

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	C52X2
Core Size	8-Bit
Speed	48MHz
Connectivity	I²C, SPI, UART/USART, USB
Peripherals	LED, POR, PWM, WDT
Number of I/O	18
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c5131a-tirul

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Registers

Table 14. CKCON0 (S:8Fh)Clock Control Register 0

7	6	5	4	3	2	1	0				
TWIX2	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2				
Bit Number	Bit Mnemonic	Description									
7	TWIX2	TWI Clock This control this bit has Clear to sele Set to select	IWI Clock This control bit is validated when the CPU clock X2 is set. When X2 is low, his bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.								
6	WDX2	Watchdog C This control this bit has Clear to sele Set to select	Vatchdog Clock 'his control bit is validated when the CPU clock X2 is set. When X2 is low, his bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.								
5	PCAX2	Programma This control this bit has Clear to sele Set to select	Programmable Counter Array Clock This control bit is validated when the CPU clock X2 is set. When X2 is low, this bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.								
4	SIX2	Enhanced U This control this bit has Clear to sele Set to select	ART Clock (bit is valida no effect. ct 6 clock per 12 clock perio	Mode 0 and 2 ted when the iods per periph ods per periph) CPU clock X neral clock cyc eral clock cyc	2 is set. Whe cle. le.	n X2 is low,				
3	T2X2	Timer2 Cloc This control this bit has Clear to sele Set to select	k bit is valida no effect. ct 6 clock per 12 clock perio	ted when the iods per periph ods per periph	CPU clock X neral clock cyc eral clock cyc	2 is set. Whe de. le.	n X2 is low,				
2	T1X2	Timer1 Clock This control bit is validated when the CPU clock X2 is set. When X2 is low, this bit has no effect. Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.									
1	T0X2	Timer0 Cloc This control this bit has Clear to sele Set to select	k bit is valida no effect. ct 6 clock perio	ted when the iods per periph ods per periph	CPU clock X neral clock cyc eral clock cyc	2 is set. Whe cle. le.	n X2 is low,				
0	X2	System Cloa Clear to sele $F_{OSC}/2$). Set to select	ck Control bi ct 12 clock pe 6 clock period	t eriods per mac ds per machine	hine cycle (ST e cycle (X2 m	D mode, F _{CP} ode, F _{CPU =} F _i	$F_{\rm PER} = F_{\rm PER} =$ PER = $F_{\rm OSC}$).				

Reset Value = 0000 0000b

The table below shows all SFRs with their address and their reset value.

Table 18. SFR Descriptions

	Bit Addressable		Non-Bit Addressable								
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F			
F8h	UEPINT 0000 0000	CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAP2H XXXX XXXX	CCAP3H XXXX XXXX	CCAP4H XXXX XXXX		FFh		
F0h	B 0000 0000	LEDCON 0000 0000							F7h		
E8h		CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAP2L XXXX XXXX	CCAP3L XXXX XXXX	CCAP4L XXXX XXXX		EFh		
E0h	ACC 0000 0000		UBYCTLX 0000 0000	UBYCTHX 0000 0000					E7h		
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFh		
D0h	PSW 0000 0000	FCON (1) XXXX 0000	EECON XXXX XX00		UEPCONX 1000 0000	UEPRST 0000 0000			D7h		
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000	UEPSTAX 0000 0000	UEPDATX 0000 0000	CFh		
C0h	P4 XXXX 1111		UEPIEN 0000 0000	SPCON 0001 0100	SPSTA 0000 0000	SPDAT XXXX XXXX	USBADDR 1000 0000	UEPNUM 0000 0000	C7h		
B8h	IPL0 X000 000	SADEN 0000 0000	UFNUML 0000 0000	UFNUMH 0000 0000	USBCON 0000 0000	USBINT 0000 0000	USBIEN 0000 0000		BFh		
B0h	P3 1111 1111	IEN1 X0XX X000	IPL1 X0XX X000	IPH1 X0XX X000				IPH0 X000 0000	B7h		
A8h	IEN0 0000 0000	SADDR 0000 0000						CKCON1 0000 0000	AFh		
A0h	P2 1111 1111		AUXR1 XXXX X0X0	PLLCON XXXX XX00	PLLDIV 0000 0000		WDTRST XXXX XXXX	WDTPRG XXXX X000	A7h		
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	KBLS 0000 0000	KBE 0000 0000	KBF 0000 0000		9Fh		
90h	P1 1111 1111			SSCON 0000 0000	SSCS 1111 1000	SSDAT 1111 1111	SSADR 1111 1110		97h		
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XX0X 0000	CKCON0 0000 0000	8Fh		
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h		
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F			

Note: 1. FCON access is reserved for the Flash API and ISP software.

Reserved

Flash EEPROM Memory

General Description	The Flash memory increases EPROM functionality with in-circuit electrical erasure and programming. It contains 32 Kbytes of program memory organized in 256 pages of 128 bytes, respectively. This memory is both parallel and serial In-System Programmable (ISP). ISP allows devices to alter their own program memory in the actual end product under software control. A default serial loader (bootloader) program allows ISP of the Flash.						
	The programming does not require 12V external programming voltage. The necessary high programming voltage is generated on-chip using the standard $V_{\rm CC}$ pins of the microcontroller.						
Features	Flash EEPROM internal program memory.						
	• Boot vector allows user-provided Flash loader code to reside anywhere in the Flash memory space. This configuration provides flexibility to the user.						
	• Default loader in Boot EEPROM allows programming via the serial port without the need of a user provided loader.						
	 Up to 64K bytes external program memory if the internal program memory is disabled (EA = 0). 						
	 Programming and erase voltage with standard power supply. 						
	Read/Program/Erase:						
	Byte-wise read (without wait state).						
	Byte or page erase and programming (10 ms).						
	Typical programming time (32 Kbytes) in 10 sec.						
	• Parallel programming with 87C51 compatible hardware interface to programmer.						
	Programmable security for the code in the Flash.						
	100K write cycles						
	10 years data retention						
Flash Programming and Erasure	The 32 Kbytes Flash is programmed by bytes or by pages of 128 bytes. It is not neces- sary to erase a byte or a page before programming. The programming of a byte or a page includes a self erase before programming.						
	There are three methods of programming the Flash memory:						
	1. The on-chip ISP bootloader may be invoked which will use low level routines to program the pages. The interface used for serial downloading of Flash is the USB.						
	2. The Flash may be programmed or erased in the end-user application by calling low-level routines through a common entry point in the Boot Flash.						
	3. The Flash may be programmed using the parallel method .						
	The bootloader and the Application Programming Interface (API) routines are located in the Flash Bootloader.						

Table 45. AUXR Register

AUXR - Auxiliary Register (8Eh)

7	6	5	4	3	2	1	0			
DPU	-	MO	-	XRS1	XRS0	EXTRAM	AO			
Bit Number	Bit Mnemonic	Descriptio	Description							
7	DPU	Disable W Cleared to Set to disa	Disable Weak Pull Up Cleared to enabled weak pull up on standard Ports. Set to disable weak pull up on standard Ports.							
6	-	Reserved The value	read from this	s bit is indeterr	ninate. Do no	t set this bit				
5	MO	Pulse leng Cleared to periods (de Set to stre periods.	Pulse length Cleared to stretch MOVX control: the RD and the WR pulse length is 6 clock periods (default). Set to stretch MOVX control: the RD and the WR pulse length is 30 clock periods.							
4	-	Reserved The value	read from this	s bit is indeterr	ninate. Do no	t set this bit				
3	XRS1	ERAM Siz	e							
2	XRS0	XRS1XRS 0 0 0 1 1 0 1 1	XRS1XRS0 ERAM size 0 0 256 bytes 0 1 512 bytes 1 0 768 bytes 1 1 1024 bytes (default)							
1	EXTRAM	EXTRAM Cleared to Set to acco	bit access interr ess external n	nal ERAM usin nemory.	g MOVX at R	i at DPTR.				
0	AO	ALE Outp Cleared, A 1/3 if X2 m Set, ALE is	ALE Output bit Cleared, ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if X2 mode is used) (default). Set, ALE is active only when a MOVX or MOVC instruction is used.							

Reset Value = 0X0X 1100b Not bit addressable

Example of computed value when X2 = 1, SMOD1 = 1, SPD = 1

Baud Rates	F _{osc} = 16	.384 MHz	F _{OSC} = 24 MHz		
Daud Hates	BRL	BRL Error (%)		Error (%)	
115200	247	1.23	243	0.16	
57600	238	1.23	230	0.16	
38400	229	1.23	217	0.16	
28800	220	1.23	204	0.16	
19200	203	0.63	178	0.16	
9600	149	0.31	100	0.16	
4800	43	1.23	-	-	

Example of computed value when X2 = 0, SMOD1 = 0, SPD = 0

	F _{osc} = 16	.384 MHz	F _{OSC} = 24 MHz		
Baud Rates	BRL Error (%)		BRL	Error (%)	
4800	247	1.23	243	0.16	
2400	238	1.23	230	0.16	
1200	220	1.23	202	3.55	
600	185	0.16	152	0.16	

The baud rate generator can be used for mode 1 or 3 (refer to Figure 37.), but also for mode 0 for UART, thanks to the bit SRC located in BDRCON register (Table 59.)

UART Registers

SADEN - Slave Address Mask Register for UART (B9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	Ι	Ι	-

Reset Value = 0000 0000b

SADDR - Slave Address Register for UART (A9h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = 0000 0000b

SBUF - Serial Buffer Register for UART (99h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = XXXX XXXXb

Table 58. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0	
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL	
Bit Number	Bit Mnemonic	Description						
7	SMOD1	Serial port M Set to select	l ode bit 1 for double baud r	UART rate in mode 1	, 2 or 3.			
6	SMOD0	Serial port M Cleared to se Set to select	l ode bit 0 for lect SM0 bit i FE bit in SCC	UART n SCON regis N register.	ter.			
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	POF	Power-Off FI Cleared to red Set by hardway software.	ag cognize next are when V _{CC}	reset type. rises from 0 t	o its nominal v	voltage. Can a	ilso be set by	
3	GF1	General-pur Cleared by us Set by user fo	Dose Flag Ser for genera or general-pu	I-purpose usa pose usage.	ge.			
2	GF0	General-pur Cleared by us Set by user fo	Dose Flag Ser for genera or general-pui	l-purpose usa pose usage.	ge.			
1	PD	Power-down Cleared by ha Set to enter p	Power-down Mode Bit Cleared by hardware when reset occurs. Set to enter power-down mode.					
0	IDL	Idle Mode Bi Cleared by ha Set to enter id	t ardware wher dle mode.	interrupt or re	eset occurs.			

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

Table 65. IPL1 Register

IPL1 - Interrupt Priority Register (B2h)

7	6	5	4	3	2	1	0		
-	PUSBL	-	-	-	PSPIL	PTWIL	PKBDL		
Bit Number	Bit Mnemonic	Descriptior	1						
7	-	Reserved The value re	eserved he value read from this bit is indeterminate. Do not set this bit.						
6	PUSBL	USB Interru Refer to PU	ipt Priority b SBH for priori	it ty level.					
5	-	Reserved The value re	ead from this I	oit is indeterm	inate. Do not	set this bit.			
4	-	Reserved The value re	ead from this I	oit is indeterm	inate. Do not	set this bit.			
3	-	Reserved The value re	ead from this I	oit is indeterm	inate. Do not	set this bit.			
2	PSPIL	SPI Interrup Refer to PS	ot Priority bit	y level.					
1	PTWIL	TWI Interru Refer to PT	TWI Interrupt Priority bit Refer to PTWIH for priority level.						
0	PKBL	Keyboard I Refer to PK	nterrupt Prio BH for priority	rity bit level.					

Reset Value = X0XX X000b Not bit addressable

Interrupt Sources and Vector Addresses

Table 67. Vector Table

Number	Polling Priority	Interrupt Source	Interrupt Request	Vector Address
0	0	Reset		0000h
1	1	INT0	IE0	0003h
2	2	Timer 0	TF0	000Bh
3	3	INT1	IE1	0013h
4	4	Timer 1	IF1	001Bh
5	6	UART	RI+TI	0023h
6	7	Timer 2	TF2+EXF2	002Bh
7	5	PCA	CF + CCFn (n = 0-4)	0033h
8	8	Keyboard	KBDIT	003Bh
9	9	TWI	ТШІТ	0043h
10	10	SPI	SPIIT	004Bh
11	11			0053h
12	12			005Bh
13	13			0063h
14	14	USB	UEPINT + USBINT	006Bh
15	15			0073h

Table 69. KBE Register

KBE - Keyboard Input Enable Register (9Dh)

7	6	5	4	3	2	1	0
KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0
Bit Number	Bit Mnemonic	Description					
7	KBE7	Keyboard lin Cleared to en Set to enable	ne 7 Enable I nable standar e KBF.7 bit in	bit d I/O pin. KBF register t	o generate an	interrupt requ	uest.
6	KBE6	Keyboard lin Cleared to en Set to enable	ne 6 Enable I nable standar e KBF.6 bit in	bit d I/O pin. KBF register t	o generate an	interrupt requ	uest.
5	KBE5	Keyboard lin Cleared to en Set to enable	ne 5 Enable I nable standar e KBF.5 bit in	bit d I/O pin. KBF register t	o generate an	interrupt requ	uest.
4	KBE4	Keyboard lin Cleared to en Set to enable	ne 4 Enable I nable standar e KBF.4 bit in	bit d I/O pin. KBF register t	o generate an	interrupt requ	uest.
3	KBE3	Keyboard lind Cleared to end Set to enable	ne 3 Enable I nable standar e KBF.3 bit in	bit d I/O pin. KBF register t	o generate an	interrupt requ	uest.
2	KBE2	Keyboard lin Cleared to en Set to enable	ne 2 Enable I nable standar e KBF.2 bit in	bit d I/O pin. KBF register t	o generate an	interrupt requ	uest.
1	KBE1	Keyboard lin Cleared to en Set to enable	ne 1 Enable I nable standar e KBF.1 bit in	bit d I/O pin. KBF register t	o generate an	interrupt requ	uest.
0	KBE0	Keyboard lind Cleared to end Set to enable	ne 0 Enable I nable standar e KBF.0 bit in	oit d I/O pin. KBF register t	o generate an	interrupt requ	uest.

Reset Value = 0000 0000b

Table 70. KBLS Register

KBLS-Keyboard Level Selector Register (9Ch)

7	6	5	4	3	2	1	0	
KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0	
Bit Number	Bit Mnemonic	Description						
7	KBLS7	Keyboard lin Cleared to en Set to enable	ne 7 Level Se nable a low le e a high level	election bit vel detection on detection on P	on Port line 7. Port line 7.			
6	KBLS6	Keyboard lin Cleared to en Set to enable	ne 6 Level Se nable a low le e a high level	election bit vel detection on detection on P	on Port line 6. Port line 6.			
5	KBLS5	Keyboard lin Cleared to en Set to enable	eyboard line 5 Level Selection bit eared to enable a low level detection on Port line 5. et to enable a high level detection on Port line 5.					
4	KBLS4	Keyboard lin Cleared to en Set to enable	Acyboard line 4 Level Selection bit Reared to enable a low level detection on Port line 4. Set to enable a high level detection on Port line 4.					
3	KBLS3	Keyboard lin Cleared to en Set to enable	Ceyboard line 3 Level Selection bit Cleared to enable a low level detection on Port line 3. Set to enable a high level detection on Port line 3.					
2	KBLS2	Keyboard lin Cleared to en Set to enable	n e 2 Level Se nable a low le e a high level	election bit vel detection of detection on P	on Port line 2. Port line 2.			
1	KBLS1	Keyboard lin Cleared to en Set to enable	ne 1 Level Se nable a low le e a high level	election bit vel detection on detection on P	on Port line 1. Port line 1.			
0	KBLS0	Keyboard lin Cleared to en Set to enable	ne 0 Level Se nable a low le e a high level	election bit vel detection on detection on P	on Port line 0. Port line 0.			

Reset Value = 0000 0000b

		Application S	Software	e Respo	nse		
Status		To/from SSDAT		To SS	CON		
Code (SSCS)	Status of the 2-wire bus and 2-wire hardware		STA	STO	SI	АА	Next Action Taken By 2-wire Software
		No SSDAT action or No SSDAT action or	0	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if
C0h	Data byte in SSDAT has been transmitted; NOT ACK has been received	No SSDAT action or	1	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free
		No SSDAT action	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free
		No SSDAT action or No SSDAT action or	0 0	0 0	0 0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1
C8h	Last data byte in SSDAT has been transmitted (AA=0); ACK has been received	No SSDAT action or	1	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free
		No SSDAT action	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free

Table 84. Status in Slave Transmitter Mode (Continued)

Table 85. Miscellaneous Status

		Application	Software Response			se	
		To/from		To SSCON			
Status Code (SSCS)	Status of the 2-wire bus and 2-wire hardware	SSDAT	STA	STA STO SI AA		AA	Next Action Taken By 2-wire Software
F8h	No relevant state information available; SI= 0	No SSDAT action	No SSCON action		ion	Wait or proceed current transfer	
00h	Bus error due to an illegal START or STOP condition	No SSDAT action	0	1	0	x	Only the internal hardware is affected, no STOP condition is sent on the bus. In all cases, the bus is released and STO is reset.

Function Interface Unit (FIU)

The Function Interface Unit provides the interface between the AT89C5131 and the SIE. It manages transactions at the packet level with minimal intervention from the device firmware, which reads and writes the endpoint FIFOs.

Figure 58. UFI Block Diagram

Figure 59. Minimum Intervention from the USB Device Firmware

Endpoint FIFO reset

Before using an endpoint, its FIFO will be reset. This action resets the FIFO pointer to its original value, resets the byte counter of the endpoint (UBYCTLX and UBYCTHX registers), and resets the data toggle bit (DTGL bit in UEPCONX).

The reset of an endpoint FIFO is performed by setting to 1 and resetting to 0 the corresponding bit in the UEPRST register.

For example, in order to reset the Endpoint number 2 FIFO, write 0000 0100b then 0000 0000b in the UEPRST register.

Note that the endpoint reset doesn't reset the bank number for ping-pong endpoints.

Read/Write Data FIFO

FIFO Mapping

Depending on the selected endpoint through the UEPNUM register, the UEPDATX register allows to access the corresponding endpoint data fifo.

Read Data FIFO	The read access	for each OUT	endpoint is perfor	med using the U	EPDATX register.

After a new valid packet has been received on an Endpoint, the data are stored into the FIFO and the byte counter of the endpoint is updated (UBYCTLX and UBYCTHX registers). The firmware has to store the endpoint byte counter before any access to the endpoint FIFO. The byte counter is not updated when reading the FIFO.

To read data from an endpoint, select the correct endpoint number in UEPNUM and read the UEPDATX register. This action automatically decreases the corresponding address vector, and the next data is then available in the UEPDATX register.

Write Data FIFO The write access for each IN endpoint is performed using the UEPDATX register.

To write a byte into an IN endpoint FIFO, select the correct endpoint number in UEP-NUM and write into the UEPDATX register. The corresponding address vector is automatically increased, and another write can be carried out.

Warning 1: The byte counter is not updated.

Warning 2: Do not write more bytes than supported by the corresponding endpoint.

in Ping-pong Mode

An endpoint will be first enabled and configured before being able to send Bulk or Interrupt packets.

The firmware will fill the FIFO bank 0 with the data to be sent and set the TXRDY bit in the UEPSTAX register to allow the USB controller to send the data stored in FIFO at the next IN request concerning the endpoint. The FIFO banks are automatically switched, and the firmware can immediately write into the endpoint FIFO bank 1.

When the IN packet concerning the bank 0 has been sent and acknowledged by the Host, the TXCMPL bit is set by the USB controller. This triggers a USB interrupt if enabled. The firmware will clear the TXCMPL bit before filling the endpoint FIFO bank 0 with new data. The FIFO banks are then automatically switched.

When the IN packet concerning the bank 1 has been sent and acknowledged by the Host, the TXCMPL bit is set by the USB controller. This triggers a USB interrupt if enabled. The firmware will clear the TXCMPL bit before filling the endpoint FIFO bank 1 with new data.

The bank switch is performed by the USB controller each time the TXRDY bit is set by the firmware. Until the TXRDY bit has been set by the firmware for an endpoint bank, the USB controller will answer a NAK handshake for each IN requests concerning this bank.

Note that in the example above, the firmware clears the Transmit Complete bit (TXC-MPL) before setting the Transmit Ready bit (TXRDY). This is done in order to avoid the firmware to clear at the same time the TXCMPL bit for bank 0 and the bank 1.

The firmware will never write more bytes than supported by the endpoint FIFO.

Reset

Introduction

The reset sources are: Power Management, Hardware Watchdog, PCA Watchdog and Reset input.

Figure 72. Reset schematic

Reset Input

The Reset input can be used to force a reset pulse longer than the internal reset controlled by the Power Monitor. RST input has a pull-up resistor allowing power-on reset by simply connecting an external capacitor to V_{SS} as shown in Figure 73. Resistor value and input characteristics are discussed in the Section "DC Characteristics" of the AT89C5131A-L datasheet.

Figure 73. Reset Circuitry and Power-On Reset

Electrical Characteristics

Absolute Maximum Ratings

°C
°C
6V
2V

Note: Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

TA = -40°C to +85°C; V_{SS} = 0V; V_{CC} = 3.3V \pm 10%; F = 0 to 40 MHz

Symbol	Parameter	Min	Тур ⁽⁵⁾	Мах	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2Vcc - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 and $4^{(6)}$			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 0.8 \; m A^{(4)} \\ I_{OL} &= 1.6 m A^{(4)} \end{split}$
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN (6)			0.3 0.45 1.0	> > >	$\begin{split} I_{OL} &= 200 \ \mu A^{(4)} \\ I_{OL} &= 1.6 \ m A^{(4)} \\ I_{OL} &= 3.5 \ m A^{(4)} \end{split}$
V _{OH}	Output High Voltage, ports 1, 2, 3, 4 and 5	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			> > >	$\begin{split} I_{OH} &= -10 \ \mu A \\ I_{OH} &= -30 \ \mu A \\ I_{OH} &= -60 \ \mu A \\ V_{CC} &= 3.3V \pm 10\% \end{split}$
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$\begin{split} I_{OH} &= -200 \; \mu A \\ I_{OH} &= -1.6 \; m A \\ I_{OH} &= -3.5 \; m A \\ V_{CC} &= 3.3 V \pm 10\% \end{split}$
R _{RST}	RST Pullup Resistor	50	100	200	kΩ	
IIL	Logical 0 Input Current ports 1, 2, 3 and 4			-50	μΑ	Vin = 0.45V
ILI	Input Leakage Current			±10	μA	0.45V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3 and 4			-650	μA	Vin = 2.0V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
I _{PD}	Power-down Current			100	μΑ	$3.0V < V_{CC} < 3.6V^{(3)}$
I _{cc}	Power Supply Current	l _{cc} I _{cc} I _{ccv}	$_{OP} = 0.4 \text{xF}(MHz)$ $_{IDLE} = 0.3 \text{xF}(MHz)$ $_{vrite} = 0.8 \text{xF}(MHz)$)+5 z)+5)+15		$V_{\rm CC} = 3.3 V^{(1)(2)}$
V _{PFDP}	Power Fail High Level Threshold			3.0	V	

52-lead PLCC

52 PINS PLCC

STANDARD NOTES FOR PLCC:

1/ CONTROLLING DIMENSIONS : INCHES

2/ DIMENSIONING AND TOLERANCING PER ANSI Y 14.5M - 1982.

3/ "D" AND "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTUSIONS. MOLD FLASH OR PROTUSIONS SHALL NOT EXCEED 0.20 mm (.008 INCH) PER SIDE.

Document Revision History

Changes from 4338D - 09/05 to 4338E - 06/06

Changes from 4338E - 06/06 to 4338F - 08/07

- 1. Correction to Figure 4 on page 11.
- 1. Hardware Conditions section Page 45 changed to recommend the use of 1K pull-up between PSEN and GND in ISP mode.
- 2. Updated 52-lead PLCC package.

Features	1
Description	2
Block Diagram	3
Pinout Description	4
Pinout	4
Signals	6
Typical Application	. 11
Recommended External components	11
PCB Recommandations	12
Clock Controller	13
Introduction	13
Oscillator	13
PLL	14
Registers	16
SFR Mapping	18
Dual Data Pointer Register	25
5	
Program/Code Memory	27
Program/Code Memory External Code Memory Access	. 27 27
Program/Code Memory External Code Memory Access Flash Memory Architecture	. 27 27 28
Program/Code Memory External Code Memory Access Flash Memory Architecture Overview of FM0 Operations	. 27 27 28 29
Program/Code Memory External Code Memory Access Flash Memory Architecture Overview of FM0 Operations Registers	. 27 27 28 29 35
Program/Code Memory External Code Memory Access Flash Memory Architecture Overview of FM0 Operations Registers Flash EEPROM Memory	. 27 27 28 29 35
Program/Code Memory External Code Memory Access Flash Memory Architecture Overview of FM0 Operations Registers Flash EEPROM Memory General Description	. 27 27 28 29 35 35 36
Program/Code Memory External Code Memory Access Flash Memory Architecture Overview of FM0 Operations Registers Flash EEPROM Memory General Description Features	. 27 27 28 29 35 35 36 36
Program/Code Memory External Code Memory Access Flash Memory Architecture. Overview of FM0 Operations Registers. Flash EEPROM Memory General Description Features Flash Programming and Erasure	27 27 28 29 35 35 36 36 36 36
Program/Code Memory External Code Memory Access Flash Memory Architecture. Overview of FM0 Operations Registers. Flash EEPROM Memory General Description Features Flash Programming and Erasure Flash Registers and Memory Map	. 27 27 28 29 35 35 36 36 36 37
Program/Code Memory External Code Memory Access Flash Memory Architecture. Overview of FM0 Operations Registers. Flash EEPROM Memory General Description Features. Flash Programming and Erasure Flash Registers and Memory Map Flash Memory Status	27 27 28 29 35 35 36 36 36 36 37 40
Program/Code Memory External Code Memory Access Flash Memory Architecture. Overview of FM0 Operations Registers. Flash EEPROM Memory General Description Features. Flash Programming and Erasure Flash Registers and Memory Map Flash Memory Status Memory Organization	27 27 28 29 35 36 36 36 36 36 37 40 40
Program/Code Memory External Code Memory Access Flash Memory Architecture Overview of FM0 Operations Registers Flash EEPROM Memory General Description Features Flash Programming and Erasure Flash Registers and Memory Map Flash Memory Status Memory Organization	27 27 28 29 35 36 36 36 36 36 36 37 40 40 40
Program/Code Memory External Code Memory Access Flash Memory Architecture Overview of FM0 Operations Registers Flash EEPROM Memory General Description Features Flash Programming and Erasure Flash Registers and Memory Map Flash Memory Status Memory Organization	27 27 28 29 35 36 36 36 36 36 36 36 37 40 40 40
Program/Code Memory External Code Memory Access Flash Memory Architecture Overview of FM0 Operations Registers Flash EEPROM Memory General Description Features Flash Programming and Erasure Flash Registers and Memory Map Flash Memory Status Memory Organization EEPROM Data Memory Description Write Data in the Column Latches	27 27 28 29 35 36 36 36 36 36 36 37 40 40 40 41 41
Program/Code Memory External Code Memory Access Flash Memory Architecture Overview of FM0 Operations Registers Flash EEPROM Memory General Description Features Flash Programming and Erasure Flash Registers and Memory Map Flash Memory Status Memory Organization EEPROM Data Memory Description Write Data in the Column Latches Programming	27 27 28 29 35 36 36 36 36 36 36 36 36 36 36 40 40 40 41 41 41
Program/Code Memory External Code Memory Access Flash Memory Architecture. Overview of FM0 Operations Registers. Flash EEPROM Memory General Description Features Flash Programming and Erasure Flash Registers and Memory Map Flash Memory Status Memory Organization EEPROM Data Memory Write Data in the Column Latches Programming Read Data Presentere	27 27 28 29 35 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 40 40 41 41 41
Program/Code Memory External Code Memory Access Flash Memory Architecture Overview of FM0 Operations Registers Flash EEPROM Memory General Description Features Flash Programming and Erasure Flash Registers and Memory Map Flash Memory Status Memory Organization EEPROM Data Memory Description Write Data in the Column Latches Programming Read Data Registers	27 27 28 29 35 36 36 36 36 36 36 36 36 36 36 36 40 41 41 41 41 41 42