

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9keaz128amlhr

- Timers
 - One 6-channel FlexTimer/PWM (FTM)
 - Two 2-channel FlexTimer/PWM (FTM)
 - One 2-channel periodic interrupt timer (PIT)
 - One pulse width timer (PWT)
 - One real-time clock (RTC)
- Communication interfaces
 - Two SPI modules (SPI)
 - Up to three UART modules (UART)
 - Two I2C modules (I2C)
 - One MSCAN module (MSCAN)
- Package options
 - 80-pin LQFP
 - 64-pin LQFP

Table of Contents

1 Ordering parts	4	4.2.2 FTM module timing	16
1.1 Determining valid orderable parts	4	4.3 Thermal specifications	17
2 Part identification	4	4.3.1 Thermal characteristics	17
2.1 Description	4	5 Peripheral operating requirements and behaviors	19
2.2 Format	4	5.1 Core modules	19
2.3 Fields	4	5.1.1 SWD electricals	19
2.4 Example	5	5.2 External oscillator (OSC) and ICS characteristics.	20
3 Ratings	5	5.3 NVM specifications	22
3.1 Thermal handling ratings	5	5.4 Analog	23
3.2 Moisture handling ratings	5	5.4.1 ADC characteristics	23
3.3 ESD handling ratings	6	5.4.2 Analog comparator (ACMP) electricals	25
3.4 Voltage and current operating ratings	6	5.5 Communication interfaces	26
4 General	7	5.5.1 SPI switching specifications	26
4.1 Nonswitching electrical specifications	7	5.5.2 MSCAN	29
4.1.1 DC characteristics	7	6 Dimensions	29
4.1.2 Supply current characteristics	13	6.1 Obtaining package dimensions	29
4.1.3 EMC performance	15	7 Pinout	30
4.2 Switching specifications	15	7.1 Signal multiplexing and pin assignments	30
4.2.1 Control timing	15	8 Revision History	30

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: KEAZ128.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q B KEA A C FFF M T PP N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	S = Automotive qualifiedP = Prequalification
В	Memory type	• 9 = Flash
KEA	Kinetis Auto family	• KEA
A	Key attribute	 Z = M0+ core F = M4 W/ DSP & FPU C= M4 W/ AP + FPU
С	CAN availability	N = CAN not available (Blank) = CAN available

Field	Description	Values
FFF	Program flash memory size	• 128 = 128 KB
М	Maskset revision	 A = 1st Fab version B = Revision after 1st version
Т	Temperature range (°C)	 C = -40 to 85 V= -40 to 105 M = -40 to 125
PP	Package identifier	 LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (14 mm x 14 mm)
N	Packaging type	R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

S9KEAZ128AMLK

3 Ratings

3.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG} Storage temperature		- 55	150	°C	1
T _{SDR} Solder temperature, lead-free		_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

3.2 Moisture handling ratings

	Symbol	Description	Min.	Max.	Unit	Notes
Ī	MSL	Moisture sensitivity level		3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

3.3 ESD handling ratings

Symbol	symbol Description		Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT} Latch-up current at ambient temperature of °C		-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test. The test produced the following results:
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass +100/-100 mA I-test with I_{DD} current limit at 400 mA (V_{DD} collapsed during positive injection).
 - I/O pins pass +50/-100 mA I-test with I_{DD} current limit at 1000 mA for V_{DD}.
 - Supply groups pass 1.5 V_{ccmax}.
 - RESET_B pin was only tested with negative I-test due to product conditioning requirement.

3.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Table 1. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	_	120	mA
V _{IN}	Input voltage except true open drain pins	-0.3	$V_{DD} + 0.3^{1}$	V
	Input voltage of true open drain pins	-0.3	6	V
I _D	I _D Instantaneous maximum current single pin limit (applies to all port pins)		25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. Maximum rating of V_{DD} also applies to V_{IN}.

4 General

4.1 Nonswitching electrical specifications

4.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 2. DC characteristics

Symbol		Descriptions		Min	Typical ¹	Max	Unit
_		Operating voltage —		2.7	_	5.5	٧
V _{OH} Output		All I/O pins, except PTA2	5 V, I _{load} = -5 mA	V _{DD} – 0.8	_	_	V
	high voltage	-	3 V, $I_{load} = -2.5 \text{ mA}$	V _{DD} – 0.8	_	_	V
		High current drive pins,	5 V, $I_{load} = -20 \text{ mA}$	V _{DD} – 0.8	_	_	V
		high-drive strength ²	3 V, $I_{load} = -10 \text{ mA}$	V _{DD} – 0.8	_	_	V
I _{OHT}	Output	Max total I _{OH} for all ports	5 V	_	_	-100	mA
	high current		3 V	_	_	-60	
V _{OL}	V _{OL} Output low voltage	All I/O pins, standard-drive	5 V, I _{load} = 5 mA	_	_	0.8	٧
		strength	3 V, I _{load} = 2.5 mA	_	_	0.8	V
	voltage	High current drive pins, high-drive strength ²	5 V, I _{load} =20 mA	_	_	0.8	V
			3 V, I _{load} = 10 mA	_	_	0.8	V
I _{OLT}	Output	Max total I _{OL} for all ports	5 V	_	_	100	mA
	low current		3 V	_	_	60	
V_{IH}	Input high	All digital inputs	4.5≤V _{DD} <5.5 V	$0.65 \times V_{DD}$	_	_	V
	voltage		2.7≤V _{DD} <4.5 V	$0.70 \times V_{DD}$	_	_	
V_{IL}	Input low voltage	All digital inputs	4.5≤V _{DD} <5.5 V	_		$0.35 \times V_{DD}$	V
			2.7≤V _{DD} <4.5 V	_	_	0.30 × V _{DD}	
V _{hys}	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	_	_	mV
I _{In}	Input leakage current	Per pin (pins in high impedance input mode)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μA

monswitching electrical specifications

Table 2. DC characteristics (continued)

Symbol		Descriptions		Min	Typical ¹	Max	Unit
I _{INTOT}	Total leakage combined for all port pins	Pins in high impedance input mode	$V_{IN} = V_{DD}$ or V_{SS}	_		2	μА
R _{PU}	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Pullup resistors	PTA2 and PTA3 pins	_	30.0	_	60.0	kΩ
I _{IC}	DC	Single pin limit	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-2	_	2	mA
	injection current ^{4,} 5, 6	Total MCU limit, includes sum of all stressed pins		-5	_	25	
C _{In}	Input capacitance, all pins		_	_	_	7	pF
V_{RAM}	RA	M retention voltage	_	2.0		_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true
 open drain I/O pins that are internally clamped to V_{SS}.
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR specification

Symbol	Descr	ription	Min	Тур	Max	Unit
V_{POR}	POR re-arm voltage ¹		1.5	1.75	2.0	V
V_{LVDH}	Falling low-venthreshold—high		4.2	4.3	4.4	V
V_{LVW1H}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V_{LVW2H}	threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V_{LVW4H}		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	High range low- warning h		_	100	_	mV

Table 3.	LVD and POR	specification	(continued)
----------	-------------	---------------	-------------

Symbol	Descri	Description		Тур	Max	Unit
V_{LVDL}		Falling low-voltage detect threshold—low range (LVDV = 0)		2.61	2.66	V
V _{LVW1L}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V_{LVW2L}	threshold—low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}		Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V_{LVW4L}		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}		Low range low-voltage detect hysteresis		40	_	mV
V _{HYSWL}	Low range low-voltage warning hysteresis		_	80	_	mV
V _{BG}	Buffered band	lgap output ³	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. Rising thresholds are falling threshold + hysteresis.
- 3. voltage Factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

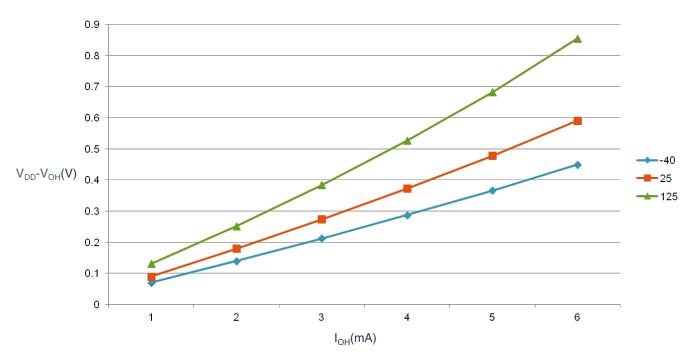


Figure 1. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 5 V)

Nonswitching electrical specifications

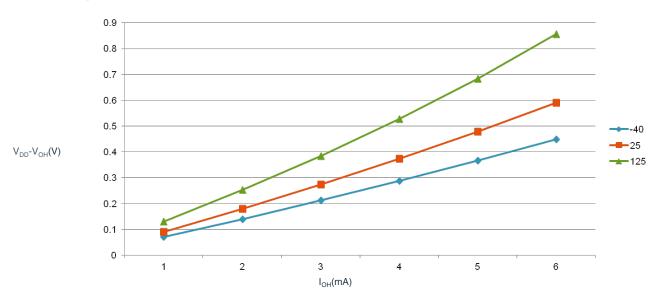


Figure 2. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 3 V)

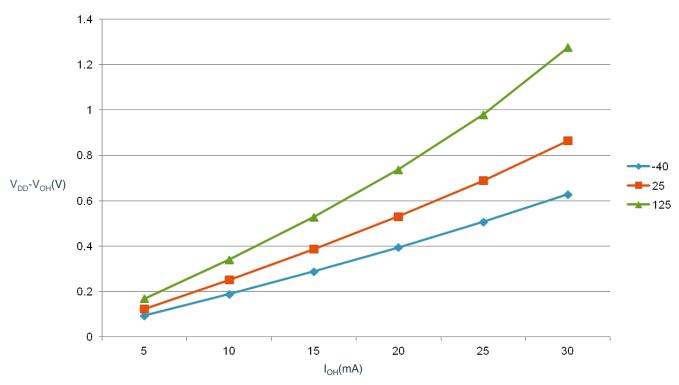


Figure 3. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 5 V)

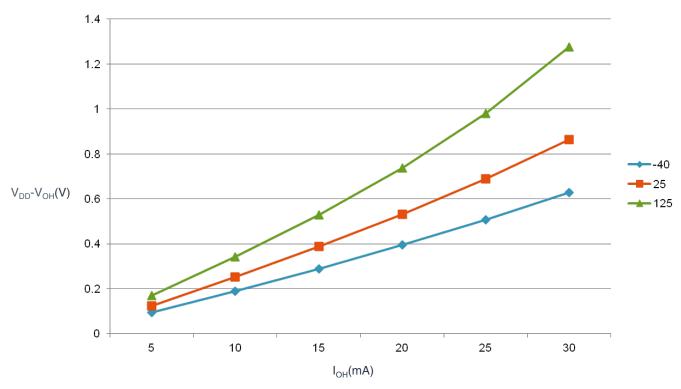


Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

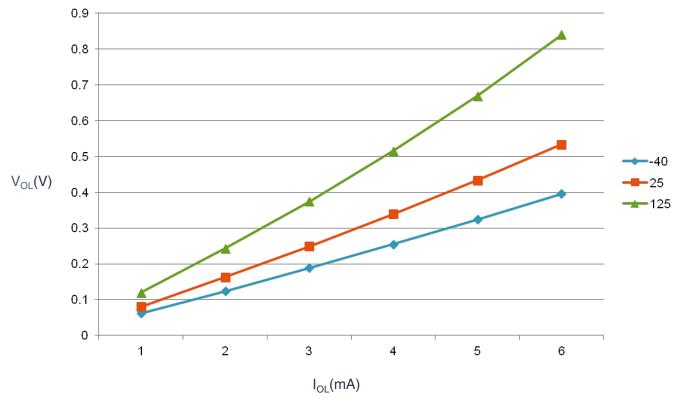


Figure 5. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

NOTISWITCHING electrical specifications

Table 4. Supply current characteristics (continued)

Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
		48/24 MHz	3	7.7	_		
		24/24 MHz		5.4	_		
		12/12 MHz		3.7	_		
		1/1 MHz		2.2	_		
Run supply current FBE	RI _{DD}	48/24 MHz	5	14.7	_	mA	-40 to 125 °C
mode, all modules clocks enabled; run from RAM		24/24 MHz		9.8	14.9 ²	7	
enabled, full from halvi		12/12 MHz		6	_		
		1/1 MHz		2.4	_		
		48/24 MHz	3	14.6	_		
		24/24 MHz		9.6	12.8 ²		
		12/12 MHz		5.9	_		
		1/1 MHz		2.3	_		
Run supply current FBE	RI _{DD}	48/24 MHz	5	11.4	_	mA	-40 to 125 °C
mode, all modules clocks disabled and gated; run from		24/24 MHz		7.7	12.5 ²	7	
RAM		12/12 MHz		4.7	_		
		1/1 MHz		2.3	_		
		48/24 MHz	3	11.3	_		
		24/24 MHz		7.6	9.5 ²		
		12/12 MHz		4.6	_		
		1/1 MHz		2.2	_		
Wait mode current FEI	WI _{DD}	48/24 MHz	5	8.4	_	mA	-40 to 125 °C
mode, all modules clocks enabled		24/24 MHz		6.5	7.2 ²		
onabioa		12/12 MHz		4.3	_		
		1/1 MHz		2.4	_		
		48/24 MHz	3	8.3	_		
		24/24 MHz		6.4	7.1 ²		
		12/12 MHz		4.2	_		
		1/1 MHz		2.3	_		
Stop mode supply current no	SI _{DD}	_	5	2	170 ²	μA	-40 to 125 °C
clocks active (except 1 kHz LPO clock) ³		_	3	1.9	160 ²		-40 to 125 °C
ADC adder to Stop	_	_	5	86	_	μΑ	-40 to 125 °C
ADLPC = 1			3	82	_		
ADLSMP = 1							
ADCO = 1							
MODE = 10B							
ADICLK = 11B							
ACMP adder to Stop	_	_	5	12	_	μA	-40 to 125 °C
			3	12	_		

Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
LVD adder to Stop ⁴	_	_	5	130	_	μΑ	-40 to 125 °C
			3	125	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. The high current is observed at high temperature.
- 3. RTC adder cause <1 µA I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

4.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following Freescale applications notes, available on **freescale.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

4.2 Switching specifications

4.2.1 Control timing

Table 5. Control timing

Num	Rating	Symbol	Min	Typical ¹	Max	Unit
1	System and core clock	f _{Sys}	DC	_	48	MHz
2	Bus frequency $(t_{cyc} = 1/f_{Bus})$	f _{Bus}	DC	_	24	MHz
3	Internal low power oscillator frequency	f _{LPO}	0.67	1.0	1.25	KHz
4	External reset pulse width ²	t _{extrst}	1.5 ×	_	_	ns
			t _{cyc}			

Function	Symbol	Min	Max	Unit
External clock period	t _{TCLK}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{clkl}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

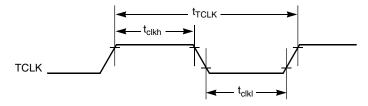


Figure 11. Timer external clock

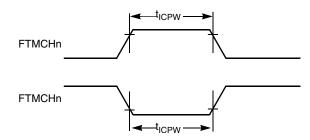


Figure 12. Timer input capture pulse

4.3 Thermal specifications

4.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

rnermal specifications

Table 7. Thermal attributes

Board type	Symbol	Description	64 LQFP	80 LQFP	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	71	57	°C/W	1, 2
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	53	44	°C/W	1, 3
Single-layer (1S)	$R_{\theta JMA}$	Thermal resistance, junction to ambient (200 ft./min. air speed)	59	47	°C/W	1, 3
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	46	38	°C/W	1, 3
_	$R_{\theta JB}$	Thermal resistance, junction to board	35	28	°C/W	4
_	$R_{\theta JC}$	Thermal resistance, junction to case	20	15	°C/W	5
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	5	3	°C/W	6

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_I = T_A + (P_D \times \theta_{IA})$$

Where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_{\rm D} = P_{\rm int} + P_{\rm I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_I (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}C) + \theta_{JA} \times (P_D)^2$$

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

where K is a constant pertaining to the particular part. K can be determined by measuring P_D (at equilibrium) for an known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving the above equations iteratively for any value of T_A .

5 Peripheral operating requirements and behaviors

5.1 Core modules

5.1.1 SWD electricals

Table 8. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	24	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	_	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	3	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	35	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

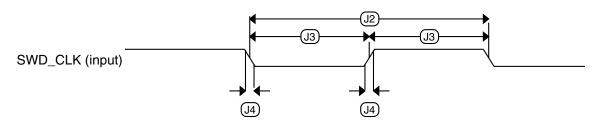


Figure 13. Serial wire clock input timing

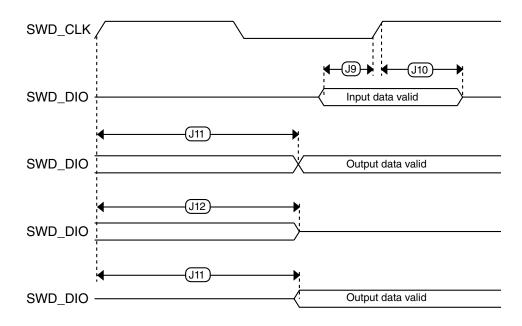


Figure 14. Serial wire data timing

5.2 External oscillator (OSC) and ICS characteristics

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	(Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	resonator frequency	High range (RANGE = 1)	f _{hi}	4	_	24	MHz
2	Le	oad capacitors	C1, C2		See Note ²		
3	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	_	_	_	ΜΩ
		Low Frequency, High-Gain Mode		_	10	_	ΜΩ
		High Frequency, Low-Power Mode		_	1	_	ΜΩ
		High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	Series resistor -	Low-Power Mode ³	R _S	_	0	_	kΩ
	Low Frequency	High-Gain Mode		_	200	_	kΩ
5	Series resistor - High Frequency	Low-Power Mode ³	R _S	_	0	_	kΩ
	Series resistor -	4 MHz		_	0	_	kΩ
	High Frequency, High-Gain Mode	8 MHz		_	0	_	kΩ

reripheral operating requirements and behaviors

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

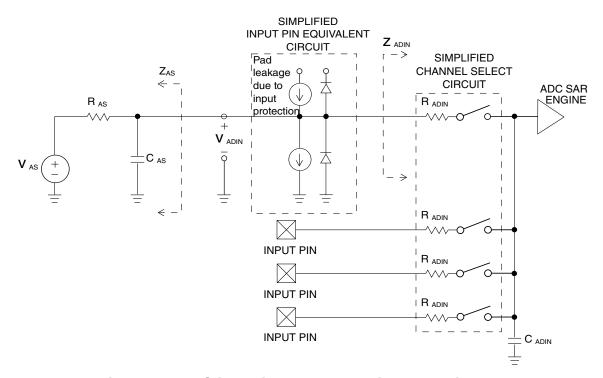


Figure 16. ADC input impedance equivalency diagram

Table 12. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
Supply current		I _{DDA}	_	133	_	μΑ
ADLPC = 1						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	218	_	μA
ADLPC = 1						
ADLSMP = 0						
ADCO = 1						
Supply current		I _{DDA}	_	327	_	μA
ADLPC = 0						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	582	990	μA
ADLPC = 0						
ADLSMP = 0						
ADCO = 1						
Supply current	Stop, reset, module off	I _{DDA}	_	0.011	1	μA

reripheral operating requirements and behaviors

Table 15. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in Control timing.
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	twspsck	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

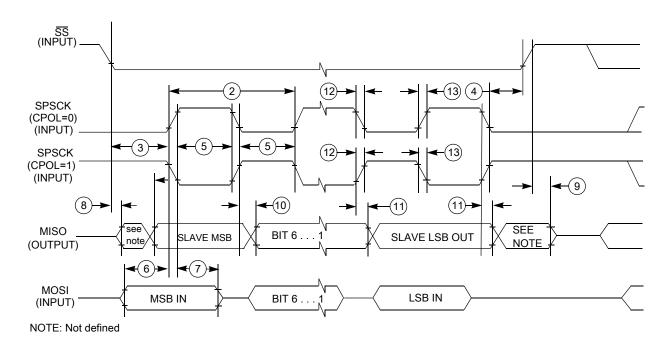


Figure 19. SPI slave mode timing (CPHA = 0)

7 Pinout

7.1 Signal multiplexing and pin assignments

For the pin muxing details see section Signal Multiplexing and Signal Descriptions of KEA128 Reference Manual.

8 Revision History

The following table provides a revision history for this document.

Table 17. Revision History

Rev. No.	Date	Substantial Changes
Rev. 1	11 March 2014	Initial Release
Rev. 2	18 June 2014	 Parameter Classification section is removed. Classification column is removed from all the tables in the document. New section added - Supply current characteristics.
Rev. 3	18 July 2014	 Added supported part numbers. ESD handling ratings section is updated. Figures in DC characteristics section are updated. Specs updated in following tables: Table 9.
Rev. 4	03 Sept 2014	Data Sheet type changed to "Technical Data".

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex-M0+ are the registered trademarks of ARM Limited.

©2014 Freescale Semiconductor, Inc.

ARM -

Document Number S9KEA128P80M48SF0 Revision 4, 09/2014