

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	4MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	4KB (2K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	A/D 6x10b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90ls4433-4pc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

AT90S/LS4433

A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All the different interrupts have a separate Interrupt Vector in the Interrupt Vector table at the beginning of the Program memory. The different interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.

General Purpose **Register File**

Figure 7 shows the structure of the 32 general purpose working registers in the CPU.

Figure 7. AVR CPU General Purpose Working Registers

	7	0 Addr.	
	R0	\$00	
	R1	\$01	
	R2	\$02	
	R13	\$0D	
General	R14	\$0E	
Purpose	R15	\$0F	
Working	R16	\$10	
Registers	R17	\$11	
	R26	\$1A	X-register Low Byte
	R27	\$1B	X-register High Byte
	R28	\$1C	Y-register Low Byte
	R29	\$1D	Y-register High Byte
	R30	\$1E	Z-register Low Byte
	R31	\$1F	Z-register High Byte

All the register operating instructions in the instruction set have direct and single cycle access to all registers. The only exceptions are the five constant arithmetic and logic instructions SBCI, SUBI, CPI, ANDI, and ORI between a constant and a register, and the LDI instruction for load immediate constant data. These instructions apply to the second half of the registers in the Register File (R16..R31). The general SBC, SUB, CP, AND, and OR, and all other operations between two registers or on a single register apply to the entire Register File.

As shown in Figure 7, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y-, and Z-registers can be set to index any register in the file.

X-register, Y-register and Z-The registers R26..R31 have some added functions to their general purpose usage. These registers are address pointers for indirect addressing of the Data Space. The three indirect address registers X, Y, and Z are defined as:

Figure 8. X-, Y-, and Z-registers

AT90S/LS4433 10

register

In the different addressing modes, these address registers have functions as fixed displacement, automatic increment and decrement (see the descriptions for the different instructions).

ALU – Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, ALU operations between registers in the Register File are executed. The ALU operations are divided into three main categories: arithmetic, logical, and bit functions.

In-System Programmable Flash Program Memory

The AT90S4433 contains 4K bytes of On-chip, In-System Programmable Flash memory for program storage. Since all instructions are 16- or 32-bit words, the Flash is organized as 2K x 16. The Flash memory has an endurance of at least 1,000 write/erase cycles. The AT90S4433 Program Counter (PC) is 11 bits wide, thus addressing the 2,048 program memory addresses. See page 93 for a detailed description of Flash data downloading. See page 12 for the different program memory addressing modes.

Figure 9. SRAM Organization

SRAM Data Memory

Figure 9 shows how the AT90S4433 SRAM memory is organized.

The lower 224 data memory locations address the Register File, the I/O memory and the internal data SRAM. The first 96 locations address the Register File and I/O memory, and the next 128 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

\$00DF

Stack Pointer – SP

The AT90S4433 Stack Pointer is implemented as an 8-bit register in the I/O space location \$3D (\$5D). As the AT90S4433 data memory has \$0DF locations, eight bits are used.

The Stack Pointer points to the data SRAM stack area where the Subroutine and Interrupt stacks are located. This stack space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to point above \$60. The Stack Pointer is decremented by one when data is pushed onto the stack with the PUSH instruction, and it is decremented by two when an address is pushed onto the Stack with subroutine calls and interrupts. The Stack Pointer is incremented by one when data is popped from the stack with the POP instruction, and it is incremented by two when an address is popped from the Stack with return from subroutine RET or return from interrupt RETI.

Reset and InterruptThe AT90S4433 provides 13 different interrupt sources. These interrupts and the sepa-
rate reset vector each have a separate Program Vector in the Program memory space.
All interrupts are assigned individual enable bits, which must be set (one) together with
the I-bit in the Status Register in order to enable the interrupt.

The lowest addresses in the Program memory space are automatically defined as the Reset and Interrupt Vectors. The complete list of Vectors is shown in Table 3. The list also determines the priority levels of the different interrupts. The lower the address, the higher the priority level. RESET has the highest priority, and next is INT0 (the External Interrupt Request 0), etc.

Vector No.	Program Address	Source	Interrupt Definition
4	\$000	DECET	External Pin, Power-on Reset, Brown-out Reset
	\$000	RESEI	and watchdog Reset
2	\$001	INT0	External Interrupt Request 0
3	\$002	INT1	External Interrupt Request 1
4	\$003	TIMER1 CAPT	Timer/Counter1 Capture Event
5	\$004	TIMER1 COMP	Timer/Counter1 Compare Match
6	\$005	TIMER1 OVF	Timer/Counter1 Overflow
7	\$006	TIMER0 OVF	Timer/Counter0 Overflow
8	\$007	SPI, STC	Serial Transfer Complete
9	\$008	UART, RX	UART, Rx Complete
10	\$009	UART, UDRE	UART Data Register Empty
11	\$00A	UART, TX	UART, Tx Complete
12	\$00B	ADC	ADC Conversion Complete
13	\$00C	EE_RDY	EEPROM Ready
14	\$00D	ANA_COMP	Analog Comparator

Table 3. Reset and Interrupt Vectors

Figure 24. Reset Logic

Table 4. Reset Characteristics ($V_{CC} = 5.0V$)

Symbol	Parameter	Min	Тур	Мах	Units
V (1)	Power-on Reset Threshold Voltage, rising	1.0	1.4	1.8	V
V _{POT} ("/	Power-on Reset Threshold Voltage, falling	0.4	0.6	0.8	V
V _{RST}	RESET Pin Threshold Voltage		0.6 V _{CC}		V
	Brown-out Reset	2.2 (BODLEVEL=1)	2.7 (BODLEVEL=1)	3.0 (BODLEVEL=1)	M
V BOT	Voltage	3.5 (BODLEVEL=0)	4.0 (BODLEVEL=0)	4.5 (BODLEVEL=0)	V

Note: 1. The Power-on Reset will not work unless the supply voltage has been below V_{POT} (falling).

SPI Status Register – SPSR

Bit 7 – SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF bit is set (one) and an interrupt is generated if SPIE in SPCR is set (one) and global interrupts are enabled. If \overline{SS} is an input and is driven low when the SPI is in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the SPI Status Register with SPIF set (one), then by accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write Collision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The WCOL bit (and the SPIF bit) are cleared (zero) by first reading the SPI Status Register with WCOL set (one), and then by accessing the SPI Data Register.

Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S4433 and will always read as zero.

The SPI interface on the AT90S4433 is also used for Program memory and EEPROM downloading or uploading. See page 93 for Serial Programming and verification.

SPI Data Register – SPDR

The SPI Data Register is a read/write register used for data transfer between the Register File and the SPI Shift Register. Writing to the register initiates data transmission. Reading the register causes the Shift Register Receive buffer to be read.

• Bit 4 – FE: Framing Error

This bit is set if a Framing Error condition is detected, i.e., when the stop bit of an incoming character is zero.

The FE bit is cleared when the stop bit of received data is one.

• Bit 3 – OR: OverRun

This bit is set if an OverRun condition is detected, i.e., when a character already present in the UDR Register is not read before the next character has been shifted into the Receiver Shift Register. The OR bit is buffered, which means that it will be set once the valid data still in UDRE is read.

The OR bit is cleared (zero) when data is received and transferred to UDR.

• Bits 2..1 - Res: Reserved Bits

These bits are reserved bits in the AT90S4433 and will always read as zero.

• Bit 0 – MPCM: Multi-processor Communication Mode

This bit is used to enter Multi-processor Communication mode. The bit is set when the slave MCU waits for an address byte to be received. When the MCU has been addressed, the MCU switches off the MPCM bit and starts data reception.

For a detailed description, see "Multi-processor Communication Mode".

UART Control and Status Register B – UCSRB

Bit	7	6	5	4	3	2	1	0	
\$0A (\$2A)	RXCIE	TXCIE	UDRIE	RXEN	TXEN	CHR9	RXB8	TXB8	UCSRB
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R	W	•
Initial Value	0	0	0	0	0	0	1	0	

• Bit 7 – RXCIE: RX Complete Interrupt Enable

When this bit is set (one), a setting of the RXC bit in UCSRA will cause the Receive Complete Interrupt routine to be executed, provided that global interrupts are enabled.

• Bit 6 – TXCIE: TX Complete Interrupt Enable

When this bit is set (one), a setting of the TXC bit in UCSRA will cause the Transmit Complete Interrupt routine to be executed, provided that global interrupts are enabled.

• Bit 5 – UDRIE: UART Data Register Empty Interrupt Enable

When this bit is set (one), a setting of the UDRE bit in UCSRA will cause the UART Data Register Empty Interrupt routine to be executed, provided that global interrupts are enabled.

• Bit 4 – RXEN: Receiver Enable

This bit enables the UART Receiver when set (one). When the Receiver is disabled, the RXC, OR, and FE status flags cannot become set. If these flags are set, turning off RXEN does not cause them to be cleared.

Table 19.	UBR Settings at	Various Crystal	Frequencies
-----------	-----------------	-----------------	-------------

Baud Rate		1 MHz	%Error	1.843	2 MHz	%Error		2 MHz	%Error	2.4576	MHz	%Error
2400	UBR=	25	0.2	UBR=	47	0.0	UBR=	51	0.2	UBR=	63	0.0
4800	UBR=	12	0.2	UBR=	23	0.0	UBR=	25	0.2	UBR=	31	0.0
9600	UBR=	6	7.5	UBR=	11	0.0	UBR=	12	0.2	UBR=	15	0.0
14400	UBR=	3	7.8	UBR=	7	0.0	UBR=	8	3.7	UBR=	10	3.1
19200	UBR=	2	7.8	UBR=	5	0.0	UBR=	6	7.5	UBR=	7	0.0
28800	UBR=	1	7.8	UBR=	3	0.0	UBR=	3	7.8	UBR=	4	6.3
38400	UBR=	1	22.9	UBR=	2	0.0	UBR=	2	7.8	UBR=	3	0.0
57600	UBR=	0	7.8	UBR=	1	0.0	UBR=	1	7.8	UBR=	2	12.5
76800	UBR=	0	22.9	UBR=	1	33.3	UBR=	1	22.9	UBR=	1	0.0
115200	UBR=	0	84.3	UBR=	0	0.0	UBR=	0	7.8	UBR=	0	25.0
	-											
Baud Rate	3.276	68 MHz	%Error	3.686	4 MHz	%Error		4 MHz	%Error	4.608	MHz	%Error
2400	UBR=	84	0.4	UBR=	95	0.0	UBR=	103	0.2	UBR=	119	0.0
4800	UBR=	42	0.8	UBR=	47	0.0	UBR=	51	0.2	UBR=	59	0.0
9600	UBR=	20	1.6	UBR=	23	0.0	UBR=	25	0.2	UBR=	29	0.0
14400	UBR=	13	1.6	UBR=	15	0.0	UBR=	16	2.1	UBR=	19	0.0
19200	UBR=	10	3.1	UBR=	11	0.0	UBR=	12	0.2	UBR=	14	0.0
28800	UBR=	6	1.6	UBR=	7	0.0	UBR=	8	3.7	UBR=	9	0.0
38400	UBR=	4	6.3	UBR=	5	0.0	UBR=	6	7.5	UBR=	7	6.7
57600	UBR=	3	12.5	UBR=	3	0.0	UBR=	3	7.8	UBR=	4	0.0
76800	UBR=	2	12.5	UBR=	2	0.0	UBR=	2	7.8	UBR=	3	6.7
115200	UBR=	1	12.5	UBR=	1	0.0	UBR=	1	7.8	UBR=	2	20.0
	-											
Baud Rate	7.372	28 MHz	%Error		8 MHz	%Error	9.21	6 MHz	%Error	11.059	MHz	%Error
2400	UBR=	191	0.0	UBR=	207	0.2	UBR=	239	0.0	UBR=	287	-
4800	UBR=	95	0.0	UBR=	103	0.2	UBR=	119	0.0	UBR=	143	0.0
9600	UBR=	47	0.0	UBR=	51	0.2	UBR=	59	0.0	UBR=	71	0.0
14400	UBR=	31	0.0	UBR=	34	0.8	UBR=	39	0.0	UBR=	47	0.0
19200	UBR=	23	0.0	UBR=	25	0.2	UBR=	29	0.0	UBR=	35	0.0
28800	UBR=	15	0.0	UBR=	16	2.1	UBR=	19	0.0	UBR=	23	0.0
38400	UBR=	11	0.0	UBR=	12	0.2	UBR=	14	0.0	UBR=	17	0.0
57600	UBR=	7	0.0	UBR=	8	3.7	UBR=	9	0.0	UBR=	11	0.0
76800	UBR=	5	0.0	UBR=	6	7.5	UBR=	7	6.7	UBR=	8	0.0
115200	UBR=	3	0.0	UBR=	3	7.8	UBR=	4	0.0	UBR=	5	0.0

keeps running for as long as the ADEN bit is set and is continuously reset when ADEN is low.

When initiating a conversion by setting the ADSC bit in ADCSR, the conversion starts at the following rising edge of the ADC clock cycle. The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of the conversion. The result is ready and written to the ADC Result Register after 13 cycles. In Single Conversion mode, the ADC needs one more clock cycle before a new conversion can be started (see Figure 47). If ADSC is set high in this period, the ADC will start the new conversion immediately. In Free Run mode, a new conversion will be started immediately after the result is written to the ADC Result Register. Using Free Run mode and an ADC clock frequency of 200 kHz gives the lowest conversion time, 65 µs, equivalent to 15.4 kSPS. For a summary of conversion times, see Table 21.

Table 21. ADC Conversion Time

Condition	Sample Cycle Number	Result Ready(Cycle Number)	Total Conversion Time (Cycles)	Total Conversion Time (µs)
1st Conversion, Free Run	13.5	25	25	125 - 500
1st Conversion, Single	13.5	25	26	130 - 520
Free Run Conversion	1.5	13	13	65 - 260
Single Conversion	1.5	13	14	70 - 280

AT90S/LS4433

ADC Noise Canceler Function

The ADC features a Noise Canceler that enables conversion during Idle mode to reduce noise induced from the CPU core. To make use of this feature, the following procedure should be used:

- 1. Make sure that the ADC is enabled and is not busy converting. Single Conversion mode must be selected and the ADC conversion complete interrupt must be enabled. Thus:
 - ADEN = 1ADSC = 0
 - ADSC = 0ADFR = 0
 - ADIE = 1
- 2. Enter Idle mode. The ADC will start a conversion once the CPU has been halted.
- 3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt will wake up the MCU and execute the ADC conversion complete interrupt routine.

• Bit 5 – ADFR: ADC Free Run Select

When this bit is set (one), the ADC operates in Free Run mode. In this mode, the ADC samples and updates the Data Registers continuously. Clearing this bit (zero) will terminate Free Run mode.

• Bit 4 – ADIF: ADC Interrupt Flag

This bit is set (one) when an ADC conversion completes and the Data Registers are updated. The ADC Conversion Complete interrupt is executed if the ADIE bit and the I-bit in SREG are set (one). ADIF is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, ADIF is cleared by writing a logical "1" to the flag. Beware that if doing a Read-Modify-Write on ADCSR, a pending interrupt can be disabled. This also applies if the SBI and CBI instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable

When this bit is set (one) and the I-bit in SREG is set (one), the ADC Conversion Complete interrupt is activated.

• Bits 2..0 – ADPS2..ADPS0: ADC Prescaler Select Bits

These bits determine the division factor between the XTAL frequency and the input clock to the ADC.

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

Table ZZ. ADC Prescaler Selection	Table 22.	ADC	Prescaler	Selection
-----------------------------------	-----------	-----	-----------	-----------

ADC Data Register – ADCL AND ADCH

Bit	15	14	13	12	11	10	9	8	
\$05 (\$25)	-	-	-	-	-	-	ADC9	ADC8	ADCH
\$04 (\$26)	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
	7	6	5	4	3	2	1	0	-
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

When an ADC conversion is complete, the result is found in these two registers. In Free Run mode, it is essential that both registers are read and that ADCL is read before ADCH.

Symbol	Parameter	Condition	Min	Тур	Max	Units
	Resolution			10		Bits
	Absolute Accuracy	V _{REF} = 4V ADC clock = 200 kHz		1	2	LSB
	Absolute Accuracy	V _{REF} = 4V ADC clock = 1 MHz		4		LSB
	Absolute Accuracy	V _{REF} = 4V ADC clock = 2 MHz		16		LSB
	Integral Non-linearity	V _{REF} > 2V		0.5		LSB
	Differential Non-linearity	$V_{REF} > 2V$		0.5		LSB
	Zero Error (Offset)			1		LSB
	Conversion Time		65		260	μs
	Clock Frequency		50		200	kHz
AVCC	Analog Supply Voltage		V _{CC} - 0.3 ⁽¹⁾		$V_{\rm CC} + 0.3^{(2)}$	V
V _{REF}	Reference Voltage		2		AVCC	V
R _{REF}	Reference Input Resistance		6	10	13	kΩ
R _{AIN}	Analog Input Resistance			100		MΩ

ADC Characteristics $T_A = -40^{\circ}C$ to $85^{\circ}C$

Notes: 1. Minimum for AVCC is 2.7V.

2. Maximum for AVCC is 6.0V.

I/O Ports	All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that the direction of one port pin can be changed without uninten- tionally changing the direction of any other pin with the SBI and CBI instructions. The same applies for changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as input).
Port B	Port B is a 6-bit bi-directional I/O port.
	Three I/O memory address locations are allocated for the Port B, one each for the Data Register – PORTB, \$18(\$38), Data Direction Register – DDRB, \$17(\$37), and the Port B Input Pins – PINB, \$16(\$36). The Port B Input Pins address is read only, while the Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port B output buffers can sink 20 mA and thus drive LED displays directly. When pins PB0 to PB7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated.

The Port B pins with alternate functions are shown in Table 23.

Table 23. Port B Pin Alternate Functions

Port Pin	Alternate Functions
PB0	ICP (Timer/Counter1 Input Capture Pin)
PB1	OC1 (Timer/Counter1 Output Compare Match Output)
PB2	SS (SPI Slave Select Input)
PB3	MOSI (SPI Bus Master Output/Slave Input)
PB4	MISO (SPI Bus Master Input/Slave Output)
PB5	SCK (SPI Bus Serial Clock)

When the pins are used for the alternate function, the DDRB and PORTB Registers have to be set according to the alternate function description.

Port B Data Register – PORTB

	Bit	7	6	5	4	3	2	1	0	
	\$18 (\$38)	-	-	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
	Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	1
	Initial Value	0	0	0	0	0	0	0	0	
Port B Data Direction Register										
– DDRB	Bit	7	6	5	4	3	2	1	0	
	\$17 (\$37)	-	-	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
	Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	1
	Initial Value	0	0	0	0	0	0	0	0	
Port B Input Pins Address –										
PINB	Bit	7	6	5	4	3	2	1	0	
	\$16 (\$36)	-	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
	Read/Write	R	R	R	R	R	R	R	R	1
	Initial Value	0	0	N/A	N/A	N/A	N/A	N/A	N/A	

Port C

Port C is a 6-bit bi-directional I/O port.

Three I/O memory address locations are allocated for the Port C, one each for the Data Register – PORTC, \$15(\$35), Data Direction Register – DDRC, \$14(\$34), and the Port C Input Pins – PINC, \$13(\$33). The Port C Input Pins address is read only, while the Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port C output buffers can sink 20 mA and thus drive LED displays directly. When pins PC0 to PC5 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated.

Port C has an alternate function as analog inputs for the ADC. If some Port C pins are configured as outputs, it is essential that these do not switch when a conversion is in progress. This might corrupt the result of the conversion.

During Power-down mode, the Schmitt triggers of the digital inputs are disconnected. This allows an analog voltage close to $V_{CC}/2$ to be present during Power-down without causing excessive power consumption.

Programming the Fuse Bits	The algorithm for programming the Fuse bits is as follows (refer to "Programming the Flash" for details on command and data loading):						
	A: Load Command "0100 0000".						
	 B: Load Data Low Byte. Bit n = "0" programs and bit n = "1" erases the Fuse bit. Bit 5 = SPIEN Fuse bit Bit 4 = BODLEVEL Fuse bit Bit 3 = BODEN Fuse bit Bit 2 = CKSEL2 Fuse bit Bit 1 = CKSEL1 Fuse bit Bit 0 = CKSEL0 Fuse bit Bits 7 - 6 = "1". These bits are reserved and should be left unprogrammed ("1"). 1. Give WR a t_{WLWH_PFB} wide negative pulse to execute the programming, t_{WLWH_PFB} is found in Table 33. Programming the Fuse bits does not generate any activity on the RDY/BSY pin. 						
Programming the Lock Bits	The algorithm for programming the Lock bits is as follows (refer to "Programming the Flash" for details on command and data loading):						
	A: Load Command "0010 0000".						
	 B: Load Data Low Byte. Bit n = "0" programs the Lock bit. Bit 2 = Lock bit 2 Bit 1 = Lock bit 1 Bits 7 - 3, 0 = "1". These bits are reserved and should be left unprogrammed ("1"). 						
	C: Write Data Low Byte.						
	The Lock bits can only be cleared by executing Chip Erase.						
Reading the Fuse and Lock Bits	The algorithm for reading the Fuse and Lock bits is as follows (refer to "Programming the Flash" for details on command loading):						
	A: Load Command "0000 0100".						
	 Set OE to "0", and BS to "0". The status of the Fuse bits can now be read at DATA ("0" means programmed). Bit 5 = SPIEN Fuse bit Bit 4 = BODLEVEL Fuse bit Bit 3 = BODEN Fuse bit Bit 2 = CKSEL2 Fuse bit Bit 1 = CKSEL1 Fuse bit Bit 0 = CKSEL0 Fuse bit 						
	 Set BS to "1". The status of the Lock bits can now be read at DATA ("0" means programmed). Bit 2 = Lock Bit 2 Bit 1= Lock Bit 1 						
	3. Set \overline{OE} to "1".						

External Clock Drive Waveforms

Figure 69. External Clock

Table 39. External Clock Drive

		V _{CC} = 2.7V to 6.0V		V _{CC} = 4.0\		
Symbol	Parameter	Min	Max	Min	Max	Units
1/t _{CLCL}	Oscillator Frequency	0.0	4.0	0.0	8.0	MHz
t _{CLCL}	Clock Period	250.0		125.0		ns
t _{CHCX}	High Time	100.0		50.0		ns
t _{CLCX}	Low Time	100.0		50.0		ns
t _{CLCH}	Rise Time		1.6		0.5	μs
t _{CHCL}	Fall Time		1.6		0.5	μs

WATCHDOG OSCILLATOR FREQUENCY vs. V_{CC}

Sink and source capabilities of I/O ports are measured on one pin at a time.

Figure 82. Pull-up Resistor Current vs. Input Voltage

AMEL_®

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F (\$5F)	SREG		Т	Н	S	V	Ν	Z	С	page 19
\$3E (\$5E)	Reserved	-	-	-	-	-	-	-	-	page 20
\$3D (\$5D)	SP	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 20
\$3C (\$5C)	Reserved					T		1	[
\$3B (\$5B)	GIMSK	INT1	INT0	-	-	-	-	-	-	page 27
\$3A (\$5A)	GIFR	INTE1	INTF0			710154		TOUES		page 27
\$39 (\$59)	TIMSK	TOIE1	OCIE1	-	-	IICIE1	-	TOIE0	-	page 28
\$38 (\$58) \$37 (\$57)	Recorved	1001	OCFT	-	-	ICFI	-	1000	-	page 29
\$37 (\$37)	Reserved									
\$35 (\$55)	MCLICR	_		SE	SM	ISC11	ISC10	ISC01	ISC00	page 30
\$34 (\$54)	MCUSR	-	_	-	-	WDRF	BORF	EXTRE	PORF	page 26
\$33 (\$53)	TCCR0	_	_	_	_	_	CS02	CS01	CS00	page 34
\$32 (\$52)	TCNT0				Timer/Co	unter0 (8 Bits)		I		page 35
\$31 (\$51)	Reserved									
\$30 (\$50)	Reserved									
\$2F (\$4F)	TCCR1A	COM11	COM10	-	-	-	-	PWM11	PWM10	page 37
\$2E (\$4E)	TCCR1B	ICNC1	ICES1	-	-	CTC1	CS12	CS11	CS10	page 38
\$2D (\$4D)	TCNT1H			Tim	er/Counter1 – Co	ounter Register Hig	gh Byte			page 39
\$2C (\$4C)	TCNT1L			Tim	er/Counter1 - Co	ounter Register Lo	ow Byte			page 39
\$2B (\$4B)	OCR1H			Timer/C	ounter1 – Output	Compare Registe	er High Byte			page 40
\$2A (\$4A)	OCR1L			Timer/C	ounter1 – Output	Compare Registe	er Low Byte			page 40
\$29 (\$49)	Reserved									
\$28 (\$48)	Reserved				<u> </u>	<u> </u>				
\$27 (\$47)	ICR1H			Timer/	Counter1 – Input	Capture Register	High Byte			page 41
\$25 (\$45)	Record			Timer/	Counterr – Input	Capture Register	LOW Byle			page 41
\$23 (\$43)	Reserved									
\$23 (\$43)	Reserved									
\$22 (\$42)	Reserved									
\$21 (\$41)	WDTCR	_	_	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 43
\$20 (\$40)	Reserved		1					1		1.01
\$1F (\$3F)	Reserved									
\$1E (\$3E)	EEAR				EEPROM A	ddress Register				page 45
\$1D (\$3D)	EEDR		-		EEPROM	Data Register				page 45
\$1C (\$3C)	EECR	_	_	_	-	EERIE	EEMWE	EEWE	EERE	page 45
\$1B (\$3B)	Reserved									
\$1A (\$3A)	Reserved									
\$19 (\$39)	Reserved				1	1	1	1	1	
\$18 (\$38)	PORTB	-	-	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 72
\$17 (\$37)	DDRB	_	_	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 72
\$16 (\$36)		_	_	PINB5	PINB4	PINB3	PINB2	PINB1		page 72
\$15 (\$35)		_	_	PORICS	PORTC4	PORIC3	PORTC2		PORTCO	page 78
\$13 (\$33)	PINC	_	_	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	page 78
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	page 80
\$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 80
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	page 80
\$0F (\$2F)	SPDR		1	1	SPI Da	ata Register		I		page 52
\$0E (\$2E)	SPSR	SPIF	WCOL	-	-	-	-	-	-	page 52
\$0D (\$2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	page 51
\$0C (\$2C)	UDR				UART I/O	Data Register				page 57
\$0B (\$2B)	UCSRA	RXC	TXC	UDRE	FE	OR	-	-	-	page 57
\$0A (\$2A)	UCSRB	RXCIE	TXCIE	UDRIE	RXEN	TXEN	CHR9	RXB8	TXB8	page 58
\$09 (\$29)	UBRR				UART Bau	d Rate Register	1	1	1	page 61
\$08 (\$28)	ACSR	ACD	AINBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	page 62
\$07 (\$27)	ADMUX	_	ADCBG	-	-	-	MUX2	MUX1	MUX0	page 68
\$06 (\$26)	ADCSR	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	page 68
\$05 (\$25)	ADCH	-	-	-		-	-	ADC9	ADC8	page 69
\$U4 (\$∠4) \$Ω2 (\$22)		ADC7	ADC6	ADC5	ADC4	ADC3			ADCU	page 61
φυσ (φ∠σ) \$02 (\$22)	Reserved						UAR I Baud R	are rregister High		page o 1
\$01 (\$21)	Reserved									
\$00 (\$20)	Reserved									

AT90S/LS4433

Data Sheet Change Log for AT90S/LS4433

Changes from Rev. 1042E-09/01 to Ref. 1042F-03/02

Changes from Rev. 1042F-03/02 to Ref. 1042G-09/02

Changes from Rev. 1042G-09/02 to Ref. 1042H-04/03

- This section containes a log on the changes made to the data sheet for AT90S/LS4433. All refereces to pages in Change Log, are referred to this document.
- 1 Updated minimum AREF Voltage on page 5 and page 64.
- 2 Corrected VBOT Max for BODLEVEL = 1 in Table 4 on page 22.
- 3 Updated Corporate Template.
- 1 Added wathermark "Not recommended for new designs. Use ATmega8".
- 2 Added Errata Sheet to the Data Sheet.
- 1 Updated the "Errata for AT90S/LS4433 Rev. Rev. C/D/E/F" on page 119.
- 2 Updated "Packaging Information" on page 117.

Analog-to-Digital Converter	64
Features	64
Operation	65
Prescaling	65
ADC Noise Canceler Function	67
Scanning Multiple Channels	70
ADC Noise Canceling Techniques	70
ADC Characteristics $T_A = -40^{\circ}C$ to $85^{\circ}C$	71
I/O Ports	72
Port B	72
Port C	77
Port D	80
Memory Programming	85
Program and Data Memory Lock Bits	85
Fuse Bits	85
Signature Bytes	85
Programming the Flash and EEPROM	86
Parallel Programming	86
Parallel Programming Characteristics	92
Serial Downloading	93
Serial Programming Characteristics	97
Electrical Characteristics	. 98
Absolute Maximum Ratings*	98
DC Characteristics	98
External Clock Drive Waveforms	100
Typical Characteristics	101
Register Summary	112
Instruction Set Summary	114
Ordering Information	116
Packaging Information	117
32A	117
28P3	118
Friends for ATOOC/L CAADD Dave Dave O/D/E/E	110