion period of 1024/ $\phi$  with a minimum modulation width of 1/ $\phi$ , or a conversion period of 512/ $\phi$  with a minimum modulation width of 1/ $\phi$ , can be selected.

- Pulse division method for less ripple
- Use of module standby mode enables this module to be placed in standby mode independently when not used. (For details, refer to section 5.4, Module Standby Function.)
- On the H8/38104 Group it is possible to select between two types of PWM output: pulsedivision 10-bit PWM and event counter PWM (PWM incorporating AEC). (The H8/3802 Group, H8/38004 Group and H8/38002S Group can only produce 10-bit PWM output.) Refer to section 9.4, Asynchronous Event Counter (AEC), for information on event counter PWM.

## Renesas





Figure 13.1(1) Block Diagram of LCD Controller/Driver (H8/3802 Group, H8/38004 Group, H8/38002S Group)

| Register Name                   | Abbre-<br>viation | Bit No | Address | Module<br>Name    | Data Bus<br>Width | s Access<br>State |
|---------------------------------|-------------------|--------|---------|-------------------|-------------------|-------------------|
| Transmit data register          | TDR               | 8      | H'FFAB  | SCI3              | 8                 | 3                 |
| Serial status register          | SSR               | 8      | H'FFAC  | SCI3              | 8                 | 3                 |
| Receive data register           | RDR               | 8      | H'FFAD  | SCI3              | 8                 | 3                 |
| Timer mode register A           | ТМА               | 8      | H'FFB0  | Timer A           | 8                 | 2                 |
| Timer counter A                 | TCA               | 8      | H'FFB1  | Timer A           | 8                 | 2                 |
| Timer control/status register W | TCSRW             | 8      | H'FFB2  | WDT <sup>*2</sup> | 8                 | 2                 |
| Timer counter W                 | TCW               | 8      | H'FFB3  | WDT <sup>*2</sup> | 8                 | 2                 |
| Timer control register F        | TCRF              | 8      | H'FFB6  | Timer F           | 8                 | 2                 |
| Timer control status register F | TCSRF             | 8      | H'FFB7  | Timer F           | 8                 | 2                 |
| 8-bit timer counter FH          | TCFH              | 8      | H'FFB8  | Timer F           | 8                 | 2                 |
| 8-bit timer counter FL          | TCFL              | 8      | H'FFB9  | Timer F           | 8                 | 2                 |
| Output compare register FH      | OCRFH             | 8      | H'FFBA  | Timer F           | 8                 | 2                 |
| Output compare register FL      | OCRFL             | 8      | H'FFBB  | Timer F           | 8                 | 2                 |
| LCD port control register       | LPCR              | 8      | H'FFC0  | LCD <sup>*3</sup> | 8                 | 2                 |
| LCD control register            | LCR               | 8      | H'FFC1  | LCD <sup>*3</sup> | 8                 | 2                 |
| LCD control register 2          | LCR2              | 8      | H'FFC2  | LCD <sup>*3</sup> | 8                 | 2                 |
| Low-voltage detection counter*4 | LVDCNT            | 8      | H'FFC3  | LVD               | 8                 | 2                 |
| A/D result register H           | ADRRH             | 8      | H'FFC4  | A/D converter     | 8                 | 2                 |
| A/D result register L           | ADRRL             | 8      | H'FFC5  | A/D converter     | 8                 | 2                 |
| A/D mode register               | AMR               | 8      | H'FFC6  | A/D converter     | 8                 | 2                 |
| A/D start register              | ADSR              | 8      | H'FFC7  | A/D converter     | 8                 | 2                 |
| Port mode register 2            | PMR2              | 8      | H'FFC9  | I/O port          | 8                 | 2                 |
| Port mode register 3            | PMR3              | 8      | H'FFCA  | I/O port          | 8                 | 2                 |
| Port mode register 5            | PMR5              | 8      | H'FFCC  | I/O port          | 8                 | 2                 |
| PWM2 control register           | PWCR2             | 8      | H'FFCD  | 10-bit PWM        | 8                 | 2                 |
| PWM2 data register U            | PWDRU2            | 8      | H'FFCE  | 10-bit PWM        | 8                 | 2                 |
| PWM2 data register L            | PWDRL2            | 8      | H'FFCF  | 10-bit PWM        | 8                 | 2                 |
| PWM1 control register           | PWCR1             | 8      | H'FFD0  | 10-bit PWM        | 8                 | 2                 |
| PWM1 data register U            | PWDRU1            | 8      | H'FFD1  | 10-bit PWM        | 8                 | 2                 |
| PWM1 data register L            | PWDRL1            | 8      | H'FFD2  | 10-bit PWM        | 8                 | 2                 |
| Port data register 3            | PDR3              | 8      | H'FFD6  | I/O port          | 8                 | 2                 |
| Port data register 4            | PDR4              | 8      | H'FFD7  | I/O port          | 8                 | 2                 |