

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	
	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	57
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9keaz64aclh

- Timers
 - One 6-channel FlexTimer/PWM (FTM)
 - Two 2-channel FlexTimer/PWM (FTM)
 - One 2-channel periodic interrupt timer (PIT)
 - One pulse width timer (PWT)
 - One real-time clock (RTC)
- Communication interfaces
 - Two SPI modules (SPI)
 - Up to three UART modules (UART)
 - Two I2C modules (I2C)
 - One MSCAN module (MSCAN)
- Package options
 - 80-pin LQFP
 - 64-pin LQFP

Table of Contents

1 Ordering parts	4	4.2.2 FTM module timing	16
1.1 Determining valid orderable parts	4	4.3 Thermal specifications	17
2 Part identification	4	4.3.1 Thermal characteristics	17
2.1 Description	4	5 Peripheral operating requirements and behaviors	19
2.2 Format	4	5.1 Core modules	19
2.3 Fields	4	5.1.1 SWD electricals	19
2.4 Example	5	5.2 External oscillator (OSC) and ICS characteristics.	20
3 Ratings	5	5.3 NVM specifications	22
3.1 Thermal handling ratings	5	5.4 Analog	23
3.2 Moisture handling ratings	5	5.4.1 ADC characteristics	23
3.3 ESD handling ratings	6	5.4.2 Analog comparator (ACMP) electricals	25
3.4 Voltage and current operating ratings	6	5.5 Communication interfaces	26
4 General	7	5.5.1 SPI switching specifications	26
4.1 Nonswitching electrical specifications	7	5.5.2 MSCAN	29
4.1.1 DC characteristics	7	6 Dimensions	29
4.1.2 Supply current characteristics	13	6.1 Obtaining package dimensions	29
4.1.3 EMC performance	15	7 Pinout	30
4.2 Switching specifications	15	7.1 Signal multiplexing and pin assignments	30
4.2.1 Control timing	15	8 Revision History	30

Field	Description	Values
FFF	Program flash memory size	• 128 = 128 KB
М	Maskset revision	 A = 1st Fab version B = Revision after 1st version
Т	Temperature range (°C)	 C = -40 to 85 V= -40 to 105 M = -40 to 125
PP	Package identifier	 LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (14 mm x 14 mm)
N	Packaging type	R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

S9KEAZ128AMLK

3 Ratings

3.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	- 55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

- 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
- 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

3.2 Moisture handling ratings

	Symbol	Description	Min.	Max.	Unit	Notes
Ī	MSL	Moisture sensitivity level		3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4 General

4.1 Nonswitching electrical specifications

4.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 2. DC characteristics

Symbol		Descriptions		Min	Typical ¹	Max	Unit
_		Operating voltage	_	2.7	_	5.5	٧
V _{OH}	Output	All I/O pins, except PTA2	5 V, I _{load} = -5 mA	V _{DD} – 0.8	_	_	V
	high voltage	and PTA3, standard-drive strength	3 V, $I_{load} = -2.5 \text{ mA}$	V _{DD} – 0.8	_	_	V
		High current drive pins,	5 V, $I_{load} = -20 \text{ mA}$	V _{DD} – 0.8	_	_	V
		high-drive strength ²	3 V, $I_{load} = -10 \text{ mA}$	V _{DD} – 0.8	_	_	V
I _{OHT}	Output	Max total I _{OH} for all ports	5 V	_	_	-100	mA
	high current		3 V	_	_	-60	
V _{OL}	Output	All I/O pins, standard-drive	5 V, I _{load} = 5 mA	_	_	0.8	٧
	low voltage	strength	3 V, I _{load} = 2.5 mA	_	_	0.8	V
	voltage	High current drive pins,	5 V, I _{load} =20 mA	_	_	0.8	V
		high-drive strength ²	3 V, I _{load} = 10 mA	_	_	0.8	V
I _{OLT}	Output	Max total I _{OL} for all ports	5 V	_	_	100	mA
	low current		3 V	_	_	60	
V_{IH}	Input high	All digital inputs	4.5≤V _{DD} <5.5 V	$0.65 \times V_{DD}$	_	_	V
	voltage		2.7≤V _{DD} <4.5 V	$0.70 \times V_{DD}$	_	_	
V_{IL}	Input low voltage	All digital inputs	4.5≤V _{DD} <5.5 V	_		$0.35 \times V_{DD}$	V
			2.7≤V _{DD} <4.5 V	_	_	0.30 × V _{DD}	
V _{hys}	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	_	_	mV
I _{In}	Input leakage current	Per pin (pins in high impedance input mode)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μA

monswitching electrical specifications

Table 2. DC characteristics (continued)

Symbol		Descriptions		Min	Typical ¹	Max	Unit
I _{INTOT}	Total leakage combined for all port pins	Pins in high impedance input mode	$V_{IN} = V_{DD}$ or V_{SS}	_		2	μА
R _{PU}	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Pullup resistors	PTA2 and PTA3 pins	_	30.0	_	60.0	kΩ
I _{IC}	DC	Single pin limit	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-2	_	2	mA
	injection current ^{4,} 5, 6	Total MCU limit, includes sum of all stressed pins		-5	_	25	
C _{In}	Inpu	t capacitance, all pins	_	_	_	7	pF
V_{RAM}	RA	M retention voltage	_	2.0		_	V

- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD}. PTA2 and PTA3 are true
 open drain I/O pins that are internally clamped to V_{SS}.
- 5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger value.
- 6. Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current (V_{In} > V_{DD}) is higher than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current higher than maximum injection current when the MCU is not consuming power, such as when no system clock is present, or clock rate is very low (which would reduce overall power consumption).

Table 3. LVD and POR specification

Symbol	Descr	ription	Min	Тур	Max	Unit
V_{POR}	POR re-ar	m voltage ¹	1.5	1.75	2.0	V
V_{LVDH}	Falling low-venthreshold—high		4.2	4.3	4.4	V
V_{LVW1H}	Falling low- voltage warning	Level 1 falling (LVWV = 00)	4.3	4.4	4.5	V
V_{LVW2H}	threshold— high range	Level 2 falling (LVWV = 01)	4.5	4.5	4.6	V
V _{LVW3H}		Level 3 falling (LVWV = 10)	4.6	4.6	4.7	V
V_{LVW4H}		Level 4 falling (LVWV = 11)	4.7	4.7	4.8	V
V _{HYSH}	High range low- warning h		_	100	_	mV

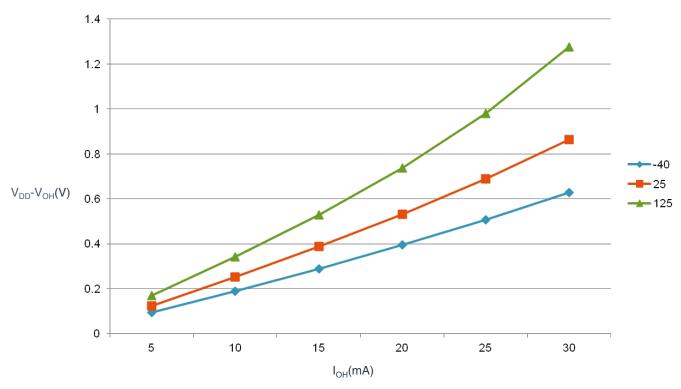


Figure 4. Typical V_{DD} - V_{OH} Vs. I_{OH} (high drive strength) (V_{DD} = 3 V)

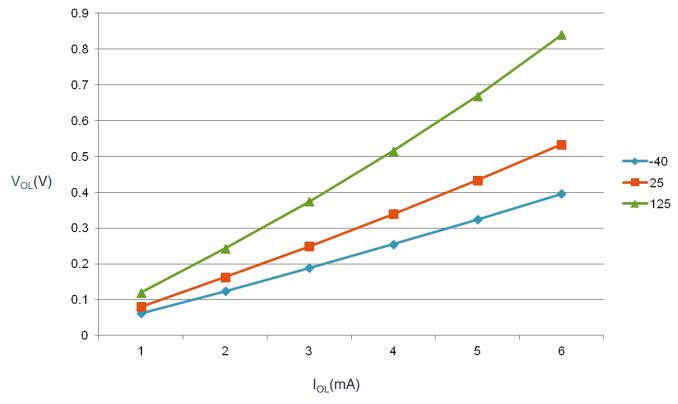


Figure 5. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 5 \text{ V}$)

Nonswitching electrical specifications

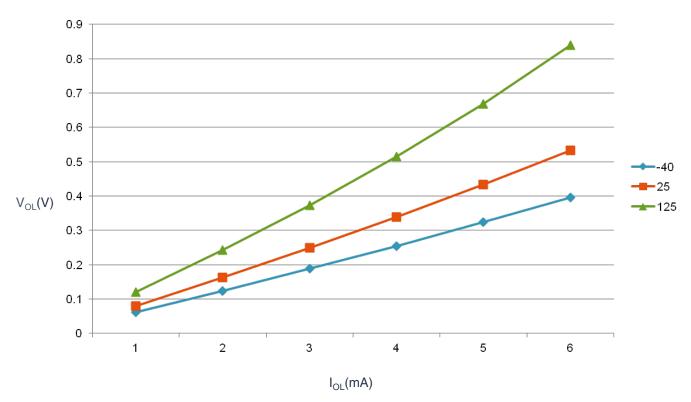


Figure 6. Typical V_{OL} Vs. I_{OL} (standard drive strength) ($V_{DD} = 3 \text{ V}$)

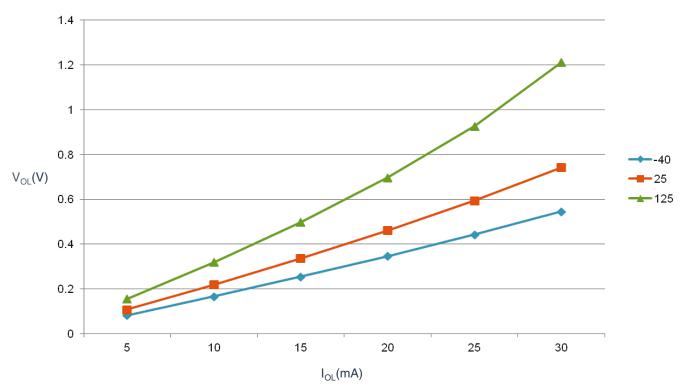


Figure 7. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 5 \text{ V}$)

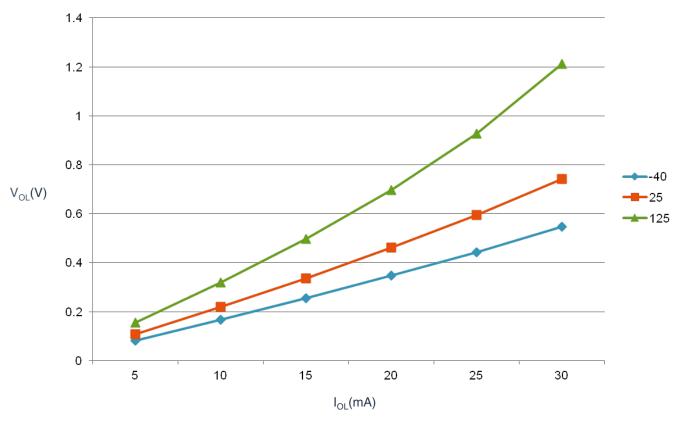


Figure 8. Typical V_{OL} Vs. I_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

4.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Parameter Symbol Core/Bus $V_{DD}(V)$ Typical¹ Unit Max Temp Freq Run supply current FEI 48/24 MHz 5 11.1 -40 to 125 °C RI_{DD} mΑ mode, all modules clocks 24/24 MHz 8 enabled; run from flash 12/12 MHz 5 1/1 MHz 2.4 48/24 MHz 3 11 24/24 MHz 7.9 12/12 MHz 4.9 1/1 MHz 2.3 48/24 MHz -40 to 125 °C Run supply current FEI RI_{DD} 5 7.8 mA mode, all modules clocks 24/24 MHz 5.5 disabled and gated; run from 12/12 MHz 3.8 flash 1/1 MHz 2.3

Table 4. Supply current characteristics

NOTISWITCHING electrical specifications

Table 4. Supply current characteristics (continued)

Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
		48/24 MHz	3	7.7	_		
		24/24 MHz		5.4	_		
		12/12 MHz		3.7	_		
		1/1 MHz		2.2	_	7	
Run supply current FBE	RI _{DD}	48/24 MHz	5	14.7	_	mA	-40 to 125 °C
mode, all modules clocks enabled; run from RAM		24/24 MHz		9.8	14.9 ²	7	
enabled, full from HAIVI		12/12 MHz		6	_		
		1/1 MHz		2.4	_		
		48/24 MHz	3	14.6	_		
		24/24 MHz		9.6	12.8 ²		
		12/12 MHz		5.9	_		
		1/1 MHz		2.3	_	7	
Run supply current FBE	RI _{DD}	48/24 MHz	5	11.4	_	mA	-40 to 125 °C
mode, all modules clocks disabled and gated; run from		24/24 MHz		7.7	12.5 ²		
RAM		12/12 MHz		4.7	_	7	
		1/1 MHz		2.3	_		
		48/24 MHz	3	11.3	_		
		24/24 MHz		7.6	9.5 ²		
		12/12 MHz		4.6	_		
		1/1 MHz		2.2	_		
Wait mode current FEI	WI _{DD}	48/24 MHz	5	8.4	_	mA	-40 to 125 °C
mode, all modules clocks enabled		24/24 MHz		6.5	7.2 ²		
onabioa		12/12 MHz		4.3	_		
		1/1 MHz		2.4	_		
		48/24 MHz	3	8.3	_		
		24/24 MHz		6.4	7.1 ²		
		12/12 MHz		4.2	_		
		1/1 MHz		2.3	_		
Stop mode supply current no	SI_{DD}	_	5	2	170 ²	μA	-40 to 125 °C
clocks active (except 1 kHz LPO clock) ³		_	3	1.9	160 ²		-40 to 125 °C
ADC adder to Stop	_	_	5	86	_	μA	-40 to 125 °C
ADLPC = 1			3	82	_		
ADLSMP = 1							
ADCO = 1							
MODE = 10B							
ADICLK = 11B							
ACMP adder to Stop	_	_	5	12	_	μA	-40 to 125 °C
			3	12	_	7	

Parameter	Symbol	Core/Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
LVD adder to Stop ⁴	_	_	5	130	_	μΑ	-40 to 125 °C
			3	125	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. The high current is observed at high temperature.
- 3. RTC adder cause <1 μ A I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 4. LVD is periodically woken up from Stop by 5% duty cycle. The period is equal to or less than 2 ms.

4.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation play a significant role in EMC performance. The system designer must consult the following Freescale applications notes, available on **freescale.com** for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

4.2 Switching specifications

4.2.1 Control timing

Table 5. Control timing

Num	Rating	Symbol	Min	Typical ¹	Max	Unit
1	System and core clock	f _{Sys}	DC	_	48	MHz
2	Bus frequency $(t_{cyc} = 1/f_{Bus})$	f _{Bus}	DC	_	24	MHz
3	Internal low power oscillator frequency	f _{LPO}	0.67	1.0	1.25	KHz
4	External reset pulse width ²	t _{extrst}	1.5 ×	_	_	ns
			t _{cyc}			

Table 5. Control timing (continued)

Num	Rating		Symbol	Min	Typical ¹	Max	Unit
5	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
6	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
		Synchronous path ³	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
7	Keyboard interrupt pulse	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	width	Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	Normal drive strength (load = 50 pF) ⁴		t _{Fall}	_	9.5	_	ns
	Port rise and fall time - high	_	t _{Rise}	_	5.4	_	ns
	drive strength (load = 50 pF) ⁴		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a RESET pin request.
- 3. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40 °C to 125 °C.

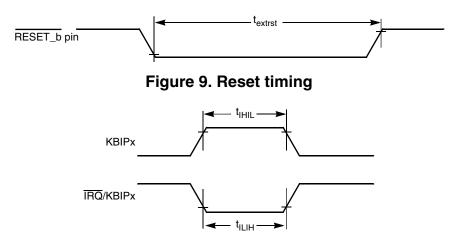


Figure 10. KBIPx timing

4.2.2 FTM module timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Table 6. FTM input timing

Function	Symbol	Min	Max	Unit
Timer clock frequency	f _{Timer}	f _{Bus}	f _{Sys}	Hz
External clock frequency	f _{TCLK}	0	f _{Timer} /4	Hz

Function	Symbol	Min	Max	Unit
External clock period	t _{TCLK}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{clkl}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

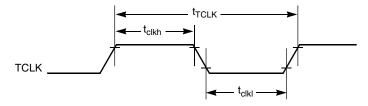


Figure 11. Timer external clock

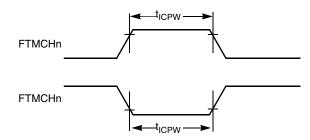


Figure 12. Timer input capture pulse

4.3 Thermal specifications

4.3.1 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Table 10. Flash characteristics (continued)

Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

- 1. Minimum times are based on maximum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 2. Typical times are based on typical $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 3. Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging
- 4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Flash Memory Module section in the reference manual.

5.4 Analog

5.4.1 ADC characteristics

Table 11. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symbol	Min	Typ ¹	Max	Unit	Comment
Reference	• Low	V _{REFL}	V_{SSA}	_	V _{DDA} /2	V	_
potential	• High	V _{REFH}	V _{DDA} /2	_	V_{DDA}		
Supply	Absolute	V_{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDA})	ΔV_{DDA}	-100	0	+100	mV	_
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	_
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	_
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	_	5		
	10-bit modef_{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

reripheral operating requirements and behaviors

1. Typical values assume $V_{DDA} = 5.0 \text{ V}$, Temp = 25°C, $f_{ADCK} = 1.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

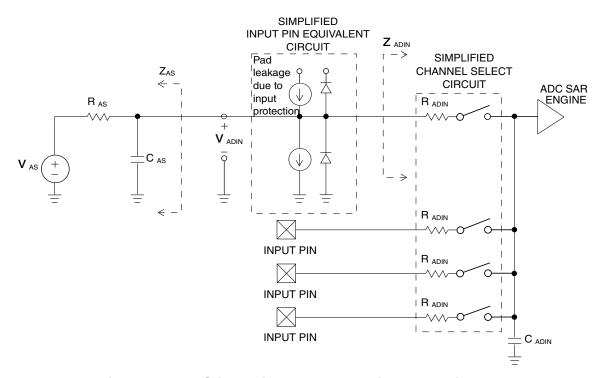


Figure 16. ADC input impedance equivalency diagram

Table 12. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	Symbol	Min	Typ ¹	Max	Unit
Supply current		I _{DDA}	_	133	_	μΑ
ADLPC = 1						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	218	_	μA
ADLPC = 1						
ADLSMP = 0						
ADCO = 1						
Supply current		I _{DDA}	_	327	_	μA
ADLPC = 0						
ADLSMP = 1						
ADCO = 1						
Supply current		I _{DDA}	_	582	990	μΑ
ADLPC = 0						
ADLSMP = 0						
ADCO = 1						
Supply current	Stop, reset, module off	I _{DDA}	_	0.011	1	μA

5.4.2 Analog comparator (ACMP) electricals

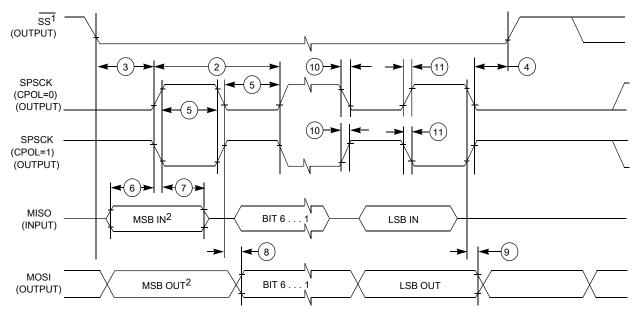
Table 13. Comparator electrical specifications

Characteristic	Symbol	Min	Typical	Max	Unit
Supply voltage	V_{DDA}	2.7	_	5.5	V
Supply current (Operation mode)	I _{DDA}	_	10	20	μΑ
Analog input voltage	V _{AIN}	V _{SS} - 0.3		V_{DDA}	V
Analog input offset voltage	V _{AIO}	1	1	40	mV
Analog comparator hysteresis (HYST=0)	V _H	_	15	20	mV
Analog comparator hysteresis (HYST=1)	V _H	_	20	30	mV
Supply current (Off mode)	I _{DDAOFF}	_	60	_	nA
Propagation Delay	t _D	_	0.4	1	μs

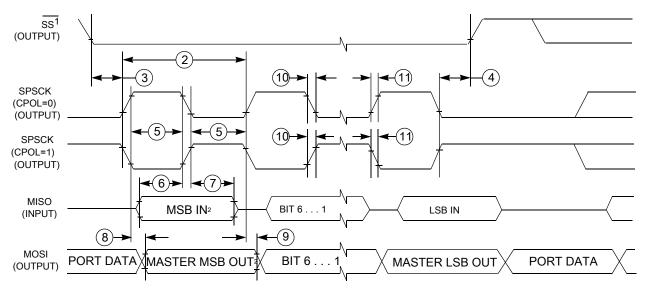
5.5 Communication interfaces

5.5.1 SPI switching specifications

The serial peripheral interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's reference manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 80% V_{DD} , unless noted, and 25 pF load on all SPI pins. All timing assumes slew rate control is disabled and high-drive strength is enabled for SPI output pins.


Table 14. SPI master mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	8	_	ns	_
7	t _{HI}	Data hold time (inputs)	8	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	20	_	ns	_


Table 1/	SDI mastar	mode timing	(continued)
Table 14.	SPI master	mode umina	(continuea)

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
10	t _{RI}	Rise time input	_	t _{Bus} – 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. SPI master mode timing (CPHA=0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

KEA128 Sub-Family Data Sheet, Rev4, 09/2014.

reripheral operating requirements and behaviors

Table 15. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in Control timing.
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	twspsck	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

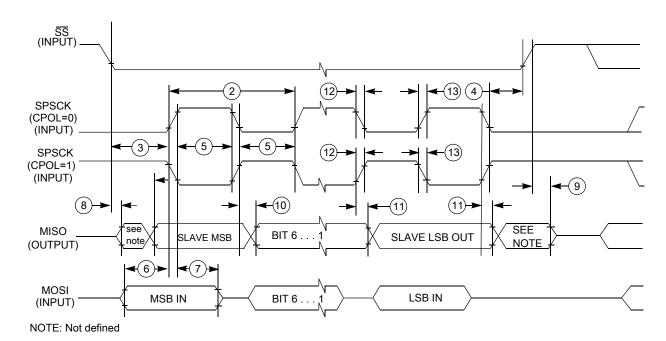


Figure 19. SPI slave mode timing (CPHA = 0)

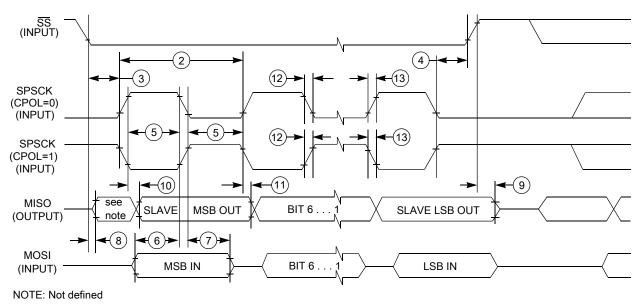


Figure 20. SPI slave mode timing (CPHA=1)

5.5.2 MSCAN

Table 16. MSCAN wake-up pulse characteristics

Parameter	Symbol	Min	Тур	Max	Unit
MSCAN wakeup dominant pulse filtered	t _{WUP}	-	-	1.5	μs
MSCAN wakeup dominant pulse pass	t _{WUP}	5	-	-	μs

6 Dimensions

6.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number	
64-pin LQFP	98ASS23234W	
80-pin LQFP	98ASS23237W	

7 Pinout

7.1 Signal multiplexing and pin assignments

For the pin muxing details see section Signal Multiplexing and Signal Descriptions of KEA128 Reference Manual.

8 Revision History

The following table provides a revision history for this document.

Table 17. Revision History

Rev. No.	Date	Substantial Changes
Rev. 1	11 March 2014	Initial Release
Rev. 2	18 June 2014	 Parameter Classification section is removed. Classification column is removed from all the tables in the document. New section added - Supply current characteristics.
Rev. 3	18 July 2014	 Added supported part numbers. ESD handling ratings section is updated. Figures in DC characteristics section are updated. Specs updated in following tables: Table 9.
Rev. 4	03 Sept 2014	Data Sheet type changed to "Technical Data".

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex-M0+ are the registered trademarks of ARM Limited.

©2014 Freescale Semiconductor, Inc.

ARM -

Document Number S9KEA128P80M48SF0 Revision 4, 09/2014