

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

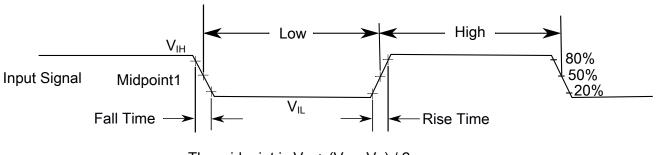
Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 14x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount, Wettable Flank
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mkl02z32vfm4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Voltage and current operating ratings


 Table 4.
 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 2. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics.

- C_L=30 pF loads
- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

Symbol	Description	Min.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	_
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	—
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	—
V _{IH}	Input high voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	_	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$		V	
I _{ICIO}	IO pin negative DC injection current—single pin • V _{IN} < V _{SS} –0.3V	-3	_	mA	1
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins				_
	Negative current injection	-25	_	mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	_

2.2.1 Voltage and current operating requirements

Table 5. Voltage and current operating requirements

- 1. All I/O pins are internally clamped to V_{SS} through a ESD protection diode. There is no diode connection to V_{DD} . If V_{IN} greater than V_{IO_MIN} (= V_{SS} -0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = ($V_{IO_MIN} V_{IN}$)/II_{CIO}I.
- 2. Open drain outputs must be pulled to V_{DD} .

2.2.2 LVD and POR operating requirements

Table 6. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	_
V _{LVDH} Falling low-voltage detect threshold — high range (LVDV = 01)		2.48	2.56	2.64	V	_
	Low-voltage warning thresholds — high range					1

Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DD_VLPRCO}	Very low power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code executing from flash, at 3.0 V	_	145	198	μA	4
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	_	165	217	μA	4
I _{DD_VLPR}	Very low power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V	_	185	237	μA	3, 4
I _{DD_VLPW}	Very low power wait mode current - core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled, at 3.0 V	_	86	141	μA	4
I _{DD_STOP}	Stop mode current at 3.0 V	at 25 °C	230	268	μA	—
		at 50 °C	238	301	μA	
		at 70 °C	259	307	μA	
		at 85 °C	290	352	μA	
		at 105 °C	341	437	μA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V	at 25 °C	2.3	4.28	μA	
		at 50 °C	4.75	8.29	μA	
		at 70 °C	10.1	17.63	μA	
		at 85 °C	20.23	33.55	μA	
		at 105 °C	40.54	64.75	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at	at 25 °C	1.12	1.33	μA	
	3.0 V	at 50 °C	1.59	2.12	μA	
		at 70 °C	2.81	3.57	μA	
		at 85 °C	5.26	6.45	μA	
		at 105 °C	10.82	13.59	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at	at 25 °C	0.58	0.69	μA	-
	3.0 V	at 50 °C	0.9	1.04	μA	
		at 70 °C	1.68	2.02	μA	
		at 85 °C	3.51	4.05	μA	
		at 105 °C	7.89	9.42	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.3	0.4	μA	
	(SMC_STOPCTRL[PORPO] = 0) at 3.0 V	at 50 °C	0.62	0.75	μA	
		at 70 °C	1.38	1.71	μA	
		at 85 °C	3.16	3.71	μA	
		at 105 °C	7.44	8.98	μA	

Table 9. Power consumption operating behaviors (continued)	Table 9.	Power consum	ption operating	behaviors	(continued)
--	----------	--------------	-----------------	-----------	-------------

Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.12	0.23	μA	5
	(SMC_STOPCTRL[PORPO] = 1) at 3.0 V	at 50 °C	0.44	0.58	μA	
		at 70 °C	1.21	1.55	μA	
		at 85 °C	3.01	3.57	μA	
		at 105 °C	7.34	8.89	μA	

Table 9. Power consumption operating behaviors (continued)

1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

2. MCG configured for FEI mode.

3. Incremental current consumption from peripheral activity is not included.

4. MCG configured for BLPI mode.

5. No brownout.

Table 10. Low power mode peripheral adders — typical value

Symbol	Description			Т	Temperature (°C)			Uni	
			-40	25	50	70	85	105	
IREFSTEN4MHz	4 MHz internal reference clock Measured by entering STOP o with 4 MHz IRC enabled.		56	56	56	56	56	56	μA
I _{IREFSTEN32KHz}	32 kHz internal reference clock Measured by entering STOP m 32 kHz IRC enabled.		52	52	52	52	52	52	μA
I _{EREFSTEN32KHz} External 32 kHz crystal clock	VLLS1	440	490	540	560	570	580	nA	
	adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured	VLLS3	440	490	540	560	570	580	
		VLPS	510	560	560	560	610	680	
	by entering all modes with the crystal enabled.	STOP	510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measure the device in VLLS1 mode with using the 6-bit DAC and a sing input for compare. Includes 6-b consumption.	CMP enabled le external	22	22	22	22	22	22	μA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz	MCGIRCLK (4 MHz internal reference clock)	86	86	86	86	86	86	μA

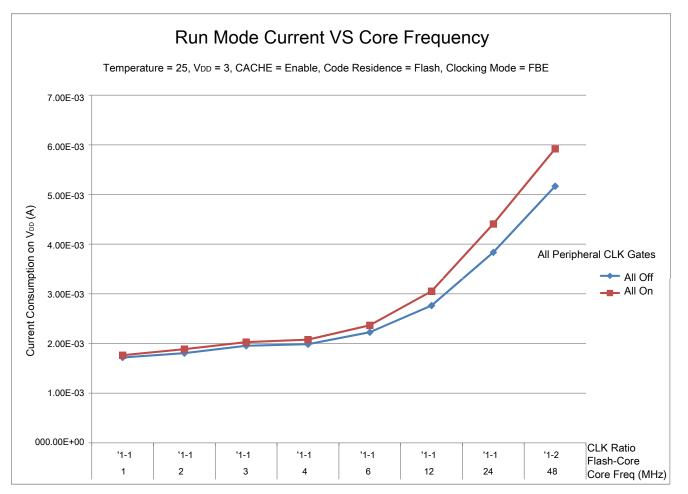


Figure 3. Run mode supply current vs. core frequency

- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 32.768 kHz (crystal), f_{SYS} = 48 MHz, f_{BUS} = 24 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

2.2.7 EMC Radiated Emissions Web Search Procedure boilerplate

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.nxp.com.
- 2. Perform a keyword search for "EMC design"

2.2.8 Capacitance attributes

Table 12. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance		7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

 Table 13.
 Device clock specifications

Symbol	Description	Min.	Max.	Unit				
	Normal run mode							
f _{SYS}	System and core clock	_	48	MHz				
f _{BUS}	Bus clock	—	24	MHz				
f _{FLASH}	Flash clock	—	24	MHz				
f _{LPTMR}	LPTMR clock	_	24	MHz				
	VLPR and VLPS modes ¹							
f _{SYS}	System and core clock	—	4	MHz				
f _{BUS}	Bus clock	_	1	MHz				
f _{FLASH}	Flash clock	—	1	MHz				
f _{LPTMR}	LPTMR clock ²	—	24	MHz				
f _{ERCLK}	External reference clock	—	32.768	kHz				
f _{LPTMR_ERCLK}	LPTMR external reference clock	—	16	MHz				
f _{TPM}	TPM asynchronous clock	—	8	MHz				

Symbol	Description	Min.	Max.	Unit
f _{UART0}	UART0 asynchronous clock	—	8	MHz

Table 13.	Device clock s	pecifications ((continued)
-----------	----------------	-----------------	-------------

 The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.

2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100		ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	—	ns	2
Port rise and fall time	_	36	ns	3

Table 14. General switching specifications

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 15. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + \theta_{JA} \times$ chip power dissipation.

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — nominal V _{DD} and 25 °C	—	32.768	—	kHz	
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	—	39.0625	kHz	
$\Delta_{fdco_res_t}$	frequency at fixed	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using C3[SCTRIM] and C4[SCFTRIM]			± 0.6	%f _{dco}	1
Δf_{dco_t}		trimmed average DCO output Itage and temperature	_	+0.5/-0.7	± 3	%f _{dco}	1, 2
Δf_{dco_t}	Total deviation of frequency over fix range of 0–70 °C	_	± 0.4	± 1.5	%f _{dco}	1, 2	
f _{intf_ft}	Internal reference factory trimmed at	_	4	—	MHz		
$\Delta f_{intf_{ft}}$	Frequency deviation of internal reference clock (fast clock) over temperature and voltage — factory trimmed at nominal V_{DD} and 25 °C		_	+1/-2	± 3	%f _{intf_ft}	2
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user al V _{DD} and 25 °C	3	_	5	MHz	
f _{loc_low}	Loss of external cl RANGE = 00	lock minimum frequency —	(3/5) x f _{ints_t}	_	—	kHz	
f _{loc_high}	Loss of external cl RANGE = 01, 10,	ock minimum frequency — or 11	(16/5) x f _{ints_t}	_	—	kHz	
	•	FI	L				•
f _{fll_ref}	FLL reference free	quency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS = 00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS = 01) 1280 × f_{fll_ref}	40	41.94	48	MHz	
f _{dco_t_DMX3}	DCO output frequency	Low range (DRS = 00)	_	23.99	—	MHz	5, 6

Table 18. MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		732 × f _{fll_ref}					
		Mid range (DRS = 01)	—	47.97	—	MHz	
		$1464 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		—	180	—	ps	7
	• f _{VCO} = 48 M	Hz					
t _{fll_acquire}	FLL target frequer	ncy acquisition time	—		1	ms	8

Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, $f_{ints_{t}}$.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_1}) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications

Table 19. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	_	nA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	—	25	_	μA	
C _x	EXTAL load capacitance	_	_	_		2, 3
Cy	XTAL load capacitance	_	_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	_	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ]
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	—	_		kΩ	

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
R _{AS}	Analog source resistance (external)	12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	4
f _{ADCK}	ADC conversion clock frequency	≤ 12-bit mode	1.0		18.0	MHz	5
C _{rate}	ADC conversion rate	 ≤ 12-bit modes No ADC hardware averaging Continuous conversions enabled, subsequent conversion time 	20.000	_	818.330	Ksps	6

 Table 25.
 12-bit ADC operating conditions (continued)

- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- For packages without dedicated VREFH and VREFL pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SSA}.
- 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.</p>
- 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

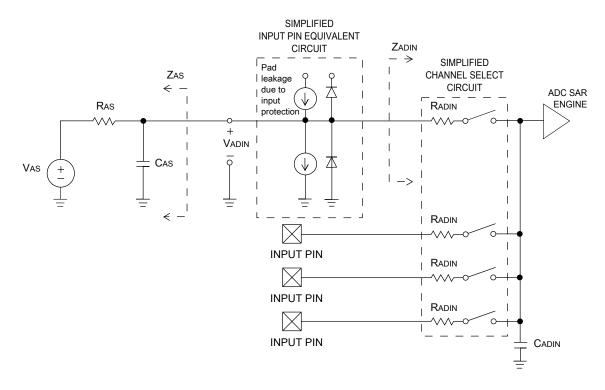


Figure 7. ADC input impedance equivalency diagram

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	20	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	12	ns	_
9	t _{HO}	Data hold time (outputs)	0	—	ns	_
10	t _{RI}	Rise time input		t _{periph} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	_
	t _{FO}	Fall time output				

Table 28. SPI master mode timing on slew rate disabled pads

 $\begin{array}{ll} \mbox{1. For SPI0, } f_{periph} \mbox{ is the bus clock (} f_{BUS}\mbox{)}. \\ \mbox{2. } t_{periph} = 1/f_{periph} \end{array}$

Table 29. SPI master mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	—	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{periph} – 30	1024 x t _{periph}	ns	-
6	t _{SU}	Data setup time (inputs)	96	—	ns	_
7	t _{HI}	Data hold time (inputs)	0	—	ns	_
8	t _v	Data valid (after SPSCK edge)	—	52	ns	_
9	t _{HO}	Data hold time (outputs)	0		ns	_
10	t _{RI}	Rise time input	—	t _{periph} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output				

1. For SPI0, f_{periph} is the bus clock (f_{BUS}).

2. $t_{periph} = 1/f_{periph}$

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100 ¹	0	400 ²	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4		0.6	—	μs
LOW period of the SCL clock	t _{LOW}	4.7	—	1.25	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	—	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	—	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ³	3.45 ⁴	0 ⁵	0.9 ³	μs
Data set-up time	t _{SU} ; DAT	250 ⁶	—	100 ⁴ , ⁷	_	ns
Rise time of SDA and SCL signals	t _r		1000	20 +0.1C _b ⁸	300	ns
Fall time of SDA and SCL signals	t _f		300	20 +0.1C _b ⁷	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4		0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 32. I2C timing

1. The PTB3 and PTB4 pins can support only the Standard mode.

- 2. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the normal drive pins and VDD \ge 2.7 V.
- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 4. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 5. Input signal Slew = 10 ns and Output Load = 50 pF
- 6. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 7. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement $t_{SU; DAT} \ge 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 8. C_b = total capacitance of the one bus line in pF.

Table 33. I ² C	1Mbit/s timing
----------------------------	----------------

Characteristic	Symbol	Minimum	Maximum	Unit
SCL Clock Frequency	f _{SCL}	0	1 ¹	MHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	0.26	_	μs
LOW period of the SCL clock	t _{LOW}	0.5		μs
HIGH period of the SCL clock	t _{HIGH}	0.26		μs
Set-up time for a repeated START condition	t _{SU} ; STA	0.26		μs
Data hold time for I_2C bus devices	t _{HD} ; DAT	0		μs

Characteristic	Symbol	Minimum	Maximum	Unit
Data set-up time	t _{SU} ; DAT	50	_	ns
Rise time of SDA and SCL signals	t _r	20 +0.1C _b	120	ns
Fall time of SDA and SCL signals	t _f	20 +0.1C _b ²	120	ns
Set-up time for STOP condition	t _{SU} ; STO	0.26	—	μs
Bus free time between STOP and START condition	t _{BUF}	0.5		μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	0	50	ns

 Table 33.
 I ²C 1Mbit/s timing (continued)

- 1. The maximum SCL clock frequency of 1 Mbit/s can support 200 pF bus loading when using the normal drive pins and VDD \ge 2.7 V.
- 2. $C_b = total capacitance of the one bus line in pF.$

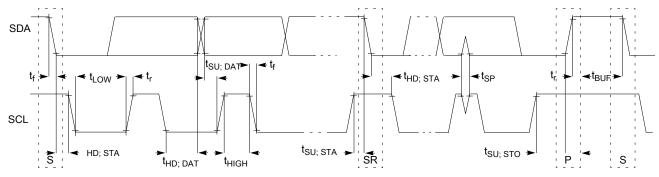


Figure 15. Timing definition for devices on the I²C bus

3.8.3 UART

See General switching specifications.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to nxp.com and perform a keyword search for the drawing's document number:

32 QFN	24 QFN	16 QFN	Pin Name	Default	ALTO	ALT1	ALT2	ALT3
16	12	8	PTB0/ IRQ_5	ADC0_SE6	ADC0_SE6	PTB0/ IRQ_5	EXTRG_IN	SPI0_SCK
17	13	9	PTB1/ IRQ_6	ADC0_SE5/ CMP0_IN3	ADC0_SE5/ CMP0_IN3	PTB1/ IRQ_6	UARTO_TX	UARTO_RX
18	14	10	PTB2/ IRQ_7	ADC0_SE4	ADC0_SE4	PTB2/ IRQ_7	UARTO_RX	UARTO_TX
19	15	_	PTA8	ADC0_SE3	ADC0_SE3	PTA8	I2C1_SCL	
20	16	_	PTA9	ADC0_SE2	ADC0_SE2	PTA9	I2C1_SDA	
21	-	-	PTA10/ IRQ_8	DISABLED		PTA10/ IRQ_8		
22	_	_	PTA11/ IRQ_9	DISABLED		PTA11/ IRQ_9		
23	17	11	PTB3/ IRQ_10	DISABLED		PTB3/ IRQ_10	I2C0_SCL	UARTO_TX
24	18	12	PTB4/ IRQ_11	DISABLED		PTB4/ IRQ_11	I2C0_SDA	UARTO_RX
25	19	13	PTB5/ IRQ_12	NMI_b	ADC0_SE1/ CMP0_IN1	PTB5/ IRQ_12	TPM1_CH1	NMI_b
26	20	-	PTA12/ IRQ_13/ LPTMR0_ALT2	ADC0_SE0/ CMP0_IN0	ADC0_SE0/ CMP0_IN0	PTA12/ IRQ_13/ LPTMR0_ALT2	TPM1_CH0	TPM_CLKIN0
27	_	_	PTA13	DISABLED		PTA13		
28	_	_	PTB12	DISABLED		PTB12		
29	21	-	PTB13	ADC0_SE13	ADC0_SE13	PTB13	TPM1_CH1	
30	22	14	PTA0/ IRQ_0	SWD_CLK	ADC0_SE12/ CMP0_IN2	PTA0/ IRQ_0	TPM1_CH0	SWD_CLK
31	23	15	PTA1/ IRQ_1/ LPTMR0_ALT1	RESET_b		PTA1/ IRQ_1/ LPTMR0_ALT1	TPM_CLKIN0	RESET_b
32	24	16	PTA2	SWD_DIO		PTA2	CMP0_OUT	SWD_DIO

5.2 KL02 pinouts

The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see KL02 signal multiplexing and pin assignments.

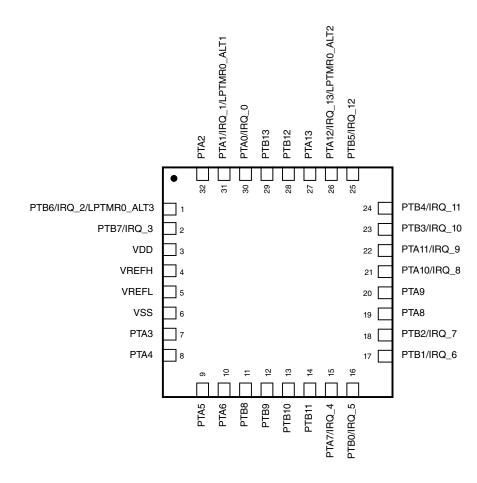


Figure 16. KL02 32-pin QFN pinout diagram

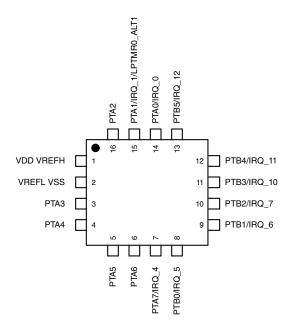


Figure 18. KL02 16-pin QFN pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the Web. To determine the orderable part numbers for this device, go to nxp.com and perform a part number search for the following device numbers: PKL02 and MKL02

7 Part identification

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

```
Q KL## A FFF R T PP CC N
```

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

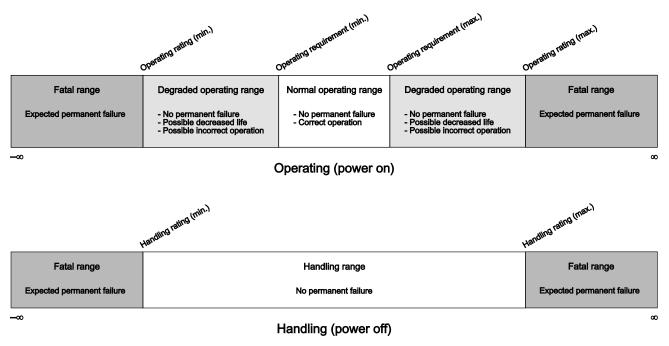

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL02
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 8 = 8 KB 16 = 16 KB 32 = 32 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 FG = 16 QFN (3 mm x 3 mm) FK = 24 QFN (4 mm x 4 mm) FM = 32 QFN (5 mm x 5 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

Table 34. Part number fields descriptions

7.4 Example

This is an example part number:

MKL02Z8VFG4

9.6 Relationship between ratings and operating requirements

9.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

9.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	۵°
V _{DD} 3.3 V supply voltage		3.3	V

Table 36.	Typical value conditions
-----------	--------------------------

10 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
2	05/2013	Public release.
2.1	07/2013	Removed the specification on OSCERCLK (4 MHz external crystal) because KL02 does not support it.
3	3/2014	 Updated the front page and restructured the chapters Added a note to the I_{LAT} in the ESD handling ratings Updated table title in the Voltage and current operating ratings Updated Voltage and current operating requirements Updated footnote to the V_{OH} in the Voltage and current operating behaviors Updated Power mode transition operating behaviors Updated Capacitance attributes Updated the Device clock specifications Added Inter-Integrated Circuit Interface (I2C) timing
4	08/2014	 Updated related source and added block diagram in the front page Updated Power consumption operating behaviors Updated t_{SU} and t_v in Table 28, t_{SU}, t_{dis}, t_v in Table 30 Updated the note in KL02 signal multiplexing and pin assignments
5	08/2017	 Added a note in the Thermal operating requirements Added I2C 1 Mbit/s timing table and a footnote to the f_{SCL} of the I2C timing table in the Inter-Integrated Circuit Interface (I2C) timing.

Table 37. Revision history

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2012-2017 NXP B.V.

Document Number KL02P32M48SF0 Revision 5 08/2017

