E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Fixed Point
Interface	SPI, SSP, UART
Clock Rate	533MHz
Non-Volatile Memory	ROM (1kB)
On-Chip RAM	148kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	169-BBGA
Supplier Device Package	169-PBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adbf533wbbz506

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

BLACKFIN PROCESSOR CORE

As shown in Figure 2 on Page 5, the Blackfin processor core contains two 16-bit multipliers, two 40-bit accumulators, two 40-bit ALUs, four video ALUs, and a 40-bit shifter. The computation units process 8-bit, 16-bit, or 32-bit data from the register file.

The compute register file contains eight 32-bit registers. When performing compute operations on 16-bit operand data, the register file operates as 16 independent 16-bit registers. All operands for compute operations come from the multiported register file and instruction constant fields.

Each MAC can perform a 16-bit by 16-bit multiply in each cycle, accumulating the results into the 40-bit accumulators. Signed and unsigned formats, rounding, and saturation are supported.

The ALUs perform a traditional set of arithmetic and logical operations on 16-bit or 32-bit data. In addition, many special instructions are included to accelerate various signal processing tasks. These include bit operations such as field extract and population count, modulo 2³² multiply, divide primitives, saturation and rounding, and sign/exponent detection. The set of video instructions includes byte alignment and packing operations, 16-bit and 8-bit adds with clipping, 8-bit average operations, and 8-bit subtract/absolute value/accumulate (SAA) operations. Also provided are the compare/select and vector search instructions.

For certain instructions, two 16-bit ALU operations can be performed simultaneously on register pairs (a 16-bit high half and 16-bit low half of a compute register). Quad 16-bit operations are possible using the second ALU.

The 40-bit shifter can perform shifts and rotates and is used to support normalization, field extract, and field deposit instructions.

The program sequencer controls the flow of instruction execution, including instruction alignment and decoding. For program flow control, the sequencer supports PC relative and indirect conditional jumps (with static branch prediction), and subroutine calls. Hardware is provided to support zero-overhead looping. The architecture is fully interlocked, meaning that the programmer need not manage the pipeline when executing instructions with data dependencies.

The address arithmetic unit provides two addresses for simultaneous dual fetches from memory. It contains a multiported register file consisting of four sets of 32-bit index, modify, length, and base registers (for circular buffering), and eight additional 32-bit pointer registers (for C-style indexed stack manipulation).

Blackfin processors support a modified Harvard architecture in combination with a hierarchical memory structure. Level 1 (L1) memories are those that typically operate at the full processor speed with little or no latency. At the L1 level, the instruction memory holds instructions only. The two data memories hold data, and a dedicated scratchpad data memory stores stack and local variable information. In addition, multiple L1 memory blocks are provided, offering a configurable mix of SRAM and cache. The memory management unit (MMU) provides memory protection for individual tasks that may be operating on the core and can protect system registers from unintended access.

The architecture provides three modes of operation: user mode, supervisor mode, and emulation mode. User mode has restricted access to certain system resources, thus providing a protected software environment, while supervisor mode has unrestricted access to the system and core resources.

The Blackfin processor instruction set has been optimized so that 16-bit opcodes represent the most frequently used instructions, resulting in excellent compiled code density. Complex DSP instructions are encoded into 32-bit opcodes, representing fully featured multifunction instructions. Blackfin processors support a limited multi-issue capability, where a 32-bit instruction can be issued in parallel with two 16-bit instructions, allowing the programmer to use many of the core resources in a single instruction cycle.

The Blackfin processor assembly language uses an algebraic syntax for ease of coding and readability. The architecture has been optimized for use in conjunction with the C/C++ compiler, resulting in fast and efficient software implementations.

MEMORY ARCHITECTURE

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors view memory as a single unified 4G byte address space, using 32-bit addresses. All resources, including internal memory, external memory, and I/O control registers, occupy separate sections of this common address space. The memory portions of this address space are arranged in a hierarchical structure to provide a good cost/performance balance of some very fast, low latency on-chip memory as cache or SRAM, and larger, lower cost and performance off-chip memory systems. See Figure 3, Figure 4, and Figure 5 on Page 6.

The L1 memory system is the primary highest performance memory available to the Blackfin processor. The off-chip memory system, accessed through the external bus interface unit (EBIU), provides expansion with SDRAM, flash memory, and SRAM, optionally accessing up to 132M bytes of physical memory.

The memory DMA controller provides high bandwidth datamovement capability. It can perform block transfers of code or data between the internal memory and the external memory spaces.

Internal (On-Chip) Memory

The processors have three blocks of on-chip memory that provide high bandwidth access to the core.

The first block is the L1 instruction memory, consisting of up to 80K bytes SRAM, of which 16K bytes can be configured as a four way set-associative cache. This memory is accessed at full processor speed.

Each event type has an associated register to hold the return address and an associated return-from-event instruction. When an event is triggered, the state of the processor is saved on the supervisor stack.

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors' event controller consists of two stages, the core event controller (CEC) and the system interrupt controller (SIC). The core event controller works with the system interrupt controller to prioritize and control all system events. Conceptually, interrupts from the peripherals enter into the SIC, and are then routed directly into the general-purpose interrupts of the CEC.

Core Event Controller (CEC)

The CEC supports nine general-purpose interrupts (IVG15–7), in addition to the dedicated interrupt and exception events. Of these general-purpose interrupts, the two lowest priority interrupts (IVG15–14) are recommended to be reserved for software interrupt handlers, leaving seven prioritized interrupt inputs to support the peripherals of the processor. Table 2 describes the inputs to the CEC, identifies their names in the event vector table (EVT), and lists their priorities.

Table 2. Core Event Controller (CEC)

Priority		
(0 is Highest)	Event Class	EVT Entry
0	Emulation/Test Control	EMU
1	Reset	RST
2	Nonmaskable Interrupt	NMI
3	Exception	EVX
4	Reserved	
5	Hardware Error	IVHW
6	Core Timer	IVTMR
7	General Interrupt 7	IVG7
8	General Interrupt 8	IVG8
9	General Interrupt 9	IVG9
10	General Interrupt 10	IVG10
11	General Interrupt 11	IVG11
12	General Interrupt 12	IVG12
13	General Interrupt 13	IVG13
14	General Interrupt 14	IVG14
15	General Interrupt 15	IVG15

System Interrupt Controller (SIC)

The system interrupt controller provides the mapping and routing of events from the many peripheral interrupt sources to the prioritized general-purpose interrupt inputs of the CEC. Although the processors provide a default mapping, the user can alter the mappings and priorities of interrupt events by writing the appropriate values into the interrupt assignment registers (SIC_IARx). Table 3 describes the inputs into the SIC and the default mappings into the CEC. Table 3. System Interrupt Controller (SIC)

Peripheral Interrupt Event	Default Mapping
PLL Wakeup	IVG7
DMA Error	IVG7
PPI Error	IVG7
SPORT 0 Error	IVG7
SPORT 1 Error	IVG7
SPI Error	IVG7
UART Error	IVG7
Real-Time Clock	IVG8
DMA Channel 0 (PPI)	IVG8
DMA Channel 1 (SPORT 0 Receive)	IVG9
DMA Channel 2 (SPORT 0 Transmit)	IVG9
DMA Channel 3 (SPORT 1 Receive)	IVG9
DMA Channel 4 (SPORT 1 Transmit)	IVG9
DMA Channel 5 (SPI)	IVG10
DMA Channel 6 (UART Receive)	IVG10
DMA Channel 7 (UART Transmit)	IVG10
Timer 0	IVG11
Timer 1	IVG11
Timer 2	IVG11
Port F GPIO Interrupt A	IVG12
Port F GPIO Interrupt B	IVG12
Memory DMA Stream 0	IVG13
Memory DMA Stream 1	IVG13
Software Watchdog Timer	IVG13

Event Control

The processors provide a very flexible mechanism to control the processing of events. In the CEC, three registers are used to coordinate and control events. Each register is 32 bits wide:

- CEC interrupt latch register (ILAT) The ILAT register indicates when events have been latched. The appropriate bit is set when the processor has latched the event and cleared when the event has been accepted into the system. This register is updated automatically by the controller, but it can also be written to clear (cancel) latched events. This register can be read while in supervisor mode and can only be written while in supervisor mode when the corresponding IMASK bit is cleared.
- CEC interrupt mask register (IMASK) The IMASK register controls the masking and unmasking of individual events. When a bit is set in the IMASK register, that event is unmasked and is processed by the CEC when asserted. A cleared bit in the IMASK register masks the event, preventing the processor from servicing the event even though the event may be latched in the ILAT register. This register can be read or written while in supervisor mode. Note that general-purpose interrupts can be globally enabled and disabled with the STI and CLI instructions, respectively.

 CEC interrupt pending register (IPEND) – The IPEND register keeps track of all nested events. A set bit in the IPEND register indicates the event is currently active or nested at some level. This register is updated automatically by the controller but can be read while in supervisor mode.

The SIC allows further control of event processing by providing three 32-bit interrupt control and status registers. Each register contains a bit corresponding to each of the peripheral interrupt events shown in Table 3.

- SIC interrupt mask register (SIC_IMASK) This register controls the masking and unmasking of each peripheral interrupt event. When a bit is set in this register, that peripheral event is unmasked and is processed by the system when asserted. A cleared bit in this register masks the peripheral event, preventing the processor from servicing the event.
- SIC interrupt status register (SIC_ISR) As multiple peripherals can be mapped to a single event, this register allows the software to determine which peripheral event source triggered the interrupt. A set bit indicates the peripheral is asserting the interrupt, and a cleared bit indicates the peripheral is not asserting the event.
- SIC interrupt wakeup enable register (SIC_IWR) By enabling the corresponding bit in this register, a peripheral can be configured to wake up the processor, should the core be idled when the event is generated. See Dynamic Power Management on Page 11.

Because multiple interrupt sources can map to a single generalpurpose interrupt, multiple pulse assertions can occur simultaneously, before or during interrupt processing for an interrupt event already detected on this interrupt input. The IPEND register contents are monitored by the SIC as the interrupt acknowledgement.

The appropriate ILAT register bit is set when an interrupt rising edge is detected (detection requires two core clock cycles). The bit is cleared when the respective IPEND register bit is set. The IPEND bit indicates that the event has entered into the processor pipeline. At this point the CEC recognizes and queues the next rising edge event on the corresponding event input. The minimum latency from the rising edge transition of the general-purpose interrupt to the IPEND output asserted is three core clock cycles; however, the latency can be much higher, depending on the activity within and the state of the processor.

DMA CONTROLLERS

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors have multiple, independent DMA channels that support automated data transfers with minimal overhead for the processor core. DMA transfers can occur between the processor's internal memories and any of its DMA-capable peripherals. Additionally, DMA transfers can be accomplished between any of the DMA-capable peripherals and external devices connected to the external memory interfaces, including the SDRAM controller and the asynchronous memory controller. DMA-capable peripherals include the SPORTs, SPI port, UART, and PPI. Each individual DMA-capable peripheral has at least one dedicated DMA channel.

The DMA controller supports both 1-dimensional (1-D) and 2dimensional (2-D) DMA transfers. DMA transfer initialization can be implemented from registers or from sets of parameters called descriptor blocks.

The 2-D DMA capability supports arbitrary row and column sizes up to 64K elements by 64K elements, and arbitrary row and column step sizes up to ± 32 K elements. Furthermore, the column step size can be less than the row step size, allowing implementation of interleaved data streams. This feature is especially useful in video applications where data can be de-interleaved on the fly.

Examples of DMA types supported by the DMA controller include:

- A single, linear buffer that stops upon completion
- A circular, autorefreshing buffer that interrupts on each full or fractionally full buffer
- 1-D or 2-D DMA using a linked list of descriptors
- 2-D DMA using an array of descriptors, specifying only the base DMA address within a common page

In addition to the dedicated peripheral DMA channels, there are two pairs of memory DMA channels provided for transfers between the various memories of the processor system. This enables transfers of blocks of data between any of the memories—including external SDRAM, ROM, SRAM, and flash memory—with minimal processor intervention. Memory DMA transfers can be controlled by a very flexible descriptor-based methodology or by a standard register-based autobuffer mechanism.

REAL-TIME CLOCK

The processor real-time clock (RTC) provides a robust set of digital watch features, including current time, stopwatch, and alarm. The RTC is clocked by a 32.768 kHz crystal external to the ADSP-BF531/ADSP-BF532/ADSP-BF533 processors. The RTC peripheral has dedicated power supply pins so that it can remain powered up and clocked even when the rest of the processor is in a low power state. The RTC provides several programmable interrupt options, including interrupt per second, minute, hour, or day clock ticks, interrupt on programmable stopwatch countdown, or interrupt at a programmed alarm time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal by a prescaler. The counter function of the timer consists of four counters: a 60 second counter, a 60 minute counter, a 24 hour counter, and a 32,768 day counter.

When enabled, the alarm function generates an interrupt when the output of the timer matches the programmed value in the alarm control register. The two alarms are time of day and a day and time of that day.

Active Operating Mode—Moderate Power Savings

In the active mode, the PLL is enabled but bypassed. Because the PLL is bypassed, the processor's core clock (CCLK) and system clock (SCLK) run at the input clock (CLKIN) frequency. DMA access is available to appropriately configured L1 memories.

In the active mode, it is possible to disable the PLL through the PLL control register (PLL_CTL). If disabled, the PLL must be re-enabled before it can transition to the full-on or sleep modes.

	Table 4.	Power	Settings
--	----------	-------	----------

Mode	PLL	PLL Bypassed	Core Clock (CCLK)	System Clock (SCLK)	Internal Power (V _{DDINT})
Full On	Enabled	No	Enabled	Enabled	On
Active	Enabled/ Disabled	Yes	Enabled	Enabled	On
Sleep	Enabled	_	Disabled	Enabled	On
Deep Sleep	Disabled	_	Disabled	Disabled	On
Hibernate	Disabled	—	Disabled	Disabled	Off

Sleep Operating Mode—High Dynamic Power Savings

The sleep mode reduces dynamic power dissipation by disabling the clock to the processor core (CCLK). The PLL and system clock (SCLK), however, continue to operate in this mode. Typically an external event or RTC activity will wake up the processor. When in the sleep mode, assertion of wakeup causes the processor to sense the value of the BYPASS bit in the PLL control register (PLL_CTL). If BYPASS is disabled, the processor will transition to the full-on mode. If BYPASS is enabled, the processor will transition to the active mode.

When in the sleep mode, system DMA access to L1 memory is not supported.

Deep Sleep Operating Mode—Maximum Dynamic Power Savings

The deep sleep mode maximizes dynamic power savings by disabling the clocks to the processor core (CCLK) and to all synchronous peripherals (SCLK). Asynchronous peripherals, such as the RTC, may still be running but cannot access internal resources or external memory. This powered-down mode can only be exited by assertion of the reset interrupt (RESET) or by an asynchronous interrupt generated by the RTC. When in deep sleep mode, an RTC asynchronous interrupt causes the processor to transition to the active mode. Assertion of RESET while in deep sleep mode causes the processor to transition to the full-on mode.

Hibernate State—Maximum Static Power Savings

The hibernate state maximizes static power savings by disabling the voltage and clocks to the processor core (CCLK) and to all the synchronous peripherals (SCLK). The internal voltage regulator for the processor can be shut off by writing b#00 to the FREQ bits of the VR_CTL register. In addition to disabling the clocks, this sets the internal power supply voltage (V_{DDINT}) to 0 V to provide the lowest static power dissipation. Any critical information stored internally (memory contents, register contents, etc.) must be written to a nonvolatile storage device prior to removing power if the processor state is to be preserved. Since V_{DDEXT} is still supplied in this mode, all of the external pins three-state, unless otherwise specified. This allows other devices that may be connected to the processor to still have power applied without drawing unwanted current. The internal supply regulator can be woken up either by a real-time clock wakeup or by asserting the RESET pin.

Power Savings

As shown in Table 5, the processors support three different power domains. The use of multiple power domains maximizes flexibility, while maintaining compliance with industry standards and conventions. By isolating the internal logic of the processor into its own power domain, separate from the RTC and other I/O, the processor can take advantage of dynamic power management without affecting the RTC or other I/O devices. There are no sequencing requirements for the various power domains.

Table 5. Power Domains

Power Domain	V _{DD} Range
All internal logic, except RTC	V _{DDINT}
RTC internal logic and crystal I/O	V _{DDRTC}
All other I/O	V _{DDEXT}

The power dissipated by a processor is largely a function of the clock frequency of the processor and the square of the operating voltage. For example, reducing the clock frequency by 25% results in a 25% reduction in dynamic power dissipation, while reducing the voltage by 25% reduces dynamic power dissipation by more than 40%. Further, these power savings are additive, in that if the clock frequency and supply voltage are both reduced, the power savings can be dramatic.

The dynamic power management feature of the processor allows both the processor's input voltage (V_{DDINT}) and clock frequency (f_{CCLK}) to be dynamically controlled.

The savings in power dissipation can be modeled using the power savings factor and % power savings calculations.

The power savings factor is calculated as:

power savings factor

$$= \frac{f_{CCLKRED}}{f_{CCLKNOM}} \times \left(\frac{V_{DDINTRED}}{V_{DDINTNOM}}\right)^2 \times \left(\frac{t_{RED}}{t_{NOM}}\right)$$

where the variables in the equation are:

 $f_{CCLKNOM}$ is the nominal core clock frequency

 $f_{CCLKRED}$ is the reduced core clock frequency

 $V_{DDINTNOM}$ is the nominal internal supply voltage

 $V_{DDINTRED}$ is the reduced internal supply voltage

SPECIFICATIONS

Component specifications are subject to change without notice.

OPERATING CONDITIONS

Param	eter	Conditions	Min	Nominal	Мах	Unit
V _{DDINT}	Internal Supply Voltage ¹	Nonautomotive 400 MHz and 500 MHz speed grade models ²	0.8	1.2	1.45	V
V _{DDINT}	Internal Supply Voltage ¹	Nonautomotive 533 MHz speed grade models ²	0.8	1.25	1.45	v
V _{DDINT}	Internal Supply Voltage ¹	600 MHz speed grade models ²	0.8	1.30	1.45	v
V _{DDINT}	Internal Supply Voltage ¹	Automotive 400 MHz speed grade models ²	0.95	1.2	1.45	v
V _{DDINT}	Internal Supply Voltage ¹	Automotive 533 MHz speed grade models ²	0.95	1.25	1.45	v
V_{DDEXT}	External Supply Voltage ³	Nonautomotive grade models ²	1.75	1.8/3.3	3.6	v
V_{DDEXT}	External Supply Voltage	Automotive grade models ²	2.7	3.3	3.6	v
V _{DDRTC}	Real-Time Clock Power Supply Voltage	Nonautomotive grade models ²	1.75	1.8/3.3	3.6	V
V _{DDRTC}	Real-Time Clock Power Supply Voltage	Automotive grade models ²	2.7	3.3	3.6	V
V _{IH}	High Level Input Voltage ^{4, 5}	V _{DDEXT} = 1.85 V	1.3			v
V _{IH}	High Level Input Voltage ^{4, 5}	V _{DDEXT} = Maximum	2.0			v
VIHCLKIN	High Level Input Voltage ⁶	V _{DDEXT} = Maximum	2.2			v
V_{IL}	Low Level Input Voltage ⁷	V _{DDEXT} = 1.75 V			+0.3	v
V_{IL}	Low Level Input Voltage ⁷	$V_{DDEXT} = 2.7 V$			+0.6	v
TJ	Junction Temperature	160-Ball Chip Scale Ball Grid Array (CSP_BGA) @ T _{AMBIENT} = 0°C to + 70°C	0		+95	°C
TJ	Junction Temperature	160-Ball Chip Scale Ball Grid Array (CSP_BGA) @ T _{AMBIENT} = -40°C to +85°C	-40		+105	°C
TJ	Junction Temperature	160-Ball Chip Scale Ball Grid Array (CSP_BGA) @ $T_{AMBIENT} = -40^{\circ}C$ to $+105^{\circ}C$	-40		+125	°C
TJ	Junction Temperature	169-Ball Plastic Ball Grid Array (PBGA) @ $T_{AMBIENT} = -40^{\circ}C \text{ to } + 105^{\circ}C$	-40		+125	°C
TJ	Junction Temperature	169-Ball Plastic Ball Grid Array (PBGA) @ $T_{AMBIENT} = -40^{\circ}C \text{ to } +85^{\circ}C$	-40		+105	°C
TJ	Junction Temperature	176-Lead Quad Flatpack (LQFP) @ $T_{AMBIENT} = -40^{\circ}C \text{ to } +85^{\circ}C$	-40		+100	°C

¹The regulator can generate V_{DDINT} at levels of 0.85 V to 1.2 V with -5% to +10% tolerance, 1.25 V with -4% to +10% tolerance, and 1.3 V with -0% to +10% tolerance. ²See Ordering Guide on Page 63.

 3 When V_{\rm DDEXT} < 2.25 V, on-chip voltage regulation is not supported.

⁴ Applies to all input and bidirectional pins except CLKIN.

⁵ The ADSP-BF531/ADSP-BF532/ADSP-BF532 processors are 3.3 V tolerant (always accepts up to 3.6 V maximum V_{IH}), but voltage compliance (on outputs, V_{OH}) depends on the input V_{DDEXT}, because V_{OH} (maximum) approximately equals V_{DDEXT} (maximum). This 3.3 V tolerance applies to bidirectional pins (DATA15-0, TMR2-0, PF15-0, PP13-0, RSCLK1-0, TSCLK1-0, TFS1-0, MOSI, MISO, SCK) and input only pins (BR, ARDY, PP1_CLK, DR0PRI, DR0SEC, DR1PRI, DR1SEC, RX, RTXI, TCK, TDI, TMS, TRST, CLKIN, RESET, NMI, and BMODE1-0).

⁶ Applies to CLKIN pin only.

⁷ Applies to all input and bidirectional pins.

The following three tables describe the voltage/frequency requirements for the processor clocks. Take care in selecting MSEL, SSEL, and CSEL ratios so as not to exceed the maximum core clock (Table 10 and Table 11) and system clock (Table 13) specifications. Table 12 describes phase-locked loop operating conditions.

Table 10. Core Clock (CCLK) Requirements—500 MHz, 533 MHz, and 600 MHz Models

Parameter		Internal Regulator Setting	Max	Unit
f_{CCLK}	CCLK Frequency $(V_{DDINT} = 1.3 \text{ V Minimum})^1$	1.30 V	600	MHz
\mathbf{f}_{CCLK}	CCLK Frequency $(V_{DDINT} = 1.2 \text{ V Minimum})^2$	1.25 V	533	MHz
\mathbf{f}_{CCLK}	CCLK Frequency $(V_{DDINT} = 1.14 V Minimum)^3$	1.20 V	500	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 1.045 V Minimum)	1.10 V	444	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 0.95 V Minimum)	1.00 V	400	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 0.85 V Minimum)	0.90 V	333	MHz
f_{CCLK}	CCLK Frequency (V _{DDINT} = 0.8 V Minimum)	0.85 V	250	MHz

¹ Applies to 600 MHz models only. See Ordering Guide on Page 63.

² Applies to 533 MHz and 600 MHz models only. See Ordering Guide on Page 63. 533 MHz models cannot support internal regulator levels above 1.25 V.

³ Applies to 500 MHz, 533 MHz, and 600 MHz models. See Ordering Guide on Page 63. 500 MHz models cannot support internal regulator levels above 1.20 V.

Table 11. Core Clock (CCLK) Requirements—400 MHz Models¹

			T _J = 125°C	All ² Other T _J	
Paran	neter	Internal Regulator Setting	Max	Max	Unit
f_{CCLK}	CCLK Frequency (V _{DDINT} = 1.14 V Minimum)	1.20 V	400	400	MHz
\mathbf{f}_{CCLK}	CCLK Frequency (V _{DDINT} = 1.045 V Minimum)	1.10 V	333	364	MHz
f_{CCLK}	CCLK Frequency (V _{DDINT} = 0.95 V Minimum)	1.00 V	295	333	MHz
f_{CCLK}	CCLK Frequency (V _{DDINT} = 0.85 V Minimum)	0.90 V		280	MHz
f_{CCLK}	CCLK Frequency (V _{DDINT} = 0.8 V Minimum)	0.85 V		250	MHz

¹See Ordering Guide on Page 63.

² See Operating Conditions on Page 20.

Table 12. Phase-Locked Loop Operating Conditions

Parameter		Min	Max	Unit
f_{VCO}	Voltage Controlled Oscillator (VCO) Frequency	50	Max f _{CCLK}	MHz

Table 13. System Clock (SCLK) Requirements

		V _{DDEXT} = 1.8 V	$V_{DDEXT} = 2.5 V/3.3 V$	
Parameter ¹ I		Max	Max	Unit
CSP_BGA/PBGA				
f _{SCLK}	CLKOUT/SCLK Frequency ($V_{DDINT} \ge 1.14 V$)	100	133	MHz
f _{SCLK}	CLKOUT/SCLK Frequency (V _{DDINT} < 1.14 V)	100	100	MHz
LQFP				
f _{SCLK}	CLKOUT/SCLK Frequency ($V_{DDINT} \ge 1.14 \text{ V}$)	100	133	MHz
f _{SCLK}	CLKOUT/SCLK Frequency (V _{DDINT} < 1.14 V)	83	83	MHz

 1 t_{SCLK} (= 1/f_{SCLK}) must be greater than or equal to t_{CCLK}.

PACKAGE INFORMATION

The information presented in Figure 10 and Table 20 provides details about the package branding for the Blackfin processors. For a complete listing of product availability, see the Ordering Guide on Page 63.

Figure 10. Product Information on Package

Table 20.	Package	Brand	Information ¹
-----------	---------	-------	--------------------------

Brand Key	Field Description
ADSP-BF53x	Either ADSP-BF531, ADSP-BF532, or ADSP-BF533
t	Temperature Range
рр	Package Type
Z	RoHS Compliant Part
ссс	See Ordering Guide
vvvvv.x	Assembly Lot Code
n.n	Silicon Revision
#	RoHS Compliant Designation
yyww	Date Code

¹Non Automotive only. For branding information specific to Automotive products, contact Analog Devices Inc.

Asynchronous Memory Read Cycle Timing

Table 23. Asynchronous Memory Read Cycle Timing

		V _{DDEX}	_T = 1.8 V	$V_{DDEXT} = 2$	2.5 V/3.3 V	
Paramete	r	Min	Max	Min	Max	Unit
Timing Red	quirements					
t _{SDAT}	DATA15-0 Setup Before CLKOUT	2.1		2.1		ns
t _{HDAT}	DATA15–0 Hold After CLKOUT	1.0		0.8		ns
t _{SARDY}	ARDY Setup Before CLKOUT	4.0		4.0		ns
t _{HARDY}	ARDY Hold After CLKOUT	1.0		0.0		ns
Switching	Characteristics					
t _{DO}	Output Delay After CLKOUT ¹		6.0		6.0	ns
t _{HO}	Output Hold After CLKOUT ¹	1.0		0.8		ns

¹Output pins include AMS3-0, ABE1-0, ADDR19-1, DATA15-0, AOE, ARE.

Figure 13. Asynchronous Memory Read Cycle Timing

Asynchronous Memory Write Cycle Timing

Table 24. Asynchronous Memory Write Cycle Timing

		VDDEXT	= 1.8 V	V _{DDEXT} = 2	2.5 V/3.3 V	
Paramete	Parameter /		Max	Min	Мах	Unit
Timing Req	uirements					
t _{SARDY}	ARDY Setup Before CLKOUT	4.0		4.0		ns
t _{HARDY}	ARDY Hold After CLKOUT	1.0		0.0		ns
Switching	Characteristics					
t _{DDAT}	DATA15-0 Disable After CLKOUT		6.0		6.0	ns
t _{ENDAT}	DATA15–0 Enable After CLKOUT	1.0		1.0		ns
t _{DO}	Output Delay After CLKOUT ¹		6.0		6.0	ns
t _{HO}	Output Hold After CLKOUT ¹	1.0		0.8		ns

¹Output pins include AMS3-0, ABE1-0, ADDR19-1, DATA15-0, AOE, AWE.

Figure 14. Asynchronous Memory Write Cycle Timing

SDRAM Interface Timing

Table 25. SDRAM Interface Timing¹

		VDDEXT	-= 1.8 V	V _{DDEXT} = 2	2.5 V/3.3 V	
Paramet	er	Min	Max	Min	Max	Unit
Timing R	equirements					
t _{SSDAT}	DATA Setup Before CLKOUT	2.1		1.5		ns
t _{HSDAT}	DATA Hold After CLKOUT	0.8		0.8		ns
Switching	g Characteristics					
t _{DCAD}	Command, ADDR, Data Delay After CLKOUT ²		6.0		4.0	ns
t _{HCAD}	Command, ADDR, Data Hold After CLKOUT ²	1.0		1.0		ns
t _{DSDAT}	Data Disable After CLKOUT		6.0		4.0	ns
t _{ensdat}	Data Enable After CLKOUT	1.0		1.0		ns
t _{SCLK}	CLKOUT Period ³	10.0		7.5		ns
t _{SCLKH}	CLKOUT Width High	2.5		2.5		ns
t _{SCLKL}	CLKOUT Width Low	2.5		2.5		ns

 1 SDRAM timing for T_J > 105°C is limited to 100 MHz.

² Command pins include: SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.

 3 Refer to Table 13 on Page 21 for maximum f_{SCLK} at various $V_{DDINT}.$

NOTE: COMMAND = SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.

Figure 15. SDRAM Interface Timing

Serial Port Timing

Table 28 through Table 31 on Page 37 and Figure 23 on Page 35 through Figure 26 on Page 37 describe Serial Port operations.

Table 28. Serial Ports-External Clock

		V _{DDEXT} = 1.8 V	V _{DDEXT} = 2.5	V/3.3 V
Param	eter	Min Max	Min Ma	ax Unit
Timing	Requirements			
t _{SFSE}	TFSx/RFSx Setup Before TSCLKx/RSCLKx ¹	3.0	3.0	ns
t _{HFSE}	TFSx/RFSx Hold After TSCLKx/RSCLKx ¹	3.0	3.0	ns
t _{SDRE}	Receive Data Setup Before RSCLKx ¹	3.0	3.0	ns
t _{HDRE}	Receive Data Hold After RSCLKx ¹	3.0	3.0	ns
t _{SCLKEW}	TSCLKx/RSCLKx Width	8.0	4.5	ns
t _{SCLKE}	TSCLKx/RSCLKx Period	20.0	15.0 ²	ns
t _{SUDTE}	Start-Up Delay From SPORT Enable To First External TFSx ³	$4.0 \times t_{SCLKE}$	$4.0 imes t_{SCLKE}$	ns
t _{SUDRE}	Start-Up Delay From SPORT Enable To First External RFSx ³	$4.0 \times t_{SCLKE}$	$4.0 imes t_{\text{SCLKE}}$	ns
Switch	ing Characteristics			
t _{DFSE}	TFSx/RFSx Delay After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx) ⁴	10.0	10	.0 ns
t _{HOFSE}	TFSx/RFSx Hold After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx) ¹	0.0	0.0	ns
t _{DDTE}	Transmit Data Delay After TSCLKx ¹	10.0	10	.0 ns
t _{HDTE}	Transmit Data Hold After TSCLKx ¹	0.0	0.0	ns

¹Referenced to sample edge.

² For receive mode with external RSCLKx and external RFSx only, the maximum specification is 11.11 ns (90 MHz).

³ Verified in design but untested. After being enabled, the serial port requires external clock pulses—before the first external frame sync edge—to initialize the serial port. ⁴ Referenced to drive edge.

Table 29. Serial Ports—Internal Clock

		V _{DD}	_{EXT} = 1.8 V	VDDEXT	= 2.5 V/3.3 V	
Parar	neter	Min	Max	Min	Max	Unit
Timin	g Requirements					
t _{SFSI}	TFSx/RFSx Setup Before TSCLKx/RSCLKx ¹	11.0		9.0		ns
t _{HFSI}	TFSx/RFSx Hold After TSCLKx/RSCLKx ¹	-2.0		-2.0		ns
t _{sdri}	Receive Data Setup Before RSCLKx ¹	9.5		9.0		ns
t _{HDRI}	Receive Data Hold After RSCLKx ¹	0.0		0.0		ns
Switcl	ning Characteristics					
t _{DFSI}	TFSx/RFSx Delay After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx) ²		3.0		3.0	ns
t _{HOFSI}	TFSx/RFSx Hold After TSCLKx/RSCLKx (Internally Generated TFSx/RFSx) ¹	-1.0		-1.0		ns
t _{DDTI}	Transmit Data Delay After TSCLKx ¹		3.0		3.0	ns
t _{HDTI}	Transmit Data Hold After TSCLKx ¹	-2.5		-2.0		ns
t _{SCLKIW}	TSCLKx/RSCLKx Width	6.0		4.5		ns

¹Referenced to sample edge.

² Referenced to drive edge.

Table 30. Serial Ports—Enable and Three-State

		V _{DD}	_{EXT} = 1.8 V	VDDEXT	= 2.5 V/3.3 V	
Param	eter	Min	Max	Min	Max	Unit
Switch	ing Characteristics					
t _{DTENE}	Data Enable Delay from External TSCLKx ¹	0		0		ns
t _{DDTTE}	Data Disable Delay from External TSCLKx ^{1, 2, 3}		10.0		10.0	ns
t _{DTENI}	Data Enable Delay from Internal TSCLKx ¹	-2.0		-2.0		ns
t _{DDTTI}	Data Disable Delay from Internal TSCLKx ^{1, 2, 3}		3.0		3.0	ns

¹Referenced to drive edge.

² Applicable to multichannel mode only.

³ TSCLKx is tied to RSCLKx.

Figure 25. Enable and Three-State

Table 31. External Late Frame Sync

	LQFP	V _{DDEXT} = 1.8 V P/PBGA Packages	V _D CSP	_{DEXT} = 1.8 V BGA Package		_{XT} = 2.5 V/3.3 V III Packages	
Parameter	Min	Max	Min	Max	Min	Max	Unit
Switching Characteristics							
$t_{DDTLFSE}$ Data Delay from Late External TFSx or External RFSx in multichannel mode with MCMEN = 0 ^{1, 2}		10.5		10.0		10.0	ns
$t_{DTENLFS}$ Data Enable from Late FS or in multichannel mode with MCMEN = $0^{1,2}$	0		0		0		ns

 1 In multichannel mode, TFSx enable and TFSx valid follow $t_{\mbox{\scriptsize DTENLFS}}$ and $t_{\mbox{\scriptsize DDTLFSE}}$

 2 If external RFSx/TFSx setup to RSCLKx/TSCLKx > t_{SCLKE}/2, then t_{DDTTE/I} and t_{DTENE/I} apply; otherwise t_{DDTLFSE} and t_{DTENLFS} apply.

Figure 26. External Late Frame Sync

TEST CONDITIONS

All timing parameters appearing in this data sheet were measured under the conditions described in this section. Figure 45 shows the measurement point for ac measurements (except output enable/disable). The measurement point V_{MEAS} is 0.95 V for V_{DDEXT} (nominal) = 1.8 V or 1.5 V for V_{DDEXT} (nominal) = 2.5 V/ 3.3 V.

Measurements (Except Output Enable/Disable)

Output Enable Time Measurement

Output pins are considered to be enabled when they have made a transition from a high impedance state to the point when they start driving.

The output enable time t_{ENA} is the interval from the point when a reference signal reaches a high or low voltage level to the point when the output starts driving as shown on the right side of Figure 46.

The time $t_{ENA_MEASURED}$ is the interval, from when the reference signal switches, to when the output voltage reaches V_{TRIP} (high) or V_{TRIP} (low).

For V_{DDEXT} (nominal) = 1.8 V— V_{TRIP} (high) is 1.3 V and V_{TRIP} (low) is 0.7 V.

For V_{DDEXT} (nominal) = 2.5 V/3.3 V—V_{TRIP} (high) is 2.0 V and V_{TRIP} (low) is 1.0 V.

Time t_{TRIP} is the interval from when the output starts driving to when the output reaches the V_{TRIP} (high) or V_{TRIP} (low) trip voltage.

Time t_{ENA} is calculated as shown in the equation:

 $t_{ENA} = t_{ENA_MEASURED} - t_{TRIP}$

If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

Output Disable Time Measurement

Output pins are considered to be disabled when they stop driving, go into a high impedance state, and start to decay from their output high or low voltage. The output disable time t_{DIS} is the difference between $t_{DIS_MEASURED}$ and t_{DECAY} as shown on the left side of Figure 45.

$$t_{DIS} = t_{DIS_MEASURED} - t_{DECAY}$$

The time for the voltage on the bus to decay by ΔV is dependent on the capacitive load C_L and the load current I_I . This decay time can be approximated by the equation:

$$t_{DECAY} = (C_L \Delta V) / I_L$$

The time t_{DECAY} is calculated with test loads C_L and I_L , and with ΔV equal to 0.1 V for V_{DDEXT} (nominal) = 1.8 V or 0.5 V for V_{DDEXT} (nominal) = 2.5 V/3.3 V.

The time $t_{DIS_MEASURED}$ is the interval from when the reference signal switches, to when the output voltage decays ΔV from the measured output high or output low voltage.

Figure 46. Output Enable/Disable

Example System Hold Time Calculation

To determine the data output hold time in a particular system, first calculate t_{DECAY} using the equation given above. Choose ΔV to be the difference between the processor's output voltage and the input threshold for the device requiring the hold time. C_L is the total bus capacitance (per data line), and I_L is the total leakage or three-state current (per data line). The hold time is t_{DECAY} plus the various output disable times as specified in the Timing Specifications on Page 27 (for example t_{DSDAT} for an SDRAM write cycle as shown in SDRAM Interface Timing on Page 30).

Capacitive Loading

Output delays and holds are based on standard capacitive loads: 30 pF on all pins (see Figure 47). V_{LOAD} is 0.95 V for V_{DDEXT} (nominal) = 1.8 V or 1.5 V for V_{DDEXT} (nominal) = 2.5 V/3.3 V. Figure 48 through Figure 59 on Page 48 show how output rise time varies with capacitance. The delay and hold specifications given should be derated by a factor derived from these figures. The graphs in these figures may not be linear outside the ranges shown.

TESTER PIN ELECTRONICS

NOTES:

THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFELECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 47. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

Figure 48. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for Driver A at V_{DDEXT} = 1.75 V

Figure 49. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for Driver A at V_{DDEXT} = 2.25 V

Figure 50. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for Driver A at V_{DDEXT} = 3.65 V

Ball No.	Signal						
A1	V _{DDEXT}	C13	SMS	H1	DTOPRI	M3	TDI
A2	PF8	C14	SCAS	H2	DT0SEC	M4	GND
A3	PF9	D1	SCK	Н3	TFS0	M5	DATA12
A4	PF10	D2	PF0	H4	GND	M6	DATA9
A5	PF11	D3	MOSI	H11	GND	M7	DATA6
A6	PF14	D4	GND	H12	ABE1	M8	DATA3
A7	PPI2	D5	V _{DDEXT}	H13	ABE0	M9	DATA0
A8	RTXO	D6	V _{DDINT}	H14	AWE	M10	GND
A9	RTXI	D7	GND	J1	TSCLK0	M11	ADDR15
A10	GND	D8	GND	J2	DROSEC	M12	ADDR9
A11	XTAL	D9	V _{DDEXT}	J3	RFS0	M13	ADDR10
A12	CLKIN	D10	GND	J4	V _{DDEXT}	M14	ADDR11
A13	VROUT0	D11	GND	J11	V _{DDINT}	N1	TRST
A14	GND	D12	SWE	J12	V _{DDEXT}	N2	TMS
B1	PF4	D13	SRAS	J13	ADDR4	N3	TDO
B2	PF5	D14	BR	J14	ADDR1	N4	BMODE0
B3	PF6	E1	TFS1	К1	DROPRI	N5	DATA13
B4	PF7	E2	MISO	К2	TMR2	N6	DATA10
B5	PF12	E3	DT1SEC	К3	ТХ	N7	DATA7
B6	PF13	E4	V _{DDINT}	К4	GND	N8	DATA4
B7	PPI3	E11	V _{DDINT}	K11	GND	N9	DATA1
B8	PPI1	E12	SA10	K12	ADDR7	N10	BGH
B9	V _{DDRTC}	E13	ARDY	K13	ADDR5	N11	ADDR16
B10	NMI	E14	AMS0	K14	ADDR2	N12	ADDR14
B11	GND	F1	TSCLK1	L1	RSCLK0	N13	ADDR13
B12	VROUT1	F2	DT1PRI	L2	TMR0	N14	ADDR12
B13	SCKE	F3	DR1SEC	L3	RX	P1	V _{DDEXT}
B14	CLKOUT	F4	GND	L4	V _{DDINT}	P2	ТСК
C1	PF1	F11	GND	L5	GND	Р3	BMODE1
C2	PF2	F12	V _{DDEXT}	L6	GND	P4	DATA15
C3	PF3	F13	AMS2	L7	V _{DDEXT}	P5	DATA14
C4	GND	F14	AMS1	L8	GND	P6	DATA11
C5	GND	G1	RSCLK1	L9	V _{DDINT}	P7	DATA8
C6	PF15	G2	RFS1	L10	GND	P8	DATA5
C7	V _{DDEXT}	G3	DR1PRI	L11	V _{DDEXT}	Р9	DATA2
C8	PPIO	G4	V _{DDEXT}	L12	ADDR8	P10	BG
С9	PPI_CLK	G11	GND	L13	ADDR6	P11	ADDR19
C10	RESET	G12	AMS3	L14	ADDR3	P12	ADDR18
C11	GND	G13	AOE	M1	TMR1	P13	ADDR17
C12	V _{DDEXT}	G14	ARE	M2	EMU	P14	GND

Table 42. 160-Ball CSP_BGA Ball Assignment (Numerical by Ball Number)

Tuble II, Io Dull I Doll Dull Hooighinelle (I unielleur of Dull I unielleur)	Table 44.	169-Ball PBGA	Ball Assignment	(Numerical by	y Ball Number)
--	-----------	---------------	------------------------	---------------	----------------

Ball No.	Signal	Ball No.	Signal						
A1	PF4	D16	CLKOUT	J2	RSCLK1	M12	VDD	U9	DATA9
A2	PF5	D17	AMS0	JG	V _{DDEXT}	M16	ADDR7	U10	DATA7
A3	PF7	E1	MOSI	J7	GND	M17	ADDR8	U11	DATA5
A4	PF9	E2	MISO	J8	GND	N1	RFS0	U12	DATA4
A5	PF11	E16	AMS1	J9	GND	N2	RSCLK0	U13	DATA2
A6	PF12	E17	AMS2	J10	GND	N16	ADDR10	U14	DATA0
A7	PF14	F1	DT1PRI	J11	GND	N17	ADDR9	U15	ADDR16
A8	PPI3	F2	DT1SEC	J12	VDD	P1	TMR2	U16	ADDR18
A9	PPI1	F6	V _{DDEXT}	J16	ADDR1	P2	TMR1	U17	BGH
A10	RTXI	F7	V _{DDEXT}	J17	ADDR2	P16	ADDR12		
A11	RTXO	F8	V _{DDEXT}	K1	DT0SEC	P17	ADDR11		
A12	RESET	F9	V _{DDEXT}	K2	DTOPRI	R1	TMR0		
A13	XTAL	F10	RTCVDD	K6	V _{DDEXT}	R2	ТХ		
A14	CLKIN	F11	GND	K7	GND	R16	ADDR14		
A15	SRAS	F12	VDD	K8	GND	R17	ADDR13		
A16	SCAS	F16	AMS3	K9	GND	T1	RX		
A17	SMS	F17	AOE	K10	GND	T2	V _{DDEXT}		
B1	PF2	G1	TSCLK1	K11	GND	Т3	TMS		
B2	V _{DDEXT}	G2	TFS1	K12	VDD	T4	TDO		
B3	PF6	G6	V _{DDEXT}	K16	ADDR3	T5	BMODE1		
B4	PF8	G7	GND	K17	ADDR4	T6	DATA15		
B5	PF10	G8	GND	L1	TFS0	T7	DATA13		
B6	PF13	G9	GND	L2	TSCLK0	Т8	DATA10		
B7	PF15	G10	GND	L6	V _{DDEXT}	Т9	DATA8		
B8	PPI2	G11	GND	L7	GND	T10	DATA6		
B9	PPI0	G12	VDD	L8	GND	T11	DATA3		
B10	PPI_CLK	G16	ARE	L9	GND	T12	DATA1		
B11	NMI	G17	AWE	L10	GND	T13	BG		
B12	VROUT0	H1	DR1PRI	L11	GND	T14	ADDR19		
B13	VROUT1	H2	DR1SEC	L12	VDD	T15	ADDR17		
B14	SCKE	H6	V _{DDEXT}	L16	ADDR5	T16	GND		
B15	SA10	H7	GND	L17	ADDR6	T17	ADDR15		
B16	GND	H8	GND	M1	DR0SEC	U1	EMU		
B17	SWE	H9	GND	M2	DR0PRI	U2	TRST		
C1	PF1	H10	GND	M6	V _{DDEXT}	U3	TDI		
C2	PF3	H11	GND	M7	V _{DDEXT}	U4	ТСК		
C16	ARDY	H12	VDD	M8	V _{DDEXT}	U5	BMODE0		
C17	BR	H16	ABE0	M9	GND	U6	DATA14		
D1	SCK	H17	ABE1	M10	VDD	U7	DATA12		
D2	PF0	J1	RFS1	M11	VDD	U8	DATA11		

OUTLINE DIMENSIONS

Dimensions in the outline dimension figures are shown in millimeters.

COMPLIANT TO JEDEC STANDARDS MS-026-BGA

Figure 64. 176-Lead Low Profile Quad Flat Package [LQFP] (ST-176-1) Dimensions shown in millimeters

SURFACE-MOUNT DESIGN

Table 47 is provided as an aid to PCB design. For industry-
standard design recommendations, refer to IPC-7351,
Generic Requirements for Surface-Mount Design and Land Pat-
tern Standard.

Table 47. BGA Data for Use with Surface-Mount Design

Package	Ball Attach Type	Solder Mask Opening	Ball Pad Size
Chip Scale Package Ball Grid Array (CSP_BGA) BC-160-2	Solder Mask Defined	0.40 mm diameter	0.55 mm diameter
Plastic Ball Grid Array (PBGA) B-169	Solder Mask Defined	0.43 mm diameter	0.56 mm diameter

ORDERING GUIDE

	Temperature	Speed Grade		Package
Model	Range	(Max)	Package Description	Option
ADSP-BF531SBB400	–40°C to +85°C	400 MHz	169-Ball PBGA	B-169
ADSP-BF531SBBZ400	–40°C to +85°C	400 MHz	169-Ball PBGA	B-169
ADSP-BF531SBBC400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF531SBBCZ400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF531SBBCZ4RL	–40°C to +85°C	400 MHz	160-Ball CSP_BGA, 13" Tape and Reel	BC-160-2
ADSP-BF531SBSTZ400	–40°C to +85°C	400 MHz	176-Lead LQFP	ST-176-1
ADSP-BF532SBBZ400	–40°C to +85°C	400 MHz	169-Ball PBGA	B-169
ADSP-BF532SBBC400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF532SBBCZ400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF532SBSTZ400	–40°C to +85°C	400 MHz	176-Lead LQFP	ST-176-1
ADSP-BF533SBBZ400	–40°C to +85°C	400 MHz	169-Ball PBGA	B-169
ADSP-BF533SBBC400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SBBCZ400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SBSTZ400	–40°C to +85°C	400 MHz	176-Lead LQFP	ST-176-1
ADSP-BF533SBB500	–40°C to +85°C	500 MHz	169-Ball PBGA	B-169
ADSP-BF533SBBZ500	–40°C to +85°C	500 MHz	169-Ball PBGA	B-169
ADSP-BF533SBBC500	–40°C to +85°C	500 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SBBCZ500	–40°C to +85°C	500 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SBBC-5V	–40°C to +85°C	533 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SBBCZ-5V	–40°C to +85°C	533 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SKBC-6V	0°C to +70°C	600 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SKBCZ-6V	0°C to +70°C	600 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SKSTZ-5V	0°C to +70°C	533 MHz	176-Lead LQFP	ST-176-1

 1 Z = RoHS compliant part.

² Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 20 for junction temperature (T_j) specification which is the only temperature specification.