NXP USA Inc. - <u>S9KEAZ128AMLH Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9keaz128amlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Timers
 - One 6-channel FlexTimer/PWM (FTM)
 - Two 2-channel FlexTimer/PWM (FTM)
 - One 2-channel periodic interrupt timer (PIT)
 - One pulse width timer (PWT)
 - One real-time clock (RTC)
- Communication interfaces
 - Two SPI modules (SPI)
 - Up to three UART modules (UART)
 - $\ Two \ I2C \ modules \ (I2C)$
 - One MSCAN module (MSCAN)
- Package options
 - 80-pin LQFP
 - 64-pin LQFP

Ratings

Field	Description	Values
FFF	Program flash memory size	• 128 = 128 KB
М	Maskset revision	 A = 1st Fab version B = Revision after 1st version
Т	Temperature range (°C)	 C = -40 to 85 V = -40 to 105 M = -40 to 125
PP	Package identifier	 LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (14 mm x 14 mm)
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

S9KEAZ128AMLK

3 Ratings

3.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

3.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4 General

4.1 Nonswitching electrical specifications

4.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Symbol	Descriptions			Min	Typical ¹	Max	Unit
_		Operating voltage	—	2.7	—	5.5	V
V _{OH}	Output	All I/O pins, except PTA2	5 V, $I_{load} = -5 \text{ mA}$	V _{DD} – 0.8	—	_	V
	high voltage	and PTA3, standard-drive strength	3 V, I _{load} = -2.5 mA	V _{DD} – 0.8			V
		High current drive pins,	5 V, $I_{load} = -20 \text{ mA}$	$V_{DD} - 0.8$	—		V
		high-drive strength ²	$3 \text{ V}, \text{ I}_{\text{load}} = -10 \text{ mA}$	V _{DD} – 0.8	—	_	V
I _{OHT}	Output	Max total I _{OH} for all ports	5 V	_	—	-100	mA
	high current		3 V	—	—	-60	
V _{OL}	Output	All I/O pins, standard-drive	5 V, I _{load} = 5 mA	—	—	0.8	V
	low voltage	strength	3 V, I _{load} = 2.5 mA	—	—	0.8	V
	Vollago	High current drive pins,	5 V, I _{load} =20 mA	_	—	0.8	V
		high-drive strength ²	3 V, I _{load} = 10 mA	—	—	0.8	V
I _{OLT}	Output	Max total I _{OL} for all ports	5 V	—	—	100	mA
	low current		3 V	_	—	60	
V _{IH}	Input high	All digital inputs	4.5≤V _{DD} <5.5 V	$0.65 \times V_{DD}$	—		V
	voltage		2.7≤V _{DD} <4.5 V	$0.70 \times V_{DD}$	—		
V _{IL}	Input low voltage	All digital inputs	4.5≤V _{DD} <5.5 V	_	—	0.35 × V _{DD}	V
			2.7≤V _{DD} <4.5 V		—	$0.30 \times V_{DD}$	
V _{hys}	Input hysteresis	All digital inputs		$0.06 \times V_{DD}$	—	_	mV
{In}	Input leakage current	Per pin (pins in high impedance input mode)	$V{IN} = V_{DD}$ or V_{SS}	—	0.1	1	μA

Table 2. DC characteristics

Symbol		Descriptions		Min	Typical ¹	Max	Unit
I _{INTOT}	Total leakage combined for all port pins	Pins in high impedance input mode	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μΑ
R _{PU}	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Pullup resistors	PTA2 and PTA3 pins	_	30.0	—	60.0	kΩ
I _{IC}	DC	Single pin limit	$V_{\rm IN} < V_{\rm SS}, V_{\rm IN} > V_{\rm DD}$	-2	_	2	mA
	injection current ^{4,} 5, 6	Total MCU limit, includes sum of all stressed pins		-5	—	25	
C _{In}	Inpu	t capacitance, all pins	—	_	—	7	pF
V _{RAM}	RA	M retention voltage		2.0		_	V

Table 2. DC characteristics (continued)

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true open drain I/O pins that are internally clamped to V_{SS}.
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Symbol	Descr	iption	Min	Тур	Max	Unit
V _{POR}	POR re-ari	n voltage ¹	1.5	1.75	2.0	V
V _{LVDH}	Falling low-voltage detect threshold—high range (LVDV = 1) ²		4.2	4.3	4.4	V
V _{LVW1H}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V _{LVW2H}	threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V _{LVW4H}		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	High range low-voltage detect/ warning hysteresis			100	_	mV

Table 3. LVD and POR specification

Symbol	Descr	iption	Min	Тур	Max	Unit
V _{LVDL}	Falling low-vent	oltage detect ange (LVDV = 0)	2.56	2.61	2.66	V
V _{LVW1L}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V _{LVW2L}	threshold—low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}		Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V _{LVW4L}		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}		Low range low-voltage detect hysteresis		40	_	mV
V _{HYSWL}	Low range low-voltage warning hysteresis		—	80	_	mV
V _{BG}	Buffered ban	dgap output ³	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. Rising thresholds are falling threshold + hysteresis.
- 3. voltage Factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

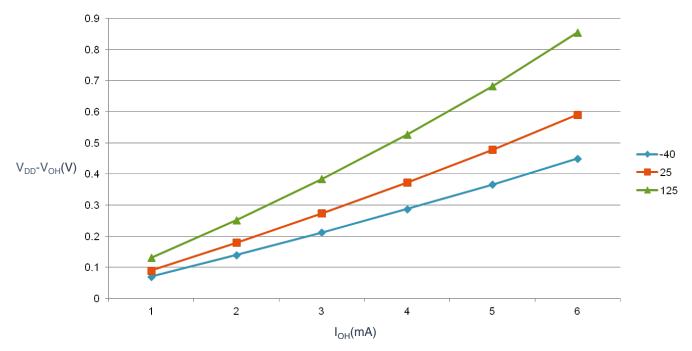


Figure 1. Typical V_{DD}-V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 5 V)

Nonswitching electrical specifications

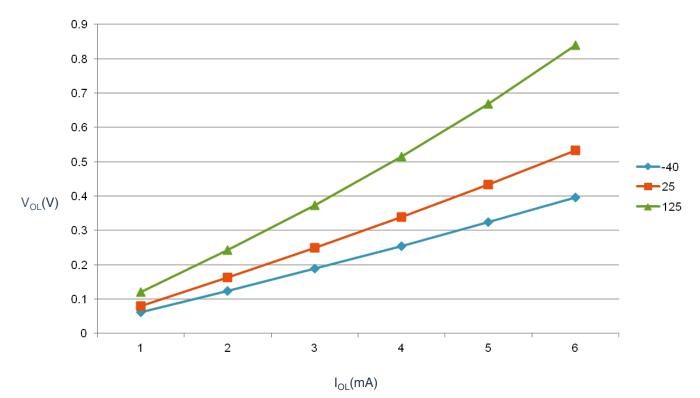


Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) (V_{DD} = 3 V)

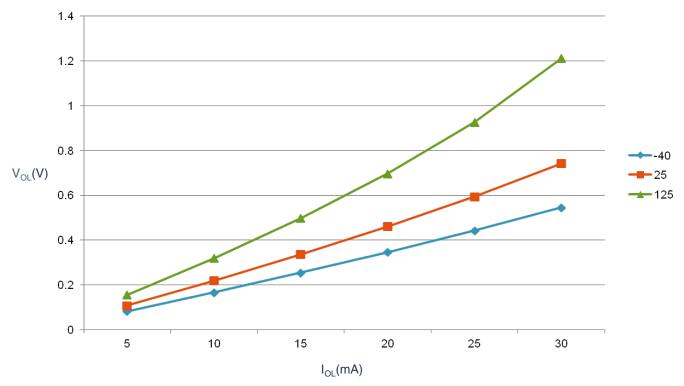


Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) (V_{DD} = 5 V)

Switching specifications

Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
LVD adder to Stop ⁴	—	_	5	130	_	μA	-40 to 125 °C
			3	125	_		

Table 4. Supply current characteristics (continued)

1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

2. The high current is observed at high temperature.

3. RTC adder cause <1 μ A I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.

4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

4.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following Freescale applications notes, available on **freescale.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

4.2 Switching specifications

4.2.1 Control timing

Table 5. Control timing

Num	Rating	Symbol	Min	Typical ¹	Max	Unit
1	System and core clock	f _{Sys}	DC	—	48	MHz
2	Bus frequency ($t_{cyc} = 1/f_{Bus}$)	f _{Bus}	DC	_	24	MHz
3	Internal low power oscillator frequency	f _{LPO}	0.67	1.0	1.25	KHz
4	External reset pulse width ²	t _{extrst}	1.5 ×	_	_	ns
			t _{cyc}			

Table continues on the next page...

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

ownching specifications

Num	Rating	Symbol	Min	Typical ¹	Max	Unit	
5	Reset low drive		t _{rstdrv}	$34 imes t_{cyc}$	—	—	ns
6	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	—	_	ns
		Synchronous path ³	t _{IHIL}	1.5 × t _{cyc}	_	—	ns
7	Keyboard interrupt pulse	Asynchronous path ²	t _{ILIH}	100	_	—	ns
	width	Synchronous path	t _{IHIL}	1.5 × t _{cyc}	_	_	ns
8	Port rise and fall time -	—	t _{Rise}	—	10.2	—	ns
	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	—	ns
	Port rise and fall time - high	—	t _{Rise}	—	5.4	—	ns
	drive strength (load = 50 pF) ⁴		t _{Fall}		4.6	—	ns

Table 5. Control timing (continued)

1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.

- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 4. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

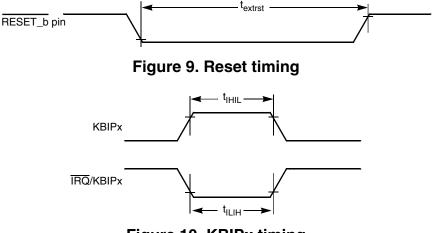


Figure 10. KBIPx timing

4.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 6. FTM input timing

Function	Symbol	Min	Мах	Unit
Timer clock frequency	f _{Timer}	f _{Bus}	f _{Sys}	Hz
External clock frequency	f _{TCLK}	0	f _{Timer} /4	Hz

Thermal specifications

Function	Symbol	Min	Мах	Unit
External clock period	t _{TCLK}	4	—	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{ciki}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 6. FTM input timing (continued)

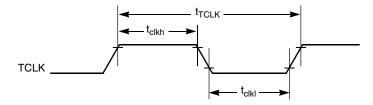


Figure 11. Timer external clock

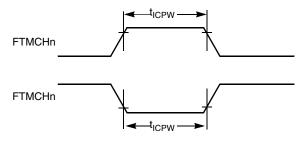


Figure 12. Timer input capture pulse

4.3 Thermal specifications

4.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

mermal specifications

Board type Symbol Description 64 LQFP **80 LQFP** Unit Notes Single-layer (1S) R_{0JA} Thermal resistance, junction to 71 57 °C/W 1, 2 ambient (natural convection) Four-layer (2s2p) $R_{\theta JA}$ Thermal resistance, junction to 53 44 °C/W 1, 3 ambient (natural convection) Single-layer (1S) Thermal resistance, junction to 47 °C/W 1, 3 $R_{\theta JMA}$ 59 ambient (200 ft./min. air speed) Four-layer (2s2p) Thermal resistance, junction to 46 °C/W 1, 3 $R_{\theta JMA}$ 38 ambient (200 ft./min. air speed) °C/W 4 Thermal resistance, junction to 35 28 $R_{\theta JB}$ board °C/W 5 $\mathsf{R}_{\theta JC}$ Thermal resistance, junction to case 20 15 Ψ_{JT} 5 3 °C/W 6 Thermal characterization parameter, junction to package top outside center (natural convection)

Table 7. Thermal attributes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_J) in °C can be obtained from:

 $T_J = T_A + (P_D \times \theta_{JA})$

Where:

 T_A = Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{\rm D} = \mathbf{K} \div (\mathbf{T}_{\rm J} + 273 \ ^{\circ}\mathrm{C})$$

Solving the equations above for K gives:

 $\mathbf{K} = \mathbf{P}_{\mathrm{D}} \times (\mathbf{T}_{\mathrm{A}} + 273 \ ^{\circ}\mathrm{C}) + \mathbf{\theta}_{\mathrm{JA}} \times (\mathbf{P}_{\mathrm{D}})^{2}$

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving the above equations iteratively for any value of T_A .

5 Peripheral operating requirements and behaviors

5.1 Core modules

5.1.1 SWD electricals

 Table 8.
 SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	24	MHz
J2	SWD_CLK cycle period	1/J1		ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	—	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	3	_	ns
J11	SWD_CLK high to SWD_DIO data valid		35	ns
J12	SWD_CLK high to SWD_DIO high-Z	5		ns

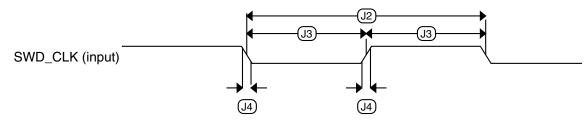


Figure 13. Serial wire clock input timing

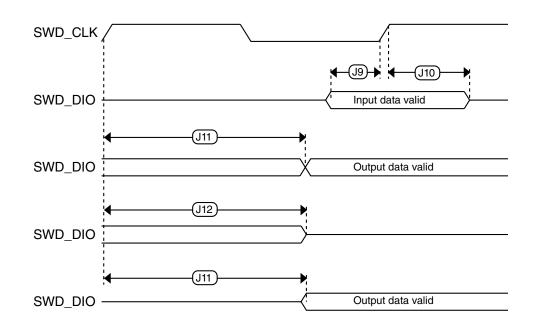


Figure 14. Serial wire data timing

5.2 External oscillator (OSC) and ICS characteristics

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	0	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	resonator frequency	High range (RANGE = 1)	f _{hi}	4	_	24	MHz
2	L	oad capacitors	C1, C2		See Note ²		
3	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F				
		Low Frequency, High-Gain — Mode —		10		MΩ	
		High Frequency, Low-Power Mode	Low-Power		1		ΜΩ
		High Frequency, High-Gain Mode			1	—	ΜΩ
4	Series resistor -	Low-Power Mode ³	R _S	—	0	_	kΩ
	Low Frequency	High-Gain Mode			200		kΩ
5	Series resistor - High Frequency	Low-Power Mode ³	R _S		0	_	kΩ
	Series resistor -	4 MHz		_	0	—	kΩ
	High Frequency, High-Gain Mode	8 MHz		_	0	_	kΩ

Num		Characteristic	Symbol	Min	Typical ¹	Max	Unit
		16 MHz		_	0	_	kΩ
6	Crystal start-up	Low range, low power	t _{CSTL}		1000	_	ms
	time low range = 32.768 kHz	Low range, high gain		_	800	_	ms
	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
	range = 20 MHz crystal ^{4,5}	High range, high gain		—	1.5		ms
7	Internal r	eference start-up time	t _{IRST}	_	20	50	μs
8	Internal reference	ce clock (IRC) frequency trim range	f _{int_t}	31.25	—	39.0625	kHz
9	Internal reference clock frequency, factory trimmed	T = 125 °C, V _{DD} = 5 V	f _{int_ft}	_	37.5	_	kHz
10	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	40	—	50	MHz
11	Factory trimmed internal oscillator accuracy	T = 125 °C, V _{DD} = 5 V	∆f _{int_ft}	-0.8	_	0.8	%
12	Deviation of IRC over temperature when trimmed at $T = 25 \degree$ C, $V_{DD} =$ 5 V	Over temperature range from -40 °C to 125°C	Δf_{int_t}	-1	_	0.8	%
13	Frequency accuracy of DCO output using factory trim value	Over temperature range from -40 °C to 125°C	Δf _{dco_ft}	-2.3	-	0.8	%
14	FLL	acquisition time ^{4,6}	t _{Acquire}		—	2	ms
15		f DCO output clock (averaged er 2 ms interval) ⁷	C _{Jitter}	_	0.02	0.2	%f _{dco}

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

rempheral operating requirements and behaviors

1. Typical values assume V_{DDA} = 5.0 V, Temp = 25°C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

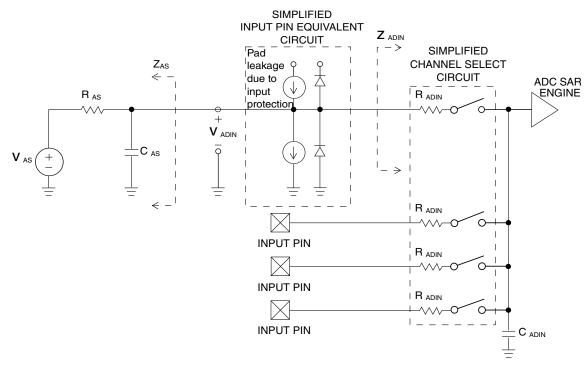
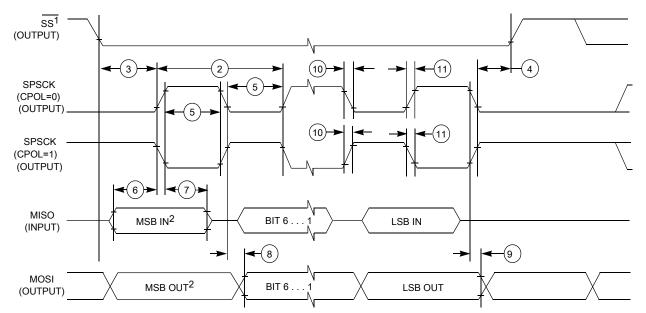


Figure 16. ADC input impedance equivalency diagram

Table 12.	12-bit ADC characteristics	(V _{REFH} =	V _{DDA} , V	/ _{REFL} = V _{SSA})
-----------	----------------------------	----------------------	----------------------	--

a				- 1		
Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
Supply current		I _{DDA}	_	133	—	μA
ADLPC = 1						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	218	_	μA
ADLPC = 1						
ADLSMP = 0						
ADCO = 1						
Supply current		I _{DDA}	_	327	_	μA
ADLPC = 0						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	582	990	μA
ADLPC = 0						
ADLSMP = 0						
ADCO = 1						
Supply current	Stop, reset, module off	I _{DDA}	_	0.011	1	μA

Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
ADC asynchronous clock source	High speed (ADLPC = 0)	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)		1.25	2	3.3	
Conversion time (including sample time)	Short sample (ADLSMP = 0)	t _{ADC}	_	20	—	ADCK cycles
	Long sample (ADLSMP = 1)		_	40		
Sample time	Short sample (ADLSMP = 0)	t _{ADS}	_	3.5		ADCK cycles
	Long sample (ADLSMP = 1)		_	23.5		
Total unadjusted Error ²	12-bit mode	E _{TUE}	_	±5.0	_	LSB ³
	10-bit mode			±1.5	_	
	8-bit mode		_	±0.8	—	
Differential Non-	12-bit mode	DNL	_	±1.5	_	LSB ³
Liniarity	10-bit mode		_	±0.4	_	
	8-bit mode		_	±0.15	_	
Integral Non-Linearity	12-bit mode	INL	_	±1.5	_	LSB ³
	10-bit mode		—	±0.4	—	
	8-bit mode		_	±0.15	_	
Zero-scale error ⁴	12-bit mode	E _{ZS}	—	±1.0	_	LSB ³
	10-bit mode		—	±0.2	_	
	8-bit mode			±0.35	—	
Full-scale error ⁵	12-bit mode	E _{FS}	—	±2.5	—	LSB ³
	10-bit mode		—	±0.3	—	
	8-bit mode		—	±0.25	—	
Quantization error	≤12 bit modes	EQ	_		±0.5	LSB ³
Input leakage error ⁶	all modes	E _{IL}		I _{In} x R _{AS}		mV
Temp sensor slope	-40 °C–25 °C	m	—	3.266		mV/°C
	25 °C–125 °C		_	3.638		
Temp sensor voltage	25 °C	V _{TEMP25}	_	1.396		V


- 1. Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. Includes quantization
- 3. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 4. $V_{ADIN} = V_{SSA}$ 5. $V_{ADIN} = V_{DDA}$
- 6. I_{In} = leakage current (refer to DC characteristics)

Peripheral operating requirements and behaviors

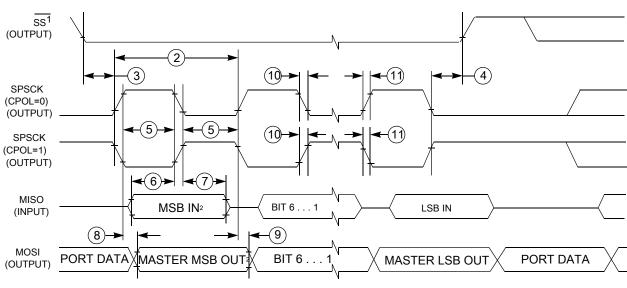

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
10	t _{RI}	Rise time input	—	t _{Bus} – 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	—
	t _{FO}	Fall time output				

Table 14. SPI master mode timing (continued)

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

rempheral operating requirements and behaviors

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in Control timing.
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	—	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	—	t _{Bus}	-
4	t _{Lag}	Enable lag time	1	—	t _{Bus}	-
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	—	ns	-
6	t _{SU}	Data setup time (inputs)	15	—	ns	—
7	t _{HI}	Data hold time (inputs)	25	—	ns	-
8	t _a	Slave access time	—	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	—	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)		25	ns	—
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input		t _{Bus} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	-
	t _{FO}	Fall time output				

Table 15.SPI slave mode timing

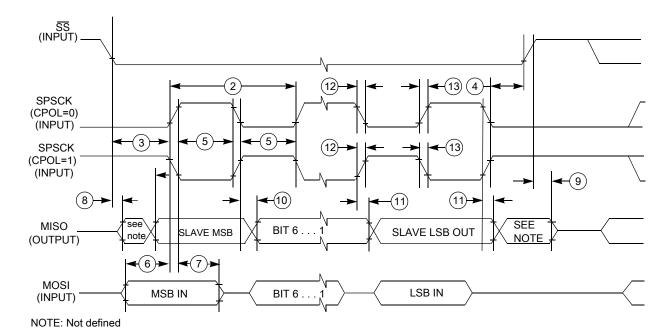
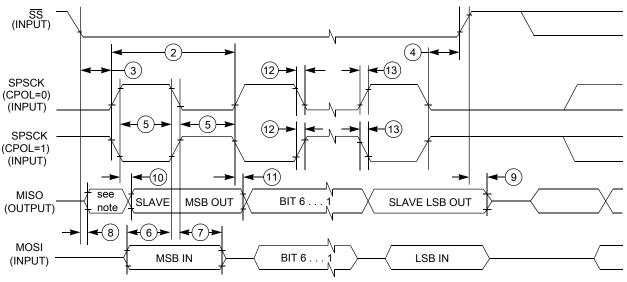



Figure 19. SPI slave mode timing (CPHA = 0)

NOTE: Not defined

5.5.2 MSCAN

Table 16. MSCAN wake-up pulse characteristics

Parameter	Symbol	Min	Тур	Мах	Unit
MSCAN wakeup dominant pulse filtered	t _{WUP}	-	-	1.5	μs
MSCAN wakeup dominant pulse pass	t _{WUP}	5	-	-	μs

6 Dimensions

6.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
64-pin LQFP	98ASS23234W
80-pin LQFP	98ASS23237W

7 Pinout

7.1 Signal multiplexing and pin assignments

For the pin muxing details see section Signal Multiplexing and Signal Descriptions of KEA128 Reference Manual.

8 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
Rev. 1	11 March 2014	Initial Release
Rev. 2	18 June 2014	 Parameter Classification section is removed. Classification column is removed from all the tables in the document. New section added - Supply current characteristics.
Rev. 3	18 July 2014	 Added supported part numbers. ESD handling ratings section is updated. Figures in DC characteristics section are updated. Specs updated in following tables: Table 9.
Rev. 4	03 Sept 2014	Data Sheet type changed to "Technical Data".

Table 17. Revision History

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex-M0+ are the registered trademarks of ARM Limited.

©2014 Freescale Semiconductor, Inc.

Document Number S9KEA128P80M48SF0 Revision 4, 09/2014

