
Toshiba Semiconductor and Storage - TMP91FW27UG(C,JZ) Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 900/L1

Core Size 16-Bit

Speed 27MHz

Connectivity EBI/EMI, I²C, IrDA, UART/USART

Peripherals DMA, WDT

Number of I/O 53

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 12K x 8

Voltage - Supply (Vcc/Vdd) 2.2V ~ 3.6V

Data Converters A/D 4x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package 64-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/toshiba-semiconductor-and-storage/tmp91fw27ug-c-jz

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/tmp91fw27ug-c-jz-4411696
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Preface

Thank you very much for making use of Toshiba microcomputer LSI.
Before using this LSI, refer to section “Points of Note and Restrictions”.

Especially, take care below cautions.

CAUTION
How to release the HALT mode

Usually, interrupts can release all halts stats. However, the interrupts = (NMI,

INT0, INTRTC), which can release the HALT mode may not be able to do so if
they are input during the period CPU is shifting to the HALT mode (for about 5
clocks of fFPH) with IDLE1 or STOP mode (IDLE2 is not applicable to this case).
(In this case, an interupt request is kept on hold internally.)

If another interupt is generated after it has shifted to HALT mode completely,
halt status can be released without difficultly. The priority of this interrupt is
compare with that of the interrupt kept on hold internally, and the interrupt with
higher priority is handled first followed by the other interrupt.

 TMP91FW27

 91FW27-13 2007-11-02

3.2.4 Single Boot Mode

In Single Boot mode, the internal boot ROM (mask ROM) is activated to transfer a
program/erase routine (user-created boot program) from an external source into the
internal RAM. This program/erase routine is then used to program/erase the flash memory.
In this mode, the internal boot ROM is mapped into an area containing the interrupt vector
table, in which the boot ROM program is executed. The flash memory is mapped into an
address space different from the one into which the boot ROM is mapped (see 3H3HFigure 3.2.3).

The device’s SIO (SIO1) and the controller are connected to transfer the program/erase
routine from the controller to the device’s internal RAM. This program/erase routine is
then executed to program/erase the flash memory.

The program/erase routine is executed by sending commands and write data from the
controller. The communications protocol between the device and the controller is described
later in this manual. Before the program/erase routine can be transferred to the RAM, user
password verification is performed to ensure the security of user ROM data. If the
password is not verified correctly, the RAM transfer operation cannot be performed. In
Single Boot mode, disable interrupts and use the interrupt request flags to check for an
interrupt request.

Note: In Single Boot mode, the boot-ROM programs are executed in Normal mode. Do not change to
another operation mode in the program/erase routine.

 TMP91FW27

 91FW27-15 2007-11-02

(Step-3) Copying the program/erase routine to the RAM
After password verification is completed, the boot ROM copies the program/erase

routine (a) from the controller to the RAM using serial communications. The
program/erase routine must be stored within the RAM address range of 001000H to
003DFFH.

(Step-4) Executing the program/erase routine in the RAM
Control jumps to the program/erase routine (a) in the RAM. If necessary, the old

user application program is erased (sector erase or chip erase).

Note: The boot ROM is provided with an erase command, which enables the entire chip to be erased from the

controller without using the program/erase routine. If it is necessary to erase data on a sector basis,

incorporate the necessary code in the program/erase routine.

(TMP91FW27)

Flash memory

RAM

Old user application

program
(or erased state)

(Controller)

(I/O)

New user application
program

(a) Program/erase routine

Boot ROM SIO1

(a) Program/erase routine

(TMP91FW27)

Flash memory

RAM

(Controller)

(I/O)

New user application
program

(a) Program/erase routine

Boot ROM SIO1

(a) Program/erase routine
Erased

 TMP91FW27

 91FW27-20 2007-11-02

3.2.4.5 Interface Specifications
The SIO communications format in Single Boot mode is shown below. The device

supports the UART (asynchronous communications) serial operation mode.
To perform on-board programming, the same communications format must also be

set on the programming controller’s side.

● UART (asynchronous) communications
・Communications channel : SIO channel 1 (For the pins to be used, see 7H7HTable 3.2.4.)
・Serial transfer mode : UART (asynchronous communications) mode
・Data length : 8 bits
・Parity bit : None
・Stop bit : 1 bit
・Baud rate : See 8H8HTable 3.2.5 and 9H9HTable 3.2.6.

Table 3.2.4 Pin Connections

Pins UART
DVCC Power supply

pins DVSS
Mode setting pins AM1,AM0,

BOOT

Reset pin RESET

TXD1 Communications
pins RXD1

Note: Unused pins are in the initial state after reset release.

Table 3.2.5 Baud Rate Table
SIO Transfer Rate (bps)
UART 115200 57600 38400 19200 9600

 TMP91FW27

 91FW27-29 2007-11-02

3.2.4.7 Boot Program
When the device starts up in Single Boot mode, the boot program is activated.
The following explains the commands that are used in the boot program to

communicate with the controller when the device starts up in Single Boot mode. Use
this information for creating a controller for using Single Boot mode or for building a
user boot environment.

1. RAM Transfer command

In RAM transfer, data is transferred from the controller and stored in the device’s
internal RAM. When the transfer completes normally, the boot program will start
running the transferred user program. Up to 11.5 Kbytes of data can be
transferred as a user program. (This limit is implemented in the boot program to
protect the stack pointer area.) The user program starts executing from the RAM
storage start address.
This RAM transfer function enables a user-created program/erase routine to be
executed, allowing the user to implement their own on-board programming
method. To perform on-board programming with a user program, the flash
memory command sequences (see section 12H12H3.2.6) must be used. After the RAM
Transfer command has been completed, the entire internal RAM area can be used.
If read protection or write protection is applied on the device or a password error
occurs, this command will not be executed.

2. Flash Memory SUM command

This command calculates the SUM of 128 Kbytes of data in the flash memory and
returns the result. There is no operation command available to the boot program
for reading data from the entire area of the flash memory. Instead, this Flash
Memory SUM command can be used. Reading the SUM value enables revision
management of the application program.

3. Product Information Read command

This command returns the information about the device including its part number
and memory details stored in the flash memory at addresses 02FEF0H to
02FEF3H. This command can also be used for revision management of the
application program.

4. Flash Memory Chip Erase command

This command erases all the sectors in the flash memory. If read protection or
write protection is applied on the device, all the sectors in the flash memory are
erased and the read protection or write protection is cleared.
Since this command is also used to restore the operation of the boot program when
the password is forgotten, it does not include password verification.

5. Flash Memory Protect Set command

This command sets both read protection and write protection on the device.
However, if a password error occurs, this command will not be executed.
When read protection is set, the flash memory cannot be read in Programmer
mode. When write protection is set, the flash memory cannot be written in
Programmer mode.

 TMP91FW27

 91FW27-32 2007-11-02

10. From the controller to the device

The data in the 25th byte is CHECKSUM data. The CHECKSUM data sent by the
controller is the two’s complement of the lower 8-bit value obtained by summing
the data in the 19th to 24th bytes by unsigned 8-bit addition (ignoring any
overflow). For details on CHECKSUM, see 19H19H3.2.4.17 “20H20HHow to Calculate
CHECKSUM .”
Note: The data in the 19th to 25th bytes should be placed within addresses 001000H to 003DFFH (11.5

Kbytes) in the internal RAM.

11. From the device to the controller
The data in the 26th byte is the ACK response data to the data in the 19th to 25th
bytes (ACK response to the CHECKSUM value).
The device first checks to see whether the data received in the 19th to 25th bytes
contains any error. If a receive error is found, the device returns the ACK response
data for communications error (bit 3) 18H and waits for the next operation
command (3rd byte). The upper four bits of the ACK response data are the upper
four bits of the immediately preceding operation command data, so the value of
these bits is “1”.
Next, the device checks the CHECKSUM data in the 25th byte. This check is
made to see if the lower 8-bit value obtained by summing the data in the 19th to
25th bytes by unsigned 8-bit addition (ignoring any overflow) is 00H. If the value
is not 00H, the device returns the ACK response data for CHECKSUM error (bit
0) 11H and waits for the next operation command data (3rd byte).

12. From the controller to the device

The data in the 27th to m’th bytes is the data to be stored in the RAM. This data is
written to the RAM starting at the address specified in the 19th to 22nd bytes.
The number of bytes to be written is specified in the 23rd and 24th bytes.

13. From the controller to the device

The data in the (m+1)th byte is CHECKSUM data. The CHECKSUM data sent by
the controller is the two’s complement of the lower 8-bit value obtained by
summing the data in the 27th to m’th bytes by unsigned 8-bit addition (ignoring
any overflow). For details on CHECKSUM, see 21H21H3.2.4.17 ”22H22HHow to Calculate
CHECKSUM.”

 TMP91FW27

 91FW27-34 2007-11-02

3.2.4.9 Flash Memory SUM command (See 23H23HTable 3.2.9)
1. The data in the 1st and 2nd bytes is the same as in the case of the RAM Transfer

command.

2. From the controller to the device
The data in the 3rd byte is operation command data. The Flash Memory SUM
command data (20H) is sent here.

3. From the device to the controller

The data in the 4th byte is the ACK response data to the operation command data
in the 3rd byte.
The device first checks to see if the data in the 3rd byte contains any error. If a
receive error is found, the device returns the ACK response data for
communications error (bit 3) x8H and waits for the next operation command data
(3rd byte). The upper four bits of the ACK response data are undefined. (They are
the upper four bits of the immediately preceding operation command data.)
Then, if the data in the 3rd byte corresponds to one of the operation command
values given in 24H24HTable 3.2.7, the device echoes back the received data (ACK
response for normal reception). In this case, 20H is echoed back and execution
then branches to the flash memory SUM processing routine. If the data in the 3rd
byte does not correspond to any operation command, the device returns the ACK
response data for operation command error (bit 0) x1H and waits for the next
operation command data (3rd byte). The upper four bits of the ACK response data
are undefined. (They are the upper four bits of the immediately preceding
operation command data.)

4. From the device to the controller

The data in the 5th and 6th bytes is the upper and lower data of the SUM value,
respectively. For details on SUM, see 25H25H3.2.4.16 “26HHow to Calculate SUM .”

5. From the device to the controller

The data in the 7th byte is CHECKSUM data. This is the two’s complement of the
lower 8-bit value obtained by summing the data in the 5th and 6th bytes by
unsigned 8-bit addition (ignoring any overflow).

6. From the controller to the device

The data in the 8th byte is the next operation command data.

 TMP91FW27

 91FW27-36 2007-11-02

9. From the device to the controller

The data in the 33rd to 36th bytes is the RAM end address. FFH, 3FH, 00H and
00H are sent starting from the 33rd byte.

10. From the device to the controller

The data in the 37th to 44th bytes is dummy data.

11. From the device to the controller
The data in the 45th and 46th bytes contains the protection status and sector
division information of the flash memory.
● Bit 0 indicates the read protection status.

•0: Read protection is applied.
•1: Read protection is not applied.

● Bit 1 indicates the write protection status.
•0: Write protection is applied.
•1: Write protection is not applied.

● Bit 2 indicates whether or not the flash memory is divided into sectors.
•0: The flash memory is divided into sectors.
•1: The flash memory is not divided into sectors.

● Bits 3 to 15 are sent as “0”.

12. From the device to the controller
The data in the 47th to 50th bytes is the flash memory start address. 00H, 00H,
01H and 00H are sent starting from the 47th byte.

13. From the device to the controller

The data in the 51st to 54th bytes is the flash memory end address. FFH, FFH,
02H and 00H are sent starting from the 51st byte.

14. From the device to the controller

The data in the 55th and 56th bytes indicates the number of sectors in the flash
memory. 20H and 00H are sent starting from the 55th byte.

15. From the device to the controller

The data in the 57th to 65th bytes contains sector information of the flash memory.
Sector information is comprised of the start address (starting from the flash
memory start address), sector size and number of consecutive sectors of the same
size. Note that the sector size is represented in word units.
The data in the 57th to 65th bytes indicates 4 Kbytes of sectors (sector 0 to sector
31).
For the data to be transferred, see 30H30HTable 3.2.10 and 31H31HTable 3.2.11.

16. From the device to the controller

The data in the 66th byte is CHECKSUM data. This is the two’s complement of
the lower 8-bit value obtained by summing the data in the 5th to 65th bytes by
unsigned 8-bit addition (ignoring any overflow).

17. From the controller to the device

The data in the 67th byte is the next operation command data.

 TMP91FW27

 91FW27-38 2007-11-02

6. From the device to the controller

The data in the 7th byte indicates whether or not the erase operation has
completed successfully. If the erase operation has completed successfully, the
device returns the end code (4FH). If an erase error has occurred, the device
returns the error code (4CH).

7. From the device to the controller

The data in the 8th byte is ACK response data. If the erase operation has
completed successfully, the device returns the ACK response for erase completion
(5DH). If an erase error has occurred, the device returns the ACK response for
erase error (60H).

8. From the controller to the device

The data in the 9th byte is the next operation command data.

 TMP91FW27

 91FW27-40 2007-11-02

6. From the device to the controller

The data in the 18th byte is the ACK response data to the data in the 5th to 17th
bytes (ACK response to the CHECKSUM value).
The device first checks to see whether the data in the 5th to 17th bytes contains
any error. If a receive error is found, the device returns the ACK response data for
communications error (bit 3) 68H and waits for the next operation command data
(3rd byte). The upper four bits of the ACK response data are the upper four bits of
the immediately preceding operation command data, so the value of these bits is
“6”.
Then, the device checks the CHECKSUM data in the 17th byte. This check is
made to see if the lower 8 bits of the value obtained by summing the data in the
5th to 17th bytes by unsigned 8-bit addition (ignoring any overflow) is 00H. If the
value is not 00H, the device returns the ACK response data for CHECKSUM error
(bit 0) 61H and waits for the next operation command data (3rd byte).
Finally, the device examines the result of password verification. If all the data in
the 5th to 16th bytes is not verified correctly, the device returns the ACK response
data for password error (bit 0) 61H and waits for the next operation command
data (3rd byte).
If no error is found in the above checks, the device returns the ACK response data
for normal reception 60H.

7. From the device to the controller

The data in the 19th byte indicates whether or not the protect set operation has
completed successfully. If the operation has completed successfully, the device
returns the end code (6FH). If an error has occurred, the device returns the error
code (6CH).

8. From the device to the controller

The data in the 20th byte is ACK response data. If the protect set operation has
completed successfully, the device returns the ACK response data for normal
completion (31H). If an error has occurred, the device returns the ACK response
data for error (34H).

9. From the device to the controller

The data in the 21st byte is the next operation command data.

 TMP91FW27

 91FW27-43 2007-11-02

3.2.4.14 Determining Serial Operation Mode

To communicate in UART mode, the controller should transmit the data value 86H
as the first byte at the desired baud rate. 42H42HFigure 3.2.7 shows the waveform of this
operation.

Figure 3.2.7 Data for Determining Serial Operation Mode

The boot program receives the first byte (86H) after reset release not as serial
communications data. Instead, the boot program uses the first byte to determine the
baud rate. The baud rate is determined by the output periods of tAB, tAC and tAD as
shown in 43H43HFigure 3.2.7 using the procedure shown in 44H44HFigure 3.2.8.

The CPU monitors the level of the receive pin. Upon detecting a level change, the
CPU captures the timer value to determine the baud rate.

UART (86H)
tAB

Point A Point B Point C Point D
bit 7 bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 Start Stop

tAD
tAC

 TMP91FW27

 91FW27-46 2007-11-02

3.2.4.16 How to Calculate SUM
SUM is calculated by summing the values of all data read from the flash memory by

unsigned 8-bit addition and is returned as a word (16-bit) value. The resulting SUM
value is sent to the controller in order of upper 8 bits and lower 8 bits. All the 128
Kbytes of data in the flash memory are included in the calculation of SUM. When the
Flash Memory SUM command is executed, SUM is calculated in this way.

Example:

3.2.4.17 How to Calculate CHECKSUM
CHECKSUM is calculated by taking the two’s complement of the lower 8-bit value

obtained by summing the values of received data by unsigned 8-bit addition (ignoring
any overflow). When the Flash Memory SUM command or the Product Information
Read command is executed, CHECKSUM is calculated in this way. The controller
should also use this CHECKSUM calculation method for sending CHECKSUM
values.

Example: Calculating CHECKSUM for the Flash Memory SUM command

When the upper 8-bit data of SUM is E5H and the lower 8-bit data is F6H,
CHECKSUM is calculated as shown below.

First, the upper 8 bits and lower 8 bits of the SUM value are added by unsigned
operation.

 E5H + F6H = 1DBH

Then, the two’s complement of the lower 8 bits of this result is obtained as shown
below. The resulting CHECKSUM value (25H) is sent to the controller.
 0 − DBH = 25H

A1H

B2H

C3H

D4H

When SUM is calculated from the four data entries
shown to the left, the result is as follows:
 A1H + B2H + C3H + D4H = 02EAH

SUM upper 8 bits: 02H
SUM lower 8 bits: EAH

Thus, the SUM value is sent to the controller in order of
02H and EAH.

 TMP91FW27

 91FW27-60 2007-11-02

3.2.6.10 Programming the Flash Memory by the Internal CPU
The internal CPU programs the flash memory by using the command sequences and

hardware sequence flags described above. However, since the flash memory cannot be
read during auto operation mode, the program/erase routine must be executed outside
of the flash memory.

The CPU can program the flash memory either by using Single Boot mode or by
using a user-created protocol in Single Chip mode (User Boot).

1) Single Boot:

The microcontroller is started up in Single Boot mode to program the flash
memory by the internal boot ROM program. In this mode, the internal boot ROM
is mapped to an area including the interrupt vector table, in which the boot ROM
program is executed. The flash memory is mapped to an address area different
from the boot ROM area. The boot ROM program loads data into the flash memory
by serial transfer. In Single Boot mode, interrupts must be disabled including
non-maskable interrupts (NMI , etc.).
For details, see 49H3.2.4“50HSingle Boot Mode”

2) User Boot:

In this method, the flash memory is programmed by executing a user-created
routine in Single Chip mode (normal operation mode). In this mode, the
user-created program/erase routine must also be executed outside of the flash
memory. It is also necessary to disable interrupts including non-maskable
interrupts.
The user should prepare a flash memory program/erase routine (including
routines for loading write data and writing the loaded data into the flash memory).
In the main program, normal operation is switched to flash memory programming
operation to execute the flash memory program/erase routine outside of the flash
memory area. For example, the flash memory program/erase routine may be
transferred from the flash memory to the internal RAM and executed there or it
may be prepared and executed in external memory.
For details, see 51H3.2.5“52HFlash Memory”.

 TMP91FW27

 91FW27-63 2007-11-02

Read/Write Protect Set

Protect Set Command Sequence
(Address/Data)

xxxAAAH/AAH

xxx554H/55H

xxxAAAH/A5H

Set read protect

xxx77EH/F0H

Set write protect

xxx77EH/0FH

Set both read protect and write protect

xxx77EH/00H

Protect Set command sequence
(See the flowchart below)

Start

Toggle bit (D6)

Protect Set end Abnormal end

Yes

Timeout (60 μs)

Product ID Entry

Read data matched
program data?

Product ID Exit

Byte read (D7 to D0)
Addr. = xxx77EH

No

Toggle bit (D6)

Protect Set command sequence
(See the flowchart below)

Product ID Entry

Product ID Exit

 TMP91FW27

 91FW27-68 2007-11-02

(Example: Program to be loaded and executed in RAM)
Set read protection and write protection on the flash memory.

;#### Flash Memory Protect Set processing ####
 ld XIX, 0xFE077E ; set protect address
PROTECT:
 ld (0xFE0AAA), 0xAA ; 1st bus write cycle
 ld (0xFE0554), 0x55 ; 2nd bus write cycle
 ld (0xFE0AAA), 0xA5 ; 3rd bus write cycle
 ld (XIX), 0x00 ; 4th bus write cycle

 cal TOGGLECHK ; check toggle bit
 cal PID_ENTRY ;
 ld A, (XIX) ; read protected address
 cal PID_EXIT ;
 cp A, 0x00 ;(0xFE077E)=0x00?
 j ne, PROTECT_ERR ; protected?

PROTECT_END:
 j PROTECT_END ; protect set operation completed

PROTECT_ERR:
 j PROTECT_ERR ; protect set error

;#### Product ID Entry processing ####
PID_ENTRY:
 ld (0xFE0AAA), 0xAA ; 1st bus write cycle
 ld (0xFE0554), 0x55 ; 2nd bus write cycle
 ld (0xFE0AAA), 0x90 ; 3rd bus write cycle
 ; --- wait for 300 nsec or longer (execute NOP instruction [148nsec/@fFPH=27MHz] three times) ---
 nop
 nop
 nop ; wait for 444 nsec
 ret

;#### Product ID Exit processing ####
PID_EXIT:
 ld (0xFE0000), 0xF0 ; 1st bus write cycle
 ; --- wait for 300 nsec or longer (execute NOP instruction [148nsec/@fFPH=27MHz] three times) ---
 nop
 nop
 nop ; wait for 444 nsec
 ret

;#### Toggle bit (D6) check processing ####
TOGGLECHK:
 ld L, (XIX)
 and L, 0y01000000 ; check toggle bit (D6)
 ld H, L ; save first toggle bit data
TOGGLECHK1:
 ld L, (XIX)
 and L, 0y01000000 ; check toggle bit (D6)
 cp L, H ; toggle bit = toggled?
 j z, TOGGLECHK2 ; if not toggled, end processing
 ld H, L ; save current toggle bit state
 j TOGGLECHK1 ; recheck toggle bit
TOGGLECHK2:
 ret

(Example: Program to be loaded and executed in RAM)
Read data from address FE0000H.

;#### Flash memory read processing ####
READ:
 ld WA, (0xFE0000) ; read data from flash memory

 TMP91FW27

2007-11-02 91FW27-69

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Parameter Symbol Rating Unit
Power supply voltage Vcc −0.5 to 4.0
Input voltage VIN −0.5 to Vcc + 0.5

V

Output current (1 pin) IOL 2
Output current (1 pin) IOH −2
Output current (Total) ΣIOL 80
Output current (Total) ΣIOH −80

mA

Power dissipation (Ta = 85°C) PD 600 mW
Soldering temperature (10 s) TSOLDER 260
Storage temperature TSTG −65 to 150
Operation temperature TOPR −40 to 85

°C

Number of Times Program
Erase

NEW 100 Cycle

Note: The absolute maximum ratings are rated values that must not be exceeded
during operation, even for an instant. Any one of the ratings must not be
exceeded. If any absolute maximum rating is exceeded, a device may break
down or its performance may be degraded, causing it to catch fire or explode
resulting in injury to the user. Thus, when designing products that include
this device, ensure that no absolute maximum rating value will ever be
exceeded.

Solderability of lead free products
Test

parameter Test condition Note

Use of Sn−37Pb solder Bath
Solder bath temperature =230°C, Dipping time = 5 seconds
The number of times = one, Use of R-type flux

Solderability

Use of Sn−3.0Ag−0.5Cu solder bath
Solder bath temperature = 245°C, Dipping time = 5 seconds
The number of times = one, Use of R-type flux (use of lead free)

Pass:
solderability rate until forming ≥ 95%

 TMP91FW27

2007-11-02 91FW27-76

4.4 AD Conversion Characteristics

AVCC = VCC, AVSS = VSS
Parameter Symbol Condition Min Typ. Max Unit

Analog input voltage VAIN AVSS AVCC V

Error
(Not including quantization
errors)

− VCC = 2.2 V to 3.6 V ±1.0 ±4.0 LSB

Note 1: 1 LSB = (AVCC − AVSS)/1024 [V]

Note 2: Minimum operation frequency:
The operaion of AD converter is guranteed only using fc (High frequency oscillator).
fs (Low frequency oscillator) is not guranteed. But When frequency of clock selected by clock gear
is more than and eqaull 4 MHz in using fc, it is guranteed (fFPH ≥ 4 MHz).

Note 3: The value for Icc (Current of VCC pin) includes the current which flows through the AVCC pin.

 TMP91FW27

2007-11-02 91FW27-77

4.5 Serial Channel Timing (I/O interface mode)

(1) SCLK input mode

Variable 10 MHz 27 MHz
Parameter Symbol

Min Max Min Max Min Max
Unit

SCLK period tSCY 16X 1.6 0.59 μs
tSCY/2 − 4X − 110

(VCC = 2.7 V to 3.6 V)
 290 38

Output data → SCLK rising/falling tOSS
tSCY/2 − 4X − 180

(VCC = 2.2 V)
 220 −

ns

SCLK rising/falling
→ Output data hold

tOHS tSCY/2 + 2X + 0 1000 370 ns

SCLK rising /falling
→ Input data hold

tHSR 3X + 10 310 121 ns

SCLK rising/falling
→ Valid data input

tSRD tSCY − 0 1600 592 ns

Valid data input
→ SCLK rising/falling

tRDS 0 0 0 ns

(2) SCLK ouptut mode

Variable 10 MHz 27 MHz
Parameter Symbol

Min Max Min Max Min Max
Unit

SCLK period tSCY 16X 8192X 1.6 819 0.59 303 μs
Output data

→ SCLK rising/falling
tOSS tSCY/2 − 40 760 256 ns

SCLK rising/falling
→ Output data hold

tOHS tSCY/2 − 40 760 256 ns

SCLK rising/falling
→ Input data hold

tHSR 0 0 0 ns

SCLK rising/falling
→ Valid data input

tSRD tSCY − 1X − 180 1320 375 ns

Valid data input
→ SCLK rising/falling

tRDS 1X + 180 280 217 ns

Note 1: SCLK rising/falling: The rising edge is used in SCLK rising mode.
 The falling edge is used in SCLK falling mode.

Note 2: 27 MHz and 10 MHz values are calculated from tSCY = 16X case.

Note 3: Symbol [x] in the above table means the period of clock fFPH. It’s half period the system clock
fSYS for CPU core.

 The period of clock fFPH depends on the clock gear setting or the selection of high/low
oscillator frequency.

tRDS
tSRD tHSR

tSCY

Output data
TXD

SCLK
(Input falling mode)

SCLK
Output mode/
input rising mode

0

tOSS tOHS

1 3

0 1 3

2

2
Valid

Input data
RXD

Valid Valid Valid

 TMP91FW27

2007-11-02 91FW27-79

5. Port Section Equivalent Circuit Diagrams
• Reading the circuit diagrams

Basically, the gate symbols written are the same as those used for the standard CMOS logic IC
[74HCXX] series.

The dedicated signal is described below.
STOP : This signal becomes active 1 when the HALT mode setting register is set to the
STOP mode (SYSCR2<HALTM1:0> = “01”) and the CPU executes the HALT instruction.
When the drive enable bit SYSCR2<DRVE> is set to “1”, however STOP remains at “0”.

• The input protection resistance ranges from several tens of ohms to several hundreds of ohms.

■ P0 (AD0~AD7), P1 (AD8~AD15, A8~A15), P2 (A16~A21, A0~A5), P60, P70~P74, P80~P83,
P91~P92, P94~P95

■ P30 (RD), P31 (WR)

VCC

Output data P-ch

I/O Input data

Output enable
STOP

Input enable

N-ch

Output

Vcc

Output data

STOP

P-ch

N-ch

 TMP91FW27

2007-11-02 91FW27-85

QFP64-P-1414-0.80A

Unit: mm

