

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	58
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9keaz128avlh

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: KEAZ128.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q B KEA A C FFF M T PP N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	S = Automotive qualifiedP = Prequalification
В	Memory type	• 9 = Flash
KEA	Kinetis Auto family	• KEA
А	Key attribute	 Z = M0+ core F = M4 W/ DSP & FPU C= M4 W/ AP + FPU
С	CAN availability	N = CAN not available (Blank) = CAN available

3.3 ESD handling ratings

Symbol	Description		Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-6000	+6000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of °C	-100	+100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78D, IC Latch-up Test. The test produced the following results:
 - Test was performed at 125 °C case temperature (Class II).
 - I/O pins pass +100/-100 mA I-test with I_{DD} current limit at 400 mA (V_{DD} collapsed during positive injection).
 - I/O pins pass +50/-100 mA I-test with I_{DD} current limit at 1000 mA for V_{DD}.
 - Supply groups pass 1.5 V_{ccmax}.
 - RESET_B pin was only tested with negative I-test due to product conditioning requirement.

3.4 Voltage and current operating ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in the following table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this document.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Table 1. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	_	120	mA
V _{IN}	Input voltage except true open drain pins	-0.3	$V_{DD} + 0.3^{1}$	V
	Input voltage of true open drain pins	-0.3	6	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	- 25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. Maximum rating of V_{DD} also applies to V_{IN}.

4 General

4.1 Nonswitching electrical specifications

4.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 2. DC characteristics

Symbol		Descriptions			Typical ¹	Max	Unit
_		Operating voltage	_	2.7	_	5.5	٧
V _{OH}	Output All I/O pins, except PTA2		5 V, I _{load} = -5 mA	V _{DD} – 0.8	_	_	V
	high voltage	and PTA3, standard-drive strength	3 V, $I_{load} = -2.5 \text{ mA}$	V _{DD} – 0.8	_	_	V
		High current drive pins,	5 V, $I_{load} = -20 \text{ mA}$	V _{DD} – 0.8	_	_	V
		high-drive strength ²	3 V, $I_{load} = -10 \text{ mA}$	V _{DD} – 0.8	_	_	V
I _{OHT}	Output	Max total I _{OH} for all ports	5 V	_	_	-100	mA
	high current		3 V	_	_	-60	
· ·	Output	All I/O pins, standard-drive	5 V, I _{load} = 5 mA	_	_	0.8	٧
	low voltage	strength	3 V, I _{load} = 2.5 mA	_	_	0.8	V
	voltage	High current drive pins,	5 V, I _{load} =20 mA	_	_	0.8	V
		high-drive strength ²	3 V, I _{load} = 10 mA	_	_	0.8	V
I _{OLT}	Output	Max total I _{OL} for all ports	5 V	_	_	100	mA
	low current		3 V	_	_	60	
V_{IH}	Input high	All digital inputs	4.5≤V _{DD} <5.5 V	$0.65 \times V_{DD}$	_	_	V
	voltage		2.7≤V _{DD} <4.5 V	$0.70 \times V_{DD}$	_	_	
V_{IL}	Input low voltage	All digital inputs	4.5≤V _{DD} <5.5 V	_		$0.35 \times V_{DD}$	V
			2.7≤V _{DD} <4.5 V	_	_	0.30 × V _{DD}	
V _{hys}	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	_	_	mV
I _{In}	Input leakage current	Per pin (pins in high impedance input mode)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μA

Table 3.	LVD and POR	specification	(continued)
----------	-------------	---------------	-------------

Symbol	Descri	iption	Min	Тур	Max	Unit
V_{LVDL}		Falling low-voltage detect threshold—low range (LVDV = 0)		2.61	2.66	V
V _{LVW1L}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	2.62	2.7	2.78	V
V_{LVW2L}	threshold—low range	Level 2 falling (LVWV = 01)	2.72	2.8	2.88	V
V _{LVW3L}		Level 3 falling (LVWV = 10)	2.82	2.9	2.98	V
V_{LVW4L}		Level 4 falling (LVWV = 11)	2.92	3.0	3.08	V
V _{HYSDL}		Low range low-voltage detect hysteresis		40	_	mV
V _{HYSWL}	Low range low-voltage warning hysteresis		_	80	_	mV
V _{BG}	Buffered band	lgap output ³	1.14	1.16	1.18	V

- 1. Maximum is highest voltage that POR is guaranteed.
- 2. Rising thresholds are falling threshold + hysteresis.
- 3. voltage Factory trimmed at V_{DD} = 5.0 V, Temp = 125 °C

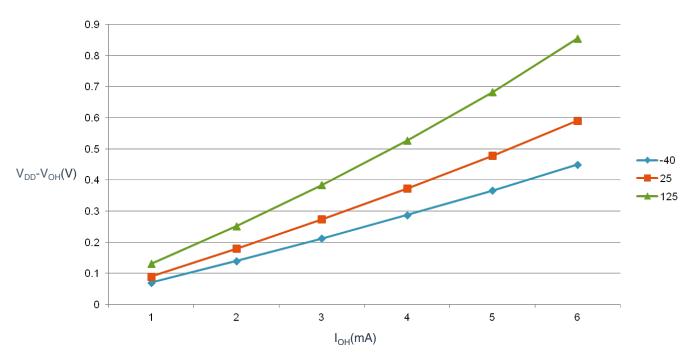


Figure 1. Typical V_{DD} - V_{OH} Vs. I_{OH} (standard drive strength) (V_{DD} = 5 V)

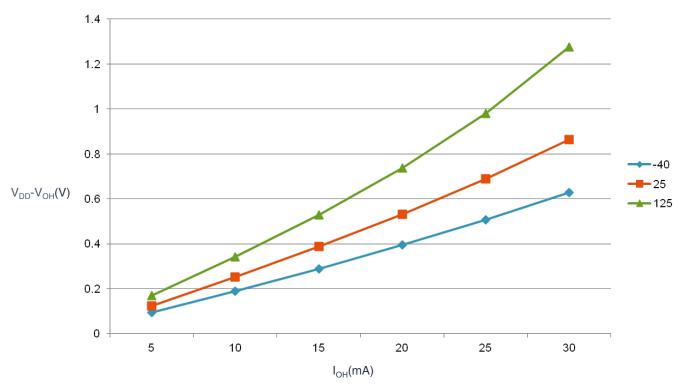


Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

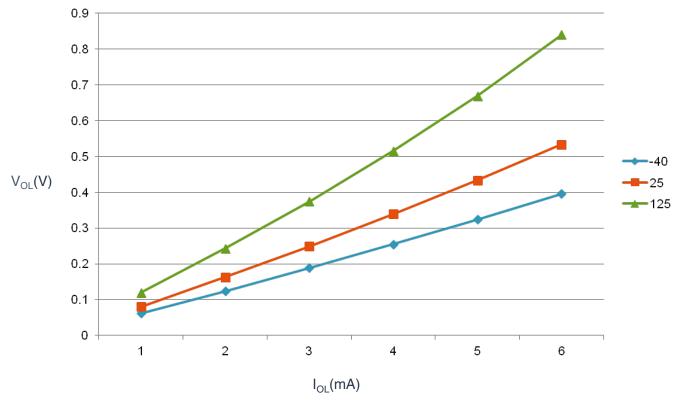


Figure 5. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

Nonswitching electrical specifications

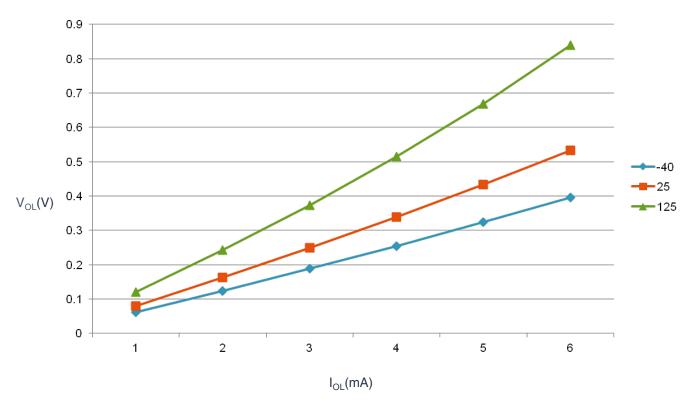


Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

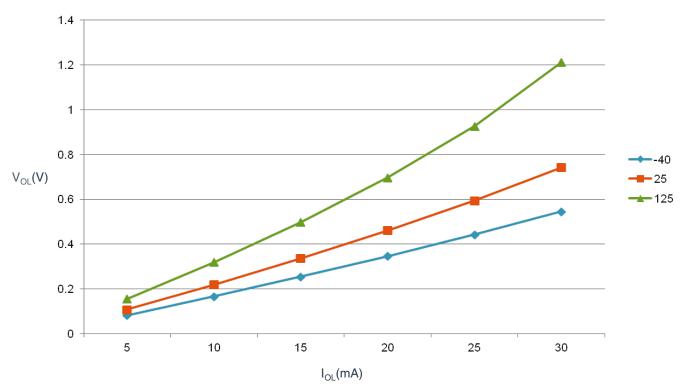


Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

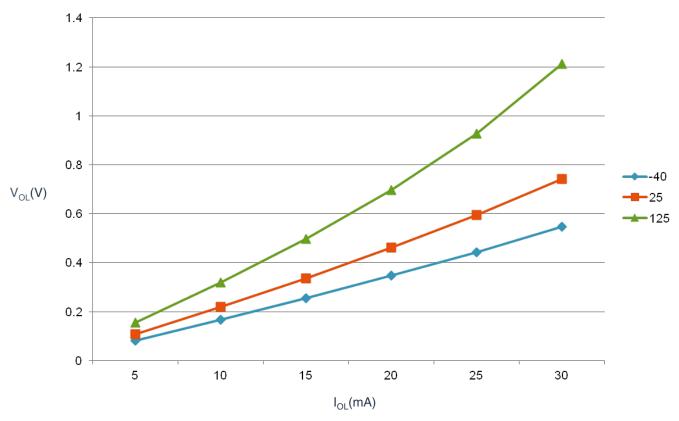


Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

4.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Parameter Symbol Core/Bus $V_{DD}(V)$ Typical¹ Unit Max Temp Freq Run supply current FEI 48/24 MHz 5 11.1 -40 to 125 °C RI_{DD} mΑ mode, all modules clocks 24/24 MHz 8 enabled; run from flash 12/12 MHz 5 1/1 MHz 2.4 48/24 MHz 3 11 24/24 MHz 7.9 12/12 MHz 4.9 1/1 MHz 2.3 48/24 MHz -40 to 125 °C Run supply current FEI RI_{DD} 5 7.8 mA mode, all modules clocks 24/24 MHz 5.5 disabled and gated; run from 12/12 MHz 3.8 flash 1/1 MHz 2.3

Table 4. Supply current characteristics

Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
LVD adder to Stop ⁴	_	_	5	130	_	μΑ	-40 to 125 °C
			3	125	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. The high current is observed at high temperature.
- 3. RTC adder cause <1 μ A I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

4.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following Freescale applications notes, available on **freescale.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

4.2 Switching specifications

4.2.1 Control timing

Table 5. Control timing

Num	Rating	Symbol	Min	Typical ¹	Max	Unit
1	System and core clock	f _{Sys}	DC	_	48	MHz
2	Bus frequency $(t_{cyc} = 1/f_{Bus})$	f _{Bus}	DC	_	24	MHz
3	Internal low power oscillator frequency	f _{LPO}	0.67	1.0	1.25	KHz
4	External reset pulse width ²	t _{extrst}	1.5 ×	_	_	ns
			t _{cyc}			

Function	Symbol	Min	Max	Unit
External clock period	t _{TCLK}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{clkl}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Figure 11. Timer external clock

Figure 12. Timer input capture pulse

4.3 Thermal specifications

4.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

mermal specifications

Table 7. Thermal attributes

Board type	Symbol	Description	64 LQFP	80 LQFP	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	71	57	°C/W	1, 2
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	53	44	°C/W	1, 3
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	59	47	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	46	38	°C/W	1, 3
_	R _{θJB}	Thermal resistance, junction to board	35	28	°C/W	4
_	R _{0JC}	Thermal resistance, junction to case	20	15	°C/W	5
_	$\Psi_{ m JT}$	Thermal characterization parameter, junction to package top outside center (natural convection)	5	3	°C/W	6

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.
- 3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.

The average chip-junction temperature (T_I) in °C can be obtained from:

$$T_J = T_A + (P_D \times \theta_{JA})$$

Where:

 $T_A = Ambient temperature, °C$

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W

$$P_{\rm D} = P_{\rm int} + P_{\rm I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts - chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins - user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_I (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273 \, ^{\circ}C)$$

Solving the equations above for K gives:

$$K = P_D \times (T_A + 273 \text{ }^{\circ}C) + \theta_{JA} \times (P_D)^2$$

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

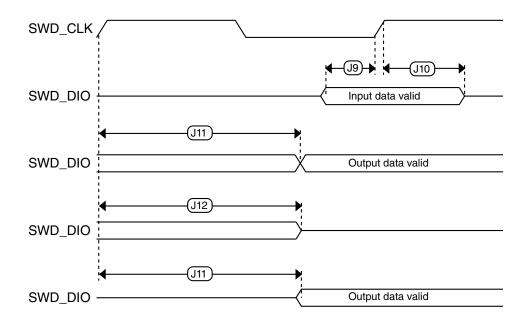


Figure 14. Serial wire data timing

5.2 External oscillator (OSC) and ICS characteristics

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient)

Num	(Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	Crystal or	Low range (RANGE = 0)	f _{lo}	31.25	32.768	39.0625	kHz
	resonator frequency	High range (RANGE = 1)	f _{hi}	4	_	24	MHz
2	Le	oad capacitors	C1, C2		See Note ²		
3	Feedback resistor	Low Frequency, Low-Power Mode ³	R _F	_	_	_	ΜΩ
		Low Frequency, High-Gain Mode		_	10	_	ΜΩ
		High Frequency, Low-Power Mode		_	1	_	ΜΩ
		High Frequency, High-Gain Mode		_	1	_	ΜΩ
4	Series resistor -	Low-Power Mode ³	R _S	_	0	_	kΩ
	Low Frequency	High-Gain Mode		_	200	_	kΩ
5	Series resistor - High Frequency	Low-Power Mode ³	R _S	_	0	_	kΩ
	Series resistor -	4 MHz		_	0	_	kΩ
	High Frequency, High-Gain Mode	8 MHz		_	0	_	kΩ

Table 9. OSC and ICS specifications (temperature range = -40 to 125 °C ambient) (continued)

Num	(Characteristic	Symbol	Min	Typical ¹	Max	Unit
		16 MHz		_	0	_	kΩ
6	Crystal start-up	Low range, low power	t _{CSTL}	_	1000	_	ms
	time low range = 32.768 kHz	Low range, high gain		_	800	_	ms
	crystal; High	High range, low power	t _{CSTH}	_	3	_	ms
	range = 20 MHz crystal ^{4,5}	High range, high gain		_	1.5	_	ms
7	Internal r	eference start-up time	t _{IRST}	_	20	50	μs
8	Internal reference	ce clock (IRC) frequency trim range	f _{int_t}	31.25	_	39.0625	kHz
9	Internal reference clock frequency, factory trimmed	T = 125 °C, V _{DD} = 5 V	f _{int_ft}	_	37.5	_	kHz
10	DCO output frequency range	FLL reference = fint_t, flo, or fhi/RDIV	f _{dco}	40	_	50	MHz
11	Factory trimmed internal oscillator accuracy	T = 125 °C, V _{DD} = 5 V	∆f _{int_ft}	-0.8	_	0.8	%
12	Deviation of IRC over temperature when trimmed at T = 25 °C, V _{DD} = 5 V	Over temperature range from -40 °C to 125°C	Δf_{int_t}	-1	_	0.8	%
13	Frequency accuracy of DCO output using factory trim value	Over temperature range from -40 °C to 125°C	Δf_{dco_ft}	-2.3	_	0.8	%
14	FLL :	acquisition time ^{4,6}	t _{Acquire}	_	_	2	ms
15	Long term jitter of DCO output clock (averaged over 2 ms interval) ⁷		C _{Jitter}	_	0.02	0.2	%f _{dco}

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. See crystal or resonator manufacturer's recommendation.
- Load capacitors (C₁,C₂), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0
- 4. This parameter is characterized and not tested on each device.
- 5. Proper PC board layout procedures must be followed to achieve specifications.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

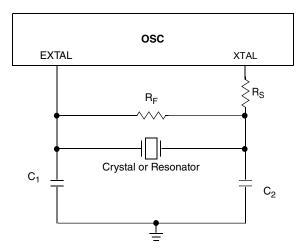


Figure 15. Typical crystal or resonator circuit

5.3 NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash memories.

Table 10. Flash characteristics

Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
Supply voltage for program/erase –40 °C to 125 °C	V _{prog/erase}	2.7	_	5.5	V
Supply voltage for read operation	V _{Read}	2.7	_	5.5	V
NVM Bus frequency	f _{NVMBUS}	1	_	24	MHz
NVM Operating frequency	f _{NVMOP}	0.8	1	1.05	MHz
Erase Verify All Blocks	t _{VFYALL}	_	_	2605	t _{cyc}
Erase Verify Flash Block	t _{RD1BLK}	_	_	2579	t _{cyc}
Erase Verify Flash Section	t _{RD1SEC}	_	_	485	t _{cyc}
Read Once	t _{RDONCE}	_	_	464	t _{cyc}
Program Flash (2 word)	t _{PGM2}	0.12	0.13	0.31	ms
Program Flash (4 word)	t _{PGM4}	0.21	0.21	0.49	ms
Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms
Erase All Blocks	t _{ERSALL}	95.42	100.18	100.30	ms
Erase Flash Block	t _{ERSBLK}	95.42	100.18	100.30	ms
Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.09	ms
Unsecure Flash	t _{UNSECU}	95.42	100.19	100.31	ms
Verify Backdoor Access Key	t _{VFYKEY}	_	_	482	t _{cyc}
Set User Margin Level	t _{MLOADU}	_	_	415	t _{cyc}
FLASH Program/erase endurance T _L to T _H = -40 °C to 125 °C	n _{FLPE}	10 k	100 k	_	Cycles

Table 10. Flash characteristics (continued)

Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

- 1. Minimum times are based on maximum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 2. Typical times are based on typical $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 3. Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging
- 4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

5.4 Analog

5.4.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
Reference	• Low	V _{REFL}	V_{SSA}	_	V _{DDA} /2	V	_
potential	• High	V _{REFH}	V _{DDA} /2	_	V_{DDA}		
Supply	Absolute	V_{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDA})	ΔV_{DDA}	-100	0	+100	mV	_
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	_
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	_
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	_	5		
	10-bit modef_{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

reripheral operating requirements and behaviors

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

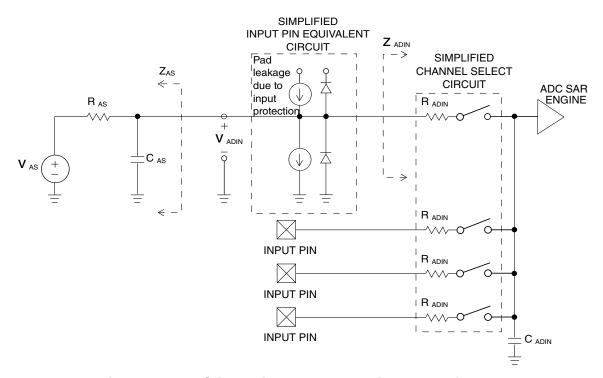


Figure 16. ADC input impedance equivalency diagram

Table 12. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
Supply current		I _{DDA}	_	133	_	μΑ
ADLPC = 1						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	218	_	μA
ADLPC = 1						
ADLSMP = 0						
ADCO = 1						
Supply current		I _{DDA}	_	327	_	μA
ADLPC = 0						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	582	990	μΑ
ADLPC = 0						
ADLSMP = 0						
ADCO = 1						
Supply current	Stop, reset, module off	I _{DDA}	_	0.011	1	μA

Table 12. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
ADC asynchronous clock source	High speed (ADLPC = 0)	f _{ADACK}	2	3.3	5	MHz
	Low power (ADLPC = 1)		1.25	2	3.3	
Conversion time (including sample time)	Short sample (ADLSMP = 0)	t _{ADC}	_	20	_	ADCK cycles
	Long sample (ADLSMP = 1)		_	40	_	
Sample time	Short sample (ADLSMP = 0)	t _{ADS}	_	3.5	_	ADCK cycles
	Long sample (ADLSMP = 1)		_	23.5	_	
Total unadjusted Error ²	12-bit mode	E _{TUE}	_	±5.0	_	LSB ³
	10-bit mode		_	±1.5	_	
	8-bit mode		_	±0.8	_	
Differential Non-	12-bit mode	DNL	_	±1.5	_	LSB ³
Liniarity	10-bit mode		_	±0.4	_	
	8-bit mode		_	±0.15	_	
Integral Non-Linearity	12-bit mode	INL	_	±1.5	_	LSB ³
	10-bit mode		_	±0.4	_	LSB ³
	8-bit mode		_	±0.15	_	
Zero-scale error ⁴	12-bit mode	E _{ZS}	_	±1.0	_	LSB ³
	10-bit mode		_	±0.2	_	
	8-bit mode		_	±0.35	_	
Full-scale error ⁵	12-bit mode	E _{FS}	_	±2.5	_	LSB ³
	10-bit mode		_	±0.3	_	
	8-bit mode		_	±0.25	_	
Quantization error	≤12 bit modes	E_Q	_	_	±0.5	LSB ³
Input leakage error ⁶	all modes	E _{IL}		I _{In} x R _{AS}		mV
Temp sensor slope	-40 °C–25 °C	m	_	3.266	_	mV/°C
	25 °C–125 °C		_	3.638	_	
Temp sensor voltage	25 °C	V_{TEMP25}	_	1.396		V

^{1.} Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} =1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

^{2.} Includes quantization

^{3. 1} LSB = $(V_{REFH} - V_{REFL})/2^N$

^{4.} $V_{ADIN} = V_{SSA}$

^{5.} $V_{ADIN} = V_{DDA}$

^{6.} I_{In} = leakage current (refer to DC characteristics)

5.4.2 Analog comparator (ACMP) electricals

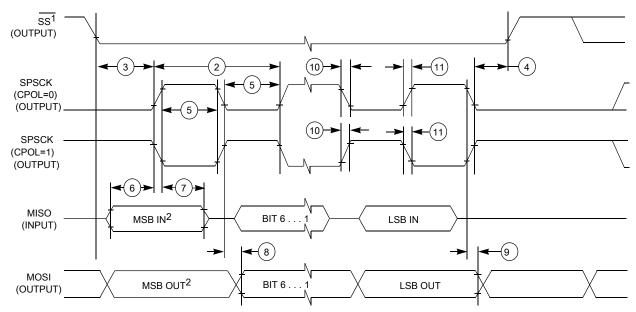
Table 13. Comparator electrical specifications

Characteristic	Symbol	Min	Typical	Max	Unit
Supply voltage	V_{DDA}	2.7	_	5.5	V
Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
Analog input voltage	V _{AIN}	V _{SS} - 0.3		V_{DDA}	V
Analog input offset voltage	V _{AIO}	1	1	40	mV
Analog comparator hysteresis (HYST=0)	V _H	_	15	20	mV
Analog comparator hysteresis (HYST=1)	V _H	_	20	30	mV
Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
Propagation Delay	t _D	_	0.4	1	μs

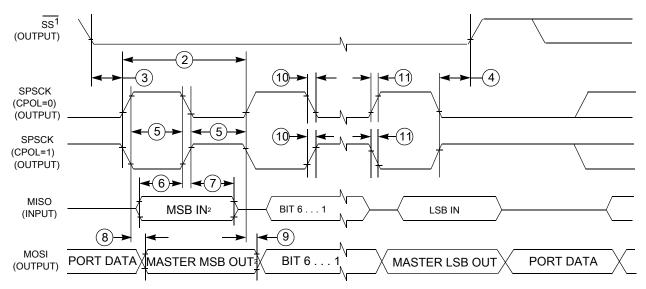
5.5 Communication interfaces

5.5.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 80% V_{DD} , unless noted, and 25 pF load on all SPI pins. All timing assumes slew rate control is disabled and high-drive strength is enabled for SPI output pins.


Table 14. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	8	_	ns	_
7	t _{HI}	Data hold time (inputs)	8	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	20	_	ns	_


Tahla 1/1	SDI mastar	mode timing	(continued)
Table 14.	SPI IIIastei	mode umma	(Continued)

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
10	t _{RI}	Rise time input	_	t _{Bus} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

reripheral operating requirements and behaviors

Table 15. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in Control timing.
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	twspsck	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{Fl}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

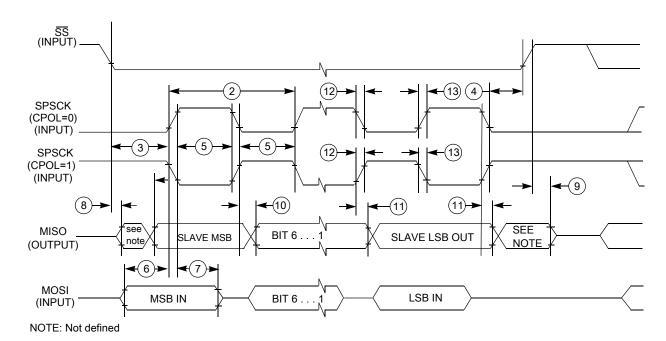


Figure 19. SPI slave mode timing (CPHA = 0)

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex-M0+ are the registered trademarks of ARM Limited.

©2014 Freescale Semiconductor, Inc.

ARM - BOWERED

Document Number S9KEA128P80M48SF0 Revision 4, 09/2014