

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	Fixed Point
Interface	SPI, SSP, UART
Clock Rate	400MHz
Non-Volatile Memory	ROM (1kB)
On-Chip RAM	52kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	160-LFBGA, CSPBGA
Supplier Device Package	160-CSPBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf531sbbcz400

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2. Blackfin Processor Core

The second on-chip memory block is the L1 data memory, consisting of one or two banks of up to 32K bytes. The memory banks are configurable, offering both cache and SRAM functionality. This memory block is accessed at full processor speed.

The third memory block is a 4K byte scratchpad SRAM, which runs at the same speed as the L1 memories, but is only accessible as data SRAM and cannot be configured as cache memory.

External (Off-Chip) Memory

External memory is accessed via the external bus interface unit (EBIU). This 16-bit interface provides a glueless connection to a bank of synchronous DRAM (SDRAM) as well as up to four banks of asynchronous memory devices including flash, EPROM, ROM, SRAM, and memory mapped I/O devices.

The PC133-compliant SDRAM controller can be programmed to interface to up to 128M bytes of SDRAM. The SDRAM controller allows one row to be open for each internal SDRAM bank, for up to four internal SDRAM banks, improving overall system performance.

The asynchronous memory controller can be programmed to control up to four banks of devices with very flexible timing parameters for a wide variety of devices. Each bank occupies a 1M byte segment regardless of the size of the devices used, so that these banks are only contiguous if each is fully populated with 1M byte of memory.

I/O Memory Space

Blackfin processors do not define a separate I/O space. All resources are mapped through the flat 32-bit address space. On-chip I/O devices have their control registers mapped into memory mapped registers (MMRs) at addresses near the top of the 4G byte address space. These are separated into two smaller blocks, one containing the control MMRs for all core functions, and the other containing the registers needed for setup and control of the on-chip peripherals outside of the core. The MMRs are accessible only in supervisor mode and appear as reserved space to on-chip peripherals.

Booting

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors contain a small boot kernel, which configures the appropriate peripheral for booting. If the processors are configured to boot from boot ROM memory space, the processor starts executing from the on-chip boot ROM. For more information, see Booting Modes on Page 14.

 CEC interrupt pending register (IPEND) – The IPEND register keeps track of all nested events. A set bit in the IPEND register indicates the event is currently active or nested at some level. This register is updated automatically by the controller but can be read while in supervisor mode.

The SIC allows further control of event processing by providing three 32-bit interrupt control and status registers. Each register contains a bit corresponding to each of the peripheral interrupt events shown in Table 3.

- SIC interrupt mask register (SIC_IMASK) This register controls the masking and unmasking of each peripheral interrupt event. When a bit is set in this register, that peripheral event is unmasked and is processed by the system when asserted. A cleared bit in this register masks the peripheral event, preventing the processor from servicing the event.
- SIC interrupt status register (SIC_ISR) As multiple peripherals can be mapped to a single event, this register allows the software to determine which peripheral event source triggered the interrupt. A set bit indicates the peripheral is asserting the interrupt, and a cleared bit indicates the peripheral is not asserting the event.
- SIC interrupt wakeup enable register (SIC_IWR) By enabling the corresponding bit in this register, a peripheral can be configured to wake up the processor, should the core be idled when the event is generated. See Dynamic Power Management on Page 11.

Because multiple interrupt sources can map to a single generalpurpose interrupt, multiple pulse assertions can occur simultaneously, before or during interrupt processing for an interrupt event already detected on this interrupt input. The IPEND register contents are monitored by the SIC as the interrupt acknowledgement.

The appropriate ILAT register bit is set when an interrupt rising edge is detected (detection requires two core clock cycles). The bit is cleared when the respective IPEND register bit is set. The IPEND bit indicates that the event has entered into the processor pipeline. At this point the CEC recognizes and queues the next rising edge event on the corresponding event input. The minimum latency from the rising edge transition of the general-purpose interrupt to the IPEND output asserted is three core clock cycles; however, the latency can be much higher, depending on the activity within and the state of the processor.

DMA CONTROLLERS

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors have multiple, independent DMA channels that support automated data transfers with minimal overhead for the processor core. DMA transfers can occur between the processor's internal memories and any of its DMA-capable peripherals. Additionally, DMA transfers can be accomplished between any of the DMA-capable peripherals and external devices connected to the external memory interfaces, including the SDRAM controller and the asynchronous memory controller. DMA-capable peripherals include the SPORTs, SPI port, UART, and PPI. Each individual DMA-capable peripheral has at least one dedicated DMA channel.

The DMA controller supports both 1-dimensional (1-D) and 2dimensional (2-D) DMA transfers. DMA transfer initialization can be implemented from registers or from sets of parameters called descriptor blocks.

The 2-D DMA capability supports arbitrary row and column sizes up to 64K elements by 64K elements, and arbitrary row and column step sizes up to ± 32 K elements. Furthermore, the column step size can be less than the row step size, allowing implementation of interleaved data streams. This feature is especially useful in video applications where data can be de-interleaved on the fly.

Examples of DMA types supported by the DMA controller include:

- A single, linear buffer that stops upon completion
- A circular, autorefreshing buffer that interrupts on each full or fractionally full buffer
- 1-D or 2-D DMA using a linked list of descriptors
- 2-D DMA using an array of descriptors, specifying only the base DMA address within a common page

In addition to the dedicated peripheral DMA channels, there are two pairs of memory DMA channels provided for transfers between the various memories of the processor system. This enables transfers of blocks of data between any of the memories—including external SDRAM, ROM, SRAM, and flash memory—with minimal processor intervention. Memory DMA transfers can be controlled by a very flexible descriptor-based methodology or by a standard register-based autobuffer mechanism.

REAL-TIME CLOCK

The processor real-time clock (RTC) provides a robust set of digital watch features, including current time, stopwatch, and alarm. The RTC is clocked by a 32.768 kHz crystal external to the ADSP-BF531/ADSP-BF532/ADSP-BF533 processors. The RTC peripheral has dedicated power supply pins so that it can remain powered up and clocked even when the rest of the processor is in a low power state. The RTC provides several programmable interrupt options, including interrupt per second, minute, hour, or day clock ticks, interrupt on programmable stopwatch countdown, or interrupt at a programmed alarm time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal by a prescaler. The counter function of the timer consists of four counters: a 60 second counter, a 60 minute counter, a 24 hour counter, and a 32,768 day counter.

When enabled, the alarm function generates an interrupt when the output of the timer matches the programmed value in the alarm control register. The two alarms are time of day and a day and time of that day.

- Interrupts Each transmit and receive port generates an interrupt upon completing the transfer of a data-word or after transferring an entire data buffer or buffers through DMA.
- Multichannel capability Each SPORT supports 128 channels out of a 1,024-channel window and is compatible with the H.100, H.110, MVIP-90, and HMVIP standards.

An additional 250 mV of SPORT input hysteresis can be enabled by setting Bit 15 of the PLL_CTL register. When this bit is set, all SPORT input pins have the increased hysteresis.

SERIAL PERIPHERAL INTERFACE (SPI) PORT

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors have an SPI-compatible port that enables the processor to communicate with multiple SPI-compatible devices.

The SPI interface uses three pins for transferring data: two data pins (master output-slave input, MOSI, and master input-slave output, MISO) and a clock pin (serial clock, SCK). An SPI chip select input pin (SPISS) lets other SPI devices select the processor, and seven SPI chip select output pins (SPISEL7–1) let the processor select other SPI devices. The SPI select pins are reconfigured general-purpose I/O pins. Using these pins, the SPI port provides a full-duplex, synchronous serial interface which supports both master/slave modes and multimaster environments.

The baud rate and clock phase/polarities for the SPI port are programmable, and it has an integrated DMA controller, configurable to support transmit or receive data streams. The SPI DMA controller can only service unidirectional accesses at any given time.

The SPI port clock rate is calculated as:

$$SPI Clock Rate = \frac{f_{SCLK}}{2 \times SPI_BAUD}$$

where the 16-bit SPI_BAUD register contains a value of 2 to 65,535.

During transfers, the SPI port simultaneously transmits and receives by serially shifting data in and out on its two serial data lines. The serial clock line synchronizes the shifting and sampling of data on the two serial data lines.

UART PORT

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors provide a full-duplex universal asynchronous receiver/transmitter (UART) port, which is fully compatible with PC-standard UARTs. The UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data. The UART port includes support for 5 data bits to 8 data bits, 1 stop bit or 2 stop bits, and none, even, or odd parity. The UART port supports two modes of operation:

• PIO (programmed I/O) – The processor sends or receives data by writing or reading I/O-mapped UART registers. The data is double-buffered on both transmit and receive.

• DMA (direct memory access) – The DMA controller transfers both transmit and receive data. This reduces the number and frequency of interrupts required to transfer data to and from memory. The UART has two dedicated DMA channels, one for transmit and one for receive. These DMA channels have lower default priority than most DMA channels because of their relatively low service rates.

The baud rate, serial data format, error code generation and status, and interrupts for the UART port are programmable.

The UART programmable features include:

- Supporting bit rates ranging from (f_{SCLK}/1,048,576) bits per second to (f_{SCLK}/16) bits per second.
- Supporting data formats from seven bits to 12 bits per frame.
- Both transmit and receive operations can be configured to generate maskable interrupts to the processor.

The UART port's clock rate is calculated as:

$$UART \ Clock \ Rate = \frac{f_{SCLK}}{16 \times UART_Divisor}$$

where the 16-bit UART_Divisor comes from the UART_DLH register (most significant 8 bits) and UART_DLL register (least significant 8 bits).

In conjunction with the general-purpose timer functions, autobaud detection is supported.

The capabilities of the UART are further extended with support for the Infrared Data Association (IrDA[®]) serial infrared physical layer link specification (SIR) protocol.

GENERAL-PURPOSE I/O PORT F

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors have 16 bidirectional, general-purpose I/O pins on Port F (PF15–0). Each general-purpose I/O pin can be individually controlled by manipulation of the GPIO control, status and interrupt registers:

- GPIO direction control register Specifies the direction of each individual PFx pin as input or output.
- GPIO control and status registers The processor employs a "write one to modify" mechanism that allows any combination of individual GPIO pins to be modified in a single instruction, without affecting the level of any other GPIO pins. Four control registers are provided. One register is written in order to set GPIO pin values, one register is written in order to clear GPIO pin values, one register is written in order to toggle GPIO pin values, and one register is written in order to specify GPIO pin values. Reading the GPIO status register allows software to interrogate the sense of the GPIO pin.
- GPIO interrupt mask registers The two GPIO interrupt mask registers allow each individual PFx pin to function as an interrupt to the processor. Similar to the two GPIO control registers that are used to set and clear individual GPIO pin values, one GPIO interrupt mask register sets bits to enable interrupt function, and the other GPIO interrupt mask register clears bits to disable interrupt function.

more bytes until the flag is deasserted. The GPIO pin is chosen by the user and this information is transferred to the Blackfin processor via bits[10:5] of the FLAG header in the LDR image.

For each of the boot modes, a 10-byte header is first read from an external memory device. The header specifies the number of bytes to be transferred and the memory destination address. Multiple memory blocks can be loaded by any boot sequence. Once all blocks are loaded, program execution commences from the start of L1 instruction SRAM.

In addition, Bit 4 of the reset configuration register can be set by application code to bypass the normal boot sequence during a software reset. For this case, the processor jumps directly to the beginning of L1 instruction memory.

INSTRUCTION SET DESCRIPTION

The Blackfin processor family assembly language instruction set employs an algebraic syntax designed for ease of coding and readability. The instructions have been specifically tuned to provide a flexible, densely encoded instruction set that compiles to a very small final memory size. The instruction set also provides fully featured multifunction instructions that allow the programmer to use many of the processor core resources in a single instruction. Coupled with many features more often seen on microcontrollers, this instruction set is very efficient when compiling C and C++ source code. In addition, the architecture supports both user (algorithm/application code) and supervisor (O/S kernel, device drivers, debuggers, ISRs) modes of operation, allowing multiple levels of access to core processor resources.

The assembly language, which takes advantage of the processor's unique architecture, offers the following advantages:

- Seamlessly integrated DSP/CPU features are optimized for both 8-bit and 16-bit operations.
- A multi-issue load/store modified Harvard architecture, which supports two 16-bit MAC or four 8-bit ALU + two load/store + two pointer updates per cycle.
- All registers, I/O, and memory are mapped into a unified 4G byte memory space, providing a simplified programming model.
- Microcontroller features, such as arbitrary bit and bit-field manipulation, insertion, and extraction; integer operations on 8-, 16-, and 32-bit data types; and separate user and supervisor stack pointers.
- Code density enhancements, which include intermixing of 16-bit and 32-bit instructions (no mode switching, no code segregation). Frequently used instructions are encoded in 16 bits.

DEVELOPMENT TOOLS

Analog Devices supports its processors with a complete line of software and hardware development tools, including integrated development environments (which include CrossCore[®] Embedded Studio and/or VisualDSP++[®]), evaluation products, emulators, and a wide variety of software add-ins.

Integrated Development Environments (IDEs)

For C/C++ software writing and editing, code generation, and debug support, Analog Devices offers two IDEs.

The newest IDE, CrossCore Embedded Studio, is based on the Eclipse[™] framework. Supporting most Analog Devices processor families, it is the IDE of choice for future processors, including multicore devices. CrossCore Embedded Studio seamlessly integrates available software add-ins to support real time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information visit www.analog.com/ cces.

The other Analog Devices IDE, VisualDSP++, supports processor families introduced prior to the release of CrossCore Embedded Studio. This IDE includes the Analog Devices VDK real time operating system and an open source TCP/IP stack. For more information visit www.analog.com/visualdsp. Note that VisualDSP++ will not support future Analog Devices processors.

EZ-KIT Lite Evaluation Board

For processor evaluation, Analog Devices provides wide range of EZ-KIT Lite[®] evaluation boards. Including the processor and key peripherals, the evaluation board also supports on-chip emulation capabilities and other evaluation and development features. Also available are various EZ-Extenders[®], which are daughter cards delivering additional specialized functionality, including audio and video processing. For more information visit www.analog.com and search on "ezkit" or "ezextender".

EZ-KIT Lite Evaluation Kits

For a cost-effective way to learn more about developing with Analog Devices processors, Analog Devices offer a range of EZ-KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT Lite evaluation board, directions for downloading an evaluation version of the available IDE(s), a USB cable, and a power supply. The USB controller on the EZ-KIT Lite board connects to the USB port of the user's PC, enabling the chosen IDE evaluation suite to emulate the on-board processor in-circuit. This permits the customer to download, execute, and debug programs for the EZ-KIT Lite system. It also supports in-circuit programming of the on-board Flash device to store user-specific boot code, enabling standalone operation. With the full version of Cross-Core Embedded Studio or VisualDSP++ installed (sold separately), engineers can develop software for supported EZ-KITs or any custom system utilizing supported Analog Devices processors.

Software Add-Ins for CrossCore Embedded Studio

Analog Devices offers software add-ins which seamlessly integrate with CrossCore Embedded Studio to extend its capabilities and reduce development time. Add-ins include board support packages for evaluation hardware, various middleware packages, and algorithmic modules. Documentation, help, configuration dialogs, and coding examples present in these add-ins are viewable through the CrossCore Embedded Studio IDE once the add-in is installed.

Board Support Packages for Evaluation Hardware

Software support for the EZ-KIT Lite evaluation boards and EZ-Extender daughter cards is provided by software add-ins called Board Support Packages (BSPs). The BSPs contain the required drivers, pertinent release notes, and select example code for the given evaluation hardware. A download link for a specific BSP is located on the web page for the associated EZ-KIT or EZ-Extender product. The link is found in the *Product Download* area of the product web page.

Middleware Packages

Analog Devices separately offers middleware add-ins such as real time operating systems, file systems, USB stacks, and TCP/ IP stacks. For more information see the following web pages:

- www.analog.com/ucos3
- www.analog.com/ucfs
- www.analog.com/ucusbd
- www.analog.com/lwip

Algorithmic Modules

To speed development, Analog Devices offers add-ins that perform popular audio and video processing algorithms. These are available for use with both CrossCore Embedded Studio and VisualDSP++. For more information visit www.analog.com and search on "Blackfin software modules" or "SHARC software modules".

Designing an Emulator-Compatible DSP Board (Target)

For embedded system test and debug, Analog Devices provides a family of emulators. On each JTAG DSP, Analog Devices supplies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit emulation is facilitated by use of this JTAG interface. The emulator accesses the processor's internal features via the processor's TAP, allowing the developer to load code, set breakpoints, and view variables, memory, and registers. The processor must be halted to send data and commands, but once an operation is completed by the emulator, the DSP system is set to run at full speed with no impact on system timing. The emulators require the target board to include a header that supports connection of the DSP's JTAG port to the emulator.

For details on target board design issues including mechanical layout, single processor connections, signal buffering, signal termination, and emulator pod logic, see the Engineer-to-Engineer Note "*Analog Devices JTAG Emulation Technical Reference*" (EE-68) on the Analog Devices website (www.analog.com)—use site search on "EE-68." This document is updated regularly to keep pace with improvements to emulator support.

ADDITIONAL INFORMATION

The following publications that describe the ADSP-BF531/ ADSP-BF532/ADSP-BF533 processors (and related processors) can be ordered from any Analog Devices sales office or accessed electronically on our website:

- Getting Started With Blackfin Processors
- ADSP-BF533 Blackfin Processor Hardware Reference
- Blackfin Processor Programming Reference
- ADSP-BF531/ADSP-BF532/ADSP-BF533 Blackfin
 Processor Anomaly List

RELATED SIGNAL CHAINS

A *signal chain* is a series of signal-conditioning electronic components that receive input (data acquired from sampling either real-time phenomena or from stored data) in tandem, with the output of one portion of the chain supplying input to the next. Signal chains are often used in signal processing applications to gather and process data or to apply system controls based on analysis of real-time phenomena. For more information about this term and related topics, see the "signal chain" entry in Wikipedia or the Glossary of EE Terms on the Analog Devices website.

Analog Devices eases signal processing system development by providing signal processing components that are designed to work together well. A tool for viewing relationships between specific applications and related components is available on the www.analog.com website.

The Application Signal Chains page in the Circuits from the Lab[™] site (http://www.analog.com/circuits) provides:

- Graphical circuit block diagram presentation of signal chains for a variety of circuit types and applications
- Drill down links for components in each chain to selection guides and application information
- Reference designs applying best practice design techniques

ELECTRICAL CHARACTERISTICS

				400 MHz¹		500 MH:	z/533 MHz/	500 MHz ²	
Parameter		Test Conditions	Min	Typical	Max	Min	Typical	Max	Unit
V _{OH}	High Level Output Voltage ³	$V_{DDEXT} = 1.75 V, I_{OH} = -0.5 mA$ $V_{DDEXT} = 2.25 V, I_{OH} = -0.5 mA$ $V_{DDEXT} = 3.0 V, I_{OH} = -0.5 mA$	1.5 1.9 2.4			1.5 1.9 2.4			V V V
V _{OL}	Low Level Output Voltage ³	$V_{DDEXT} = 1.75 \text{ V}, I_{OL} = 2.0 \text{ mA}$ $V_{DDEXT} = 2.25 \text{ V}/3.0 \text{ V},$ $I_{OL} = 2.0 \text{ mA}$			0.2 0.4			0.2 0.4	V V
I _{IH}	High Level Input Current ⁴	$V_{DDEXT} = Max, V_{IN} = V_{DD} Max$			10.0			10.0	μA
I _{IHP}	High Level Input Current JTAG⁵	$V_{DDEXT} = Max, V_{IN} = V_{DD} Max$			50.0			50.0	μA
I _{IL} ⁶	Low Level Input Current ⁴	$V_{DDEXT} = Max, V_{IN} = 0 V$			10.0			10.0	μA
I _{OZH}	Three-State Leakage Current ⁷	$V_{DDEXT} = Max, V_{IN} = V_{DD} Max$			10.0			10.0	μΑ
I _{OZL} ⁶	Three-State Leakage Current ⁷	$V_{DDEXT} = Max, V_{IN} = 0 V$			10.0			10.0	μΑ
C _{IN}	Input Capacitance ⁸	$f_{IN} = 1 \text{ MHz}, T_{AMBIENT} = 25^{\circ}\text{C},$ $V_{IN} = 2.5 \text{ V}$		4	8 ⁹		4	8 ⁹	pF
I _{DDDEEPSLEEP} ¹⁰	V _{DDINT} Current in Deep Sleep Mode	$V_{DDINT} = 1.0 V, f_{CCLK} = 0 MHz,$ T _J = 25°C, ASF = 0.00		7.5			32.5		mA
IDDSLEEP	V _{DDINT} Current in Sleep Mode	V _{DDINT} = 0.8 V, T _J = 25°C, SCLK = 25 MHz			10			37.5	mA
I _{DD-TYP} ¹¹	V _{DDINT} Current	$V_{DDINT} = 1.14 V, f_{CCLK} = 400 MHz, T_{J} = 25^{\circ}C$		125			152		mA
I _{DD-TYP} ¹¹	V _{DDINT} Current	$V_{DDINT} = 1.2 \text{ V}, f_{CCLK} = 500 \text{ MHz},$ $T_J = 25^{\circ}\text{C}$					190		mA
I _{DD-TYP} ¹¹	V _{DDINT} Current	$V_{DDINT} = 1.2 \text{ V}, f_{CCLK} = 533 \text{ MHz},$ $T_J = 25^{\circ}\text{C}$					200		mA
I _{DD-TYP} ¹¹	V _{DDINT} Current	$V_{DDINT} = 1.3 V$, $f_{CCLK} = 600 MHz$, $T_{J} = 25^{\circ}C$					245		mA
I _{DDHIBERNATE} ¹⁰	V _{DDEXT} Current in Hibernate State	$V_{DDEXT} = 3.6 V$, CLKIN = 0 MHz, T _J = Max, voltage regulator off ($V_{DDINT} = 0 V$)		50	100		50	100	μΑ
I _{DDRTC}	V _{DDRTC} Current	$V_{DDRTC} = 3.3 V, T_J = 25^{\circ}C$		20			20		μA
I _{DDDEEPSLEEP} ¹⁰	V _{DDINT} Current in Deep Sleep Mode	$f_{CCLK} = 0 MHz$		6	Table 15		16	Table 14	mA
I _{DD-INT}	V _{DDINT} Current	f _{CCLK} > 0 MHz			I _{DDDEEPSLEEP} +(Table 17 × ASF)			I _{DDDEEPSLEEP} + (Table 17 × ASF)	mA

¹ Applies to all 400 MHz speed grade models. See Ordering Guide on Page 63.
 ² Applies to all 500 MHz, 533 MHz, and 600 MHz speed grade models. See Ordering Guide on Page 63.

³ Applies to output and bidirectional pins.

⁴Applies to input pins except JTAG inputs.

⁵ Applies to JTAG input pins (TCK, TDI, TMS, TRST).

⁶ Absolute value.

⁷ Applies to three-statable pins.

⁸ Applies to all signal pins.

⁹Guaranteed, but not tested.

¹⁰See the ADSP-BF533 Blackfin Processor Hardware Reference Manual for definitions of sleep, deep sleep, and hibernate operating modes.

¹¹See Table 16 for the list of I_{DDINT} power vectors covered by various Activity Scaling Factors (ASF).

System designers should refer to *Estimating Power for the ADSP-BF531/BF532/BF533 Blackfin Processors (EE-229)*, which provides detailed information for optimizing designs for lowest power. All topics discussed in this section are described in detail in EE-229. Total power dissipation has two components:

1. Static, including leakage current

2. Dynamic, due to transistor switching characteristics

Many operating conditions can also affect power dissipation, including temperature, voltage, operating frequency, and processor activity. Electrical Characteristics on Page 22 shows the current dissipation for internal circuitry (V_{DDINT}). $I_{DDDEEPSLEEP}$ specifies static power dissipation as a function of voltage (V_{DDINT}) and temperature (see Table 14 or Table 15), and I_{DDINT} specifies the total power specification for the listed test conditions, including the dynamic component as a function of voltage (V_{DDINT}) and frequency (Table 17).

The dynamic component is also subject to an Activity Scaling Factor (ASF) which represents application code running on the processor (Table 16).

Table 14. Static Current-500 MHz, 555 MHz, and 600 MHz Speed Grade Devices (IIIA	Table 14.	Static Current	-500 MHz, 533 N	MHz, and 600 MHz	Speed Grade I	Devices (mA)
--	-----------	----------------	-----------------	------------------	---------------	--------------

		Voltage (V _{DDINT}) ²													
² (°C) رT	0.80 V	0.85 V	0.90 V	0.95 V	1.00 V	1.05 V	1.10 V	1.15 V	1.20 V	1.25 V	1.30 V	1.32 V	1.375 V	1.43 V	1.45 V
-45	4.3	5.3	5.9	7.0	8.2	9.8	11.2	13.0	15.2	17.7	20.2	21.6	25.5	30.1	32.0
0	18.8	21.3	24.1	27.8	31.6	35.6	40.1	45.3	51.4	58.1	65.0	68.5	78.4	89.8	94.3
25	35.3	39.9	45.0	50.9	57.3	64.4	72.9	80.9	90.3	101.4	112.1	118.0	133.7	151.6	158.7
40	52.3	58.5	65.1	73.3	81.3	90.9	101.2	112.5	125.5	138.7	154.4	160.6	180.6	203.1	212.0
55	73.6	82.5	92.0	102.7	114.4	126.3	141.2	155.7	172.7	191.1	212.1	220.8	247.6	277.7	289.5
70	100.8	112.5	124.5	137.4	152.6	168.4	186.5	205.4	227.0	250.3	276.2	287.1	320.4	357.4	371.9
85	133.3	148.5	164.2	180.5	198.8	219.0	241.0	264.5	290.6	319.7	350.2	364.6	404.9	449.7	467.2
100	178.3	196.3	216.0	237.6	259.9	284.6	311.9	342.0	373.1	408.0	446.1	462.6	511.1	564.7	585.6
115	223.3	245.9	270.2	295.7	323.5	353.3	386.1	421.1	460.1	500.9	545.0	566.5	624.3	688.1	712.8
125	278.5	305.8	334.1	364.3	397.4	432.4	470.6	509.3	553.4	600.6	652.1	676.5	742.1	814.1	841.9

 $^1\,\mathrm{Values}$ are guaranteed maximum $\mathrm{I}_{\mathrm{DDDEEPSLEEP}}$ specifications.

²Valid temperature and voltage ranges are model-specific. See Operating Conditions on Page 20.

Table 15. Static Current-400 MHz Speed Grade Devices (mA)¹

	Voltage (V _{DDINT}) ²													
T」 (°C)²	0.80 V	0.85 V	0.90 V	0.95 V	1.00 V	1.05 V	1.10 V	1.15 V	1.20 V	1.25 V	1.30 V	1.32 V		
-45	0.9	1.1	1.3	1.5	1.8	2.2	2.6	3.1	3.8	4.4	5.0	5.4		
0	3.3	3.7	4.2	4.8	5.5	6.3	7.2	8.1	8.9	10.1	11.2	11.9		
25	7.5	8.4	9.4	10.0	11.2	12.6	14.1	15.5	17.2	19.0	21.2	21.9		
40	12.0	13.1	14.3	15.9	17.4	19.4	21.5	23.5	25.8	28.1	30.8	32.0		
55	18.3	20.0	21.9	23.6	26.0	28.2	30.8	33.7	36.8	39.8	43.4	45.0		
70	27.7	30.3	32.6	35.3	38.2	41.7	45.2	49.0	52.8	57.6	62.4	64.2		
85	38.2	41.7	44.9	48.6	52.7	57.3	61.7	66.7	72.0	77.5	83.9	86.5		
100	54.1	58.1	63.2	67.8	73.2	78.8	84.9	91.5	98.4	106.0	113.8	117.2		
115	73.9	80.0	86.3	91.9	99.1	106.6	114.1	122.4	131.1	140.9	151.1	155.5		
125	98.7	106.3	113.8	122.1	130.8	140.2	149.7	160.4	171.9	183.8	197.0	202.4		

¹Values are guaranteed maximum I_{DDDEEPSLEEP} specifications.

²Valid temperature and voltage ranges are model-specific. See Operating Conditions on Page 20.

Table 16. Activity Scaling Factors

I _{DDINT} Power Vector ¹	Activity Scaling Factor (ASF) ²
I _{DD-PEAK}	1.27
I _{DD-HIGH}	1.25
I _{DD-TYP}	1.00
I _{DD-APP}	0.86
I _{DD-NOP}	0.72
I _{DD-IDLE}	0.41

¹See EE-229 for power vector definitions.

² All ASF values determined using a 10:1 CCLK:SCLK ratio.

Table 17. Dynamic Current (mA, with ASF = 1.0)¹

		Voltage (V _{DDINT}) ²													
Frequency (MHz) ²	0.80 V	0.85 V	0.90 V	0.95 V	1.00 V	1.05 V	1.10 V	1.15 V	1.20 V	1.25 V	1.30 V	1.32 V	1.375 V	1.43 V	1.45 V
50	12.7	13.9	15.3	16.8	18.1	19.4	21.0	22.3	24.0	25.4	26.4	27.2	28.7	30.3	30.7
100	22.6	24.2	26.2	28.1	30.1	31.8	34.7	36.2	38.4	40.5	43.0	43.4	45.7	47.9	48.9
200	40.8	44.1	46.9	50.3	53.3	56.9	59.9	63.1	66.7	70.2	73.8	75.0	78.7	82.4	84.6
250	50.1	53.8	57.2	61.4	64.7	68.9	72.9	76.8	81.0	85.1	89.3	90.8	95.2	99.6	102.0
300	N/A	63.5	67.4	72.4	76.2	81.0	85.9	90.6	95.2	100.0	104.8	106.6	111.8	116.9	119.4
375	N/A	N/A	N/A	88.6	93.5	99.0	104.6	110.3	116.0	122.1	128.0	130.0	136.2	142.4	145.5
400	N/A	N/A	N/A	93.9	99.3	105.0	110.8	116.8	123.0	129.4	135.7	137.9	144.6	151.2	154.3
425	N/A	N/A	N/A	N/A	N/A	111.0	117.3	123.5	129.9	136.8	143.2	145.6	152.6	159.7	162.8
475	N/A	N/A	N/A	N/A	N/A	N/A	130.3	136.8	143.8	151.4	158.1	161.1	168.9	176.6	179.7
500	N/A	N/A	N/A	N/A	N/A	N/A	N/A	143.5	150.7	158.7	165.6	168.8	177.0	185.2	188.2
533	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	160.4	168.8	176.5	179.6	188.2	196.8	200.5
600	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	196.2	199.6	209.3	219.0	222.6

¹ The values are not guaranteed as stand-alone maximum specifications, they must be combined with static current per the equations of Electrical Characteristics on Page 22. ² Valid temperature and voltage ranges are model-specific. See Operating Conditions on Page 20.

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed in Table 18 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods can affect device reliability.

Table 18. Absolute Maximum Ratings

Parameter	Rating
Internal (Core) Supply Voltage (V _{DDINT})	–0.3 V to +1.45 V
External (I/O) Supply Voltage (V _{DDEXT})	–0.5 V to +3.8 V
Input Voltage ^{1, 2}	–0.5 V to +3.8 V
Output Voltage Swing	-0.5 V to V _{DDEXT} + 0.5 V
Storage Temperature Range	–65°C to +150°C
Junction Temperature While Biased	125°C

¹ Applies to 100% transient duty cycle. For other duty cycles see Table 19.

 2 Applies only when V_{DDEXT} is within specifications. When V_{DDEXT} is outside specifications, the range is $V_{DDEXT}\pm0.2$ V.

Table 19. Maximum Duty Cycle for Input Transient Voltage¹

V _{IN} Min (V) ²	V _{IN} Max (V) ²	Maximum Duty Cycle ³
-0.50	+3.80	100%
-0.70	+4.00	40%
-0.80	+4.10	25%
-0.90	+4.20	15%
-1.00	+4.30	10%

¹ Applies to all signal pins with the exception of CLKIN, XTAL, VROUT1-0.

² The individual values cannot be combined for analysis of a single instance of overshoot or undershoot. The worst case observed value must fall within one of the voltages specified and the total duration of the overshoot or undershoot (exceeding the 100% case) must be less than or equal to the corresponding duty cycle.

³ Duty cycle refers to the percentage of time the signal exceeds the value for the 100% case. This is equivalent to the measured duration of a single instance of overshoot or undershoot as a percentage of the period of occurrence.

ESD SENSITIVITY

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TIMING SPECIFICATIONS

Clock and Reset Timing

Table 21 and Figure 11 describe clock and reset operations. Per Absolute Maximum Ratings on Page 25, combinations of CLKIN and clock multipliers/divisors must not result in core/ system clocks exceeding the maximum limits allowed for the processor, including system clock restrictions related to supply voltage.

Table 21. Clock and Reset Timing

Paramete	r	Min	Max	Unit
Timing Red	quirements			
t _{CKIN}	CLKIN Period ^{1, 2, 3, 4}	25.0	100.0	ns
t _{CKINL}	CLKIN Low Pulse	10.0		ns
t _{CKINH}	CLKIN High Pulse	10.0		ns
t _{WRST}	RESET Asserted Pulse Width Low ⁵	$11 imes t_{CKIN}$		ns
t _{NOBOOT}	RESET Deassertion to First External Access Delay ⁶	$3 imes t_{CKIN}$	$5 imes t_{CKIN}$	ns

¹ Applies to PLL bypass mode and PLL non bypass mode.

² CLKIN frequency must not change on the fly.

³ Combinations of the CLKIN frequency and the PLL clock multiplier must not exceed the allowed f_{VCO} , f_{CCLK} , and f_{SCLK} settings discussed in Table 11 on Page 21 through Table 13 on Page 21. Since the default behavior of the PLL is to multiply the CLKIN frequency by 10, the 400 MHz speed grade parts cannot use the full CLKIN period range.

 4 If the DF bit in the PLL_CTL register is set, then the maximum t_{CKIN} period is 50 ns.

⁵ Applies after power-up sequence is complete. See Table 22 and Figure 12 for power-up reset timing.

⁶ Applies when processor is configured in No Boot Mode (BMODE1-0 = b#00).

Figure 11. Clock and Reset Timing

Table 22. Power-Up Reset Timing

Paramete	er		Min	Max	Unit					
Timing Red	quirement									
t _{rst_in_pwr}	RESET De Within Sp	asserted After ecification	the V _{DDINT} , V _E	DDEXT, V _{DDR}	_{TC} , and CLI	KIN Pins	Are Stable a	nd $3500 \times t_{CKIN}$		ns
	RESET			t _{RS}	ST_IN_PWR	/				
	CLKIN V _{DD_SUPPLIES}									

In Figure 12, V_{DD_SUPPLIES} is V_{DDINT}, V_{DDEXT}, V_{DDRTC}

Figure 12. Power-Up Reset Timing

Asynchronous Memory Write Cycle Timing

Table 24. Asynchronous Memory Write Cycle Timing

		VDDEXT	= 1.8 V	V _{DDEXT} = 2		
Paramete	r	Min	Max	Min	Мах	Unit
Timing Req	uirements					
t _{SARDY}	ARDY Setup Before CLKOUT	4.0		4.0		ns
t _{HARDY}	ARDY Hold After CLKOUT	1.0		0.0		ns
Switching	Characteristics					
t _{DDAT}	DATA15-0 Disable After CLKOUT		6.0		6.0	ns
t _{ENDAT}	DATA15–0 Enable After CLKOUT	1.0		1.0		ns
t _{DO}	Output Delay After CLKOUT ¹		6.0		6.0	ns
t _{HO}	Output Hold After CLKOUT ¹	1.0		0.8		ns

¹Output pins include AMS3-0, ABE1-0, ADDR19-1, DATA15-0, AOE, AWE.

Figure 14. Asynchronous Memory Write Cycle Timing

SDRAM Interface Timing

Table 25. SDRAM Interface Timing¹

		VDDEXT	-= 1.8 V	V _{DDEXT} = 2	2.5 V/3.3 V	
Paramet	er	Min	Max	Min	Max	Unit
Timing R	equirements					
t _{SSDAT}	DATA Setup Before CLKOUT	2.1		1.5		ns
t _{HSDAT}	DATA Hold After CLKOUT	0.8		0.8		ns
Switching	g Characteristics					
t _{DCAD}	Command, ADDR, Data Delay After CLKOUT ²	6.0 4			4.0	ns
t _{HCAD}	Command, ADDR, Data Hold After CLKOUT ²	1.0		1.0		ns
t _{DSDAT}	Data Disable After CLKOUT		6.0		4.0	ns
t _{ensdat}	Data Enable After CLKOUT	1.0		1.0		ns
t _{SCLK}	CLKOUT Period ³	10.0		7.5		ns
t _{SCLKH}	CLKOUT Width High	2.5		2.5		ns
t _{SCLKL}	CLKOUT Width Low	2.5		2.5		ns

 1 SDRAM timing for T_J > 105°C is limited to 100 MHz.

² Command pins include: SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.

 3 Refer to Table 13 on Page 21 for maximum f_{SCLK} at various $V_{DDINT}.$

NOTE: COMMAND = SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.

Figure 15. SDRAM Interface Timing

Figure 24. Serial Port Start Up with External Clock and Frame Sync

Table 31. External Late Frame Sync

		V _{DDEXT} = 1.8 V LQFP/PBGA Packages		V _{DDEXT} = 1.8 V CSP_BGA Package		V _{DDEXT} = 2.5 V/3.3 V All Packages	
Parameter	Min	Max	Min	Max	Min	Max	Unit
Switching Characteristics							
$t_{DDTLFSE}$ Data Delay from Late External TFSx or External RFSx in multichannel mode with MCMEN = 0 ^{1, 2}		10.5		10.0		10.0	ns
$t_{DTENLFS}$ Data Enable from Late FS or in multichannel mode with MCMEN = $0^{1,2}$	0		0		0		ns

 1 In multichannel mode, TFSx enable and TFSx valid follow $t_{\mbox{\scriptsize DTENLFS}}$ and $t_{\mbox{\scriptsize DDTLFSE}}$

 2 If external RFSx/TFSx setup to RSCLKx/TSCLKx > t_{SCLKE}/2, then t_{DDTTE/I} and t_{DTENE/I} apply; otherwise t_{DDTLFSE} and t_{DTENLFS} apply.

Figure 26. External Late Frame Sync

Serial Peripheral Interface (SPI) Port—Slave Timing

Table 33. Serial Peripheral Interface (SPI) Port—Slave Timing

		V _{DDEXT} = ⁻ LQFP/PBGA F	1.8 V Packages	V _{DDEXT} = ⁻ CSP_BGA P	1.8 V ackage	V _{DDEXT} = 2.5 All Pack	V/3.3 V ages	
Parameter		Min	Max	Min	Max	Min	Max	Unit
Timing	Requirements							
t _{spichs}	Serial Clock High Period	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns
t _{SPICLS}	Serial Clock Low Period	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns
t _{SPICLK}	Serial Clock Period	$4 \times t_{SCLK}$		$4 \times t_{SCLK}$		$4 \times t_{SCLK}$		ns
t _{HDS}	Last SCK Edge to SPISS Not Asserted	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns
t _{spitds}	Sequential Transfer Delay	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns
t _{SDSCI}	SPISS Assertion to First SCK Edge	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns
t _{sspid}	Data Input Valid to SCK Edge (Data Input Setup)	1.6		1.6		1.6		ns
t _{HSPID}	SCK Sampling Edge to Data Input Invalid	1.6		1.6		1.6		ns
Switch	ing Characteristics							
t _{DSOE}	SPISS Assertion to Data Out Active	0	10	0	9	0	8	ns
t _{DSDHI}	SPISS Deassertion to Data High Impedance	0	10	0	9	0	8	ns
t _{DDSPID}	SCK Edge to Data Out Valid (Data Out Delay)	10		10			10	ns
t _{hdspid}	SCK Edge to Data Out Invalid (Data Out Hold)	0		0		0		ns

Figure 28. Serial Peripheral Interface (SPI) Port—Slave Timing

Figure 57. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for Driver D at $V_{DDEXT} = 1.75 V$

Figure 58. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for Driver D at V_{DDEXT} = 2.25 V

Figure 59. Typical Rise and Fall Times (10% to 90%) vs. Load Capacitance for Driver D at V_{DDEXT} = 3.65 V

THERMAL CHARACTERISTICS

To determine the junction temperature on the application printed circuit board, use:

$$T_J = T_{CASE} + (\Psi_{JT} \times P_D)$$

where:

 T_J = Junction temperature (°C).

 T_{CASE} = Case temperature (°C) measured by customer at top center of package.

 Ψ_{JT} = From Table 38 through Table 40.

 P_D = Power dissipation (see the power dissipation discussion and the tables on 23 for the method to calculate P_D).

Values of θ_{JA} are provided for package comparison and printed circuit board design considerations. θ_{JA} can be used for a first order approximation of T_I by the equation:

$$T_J = T_A + (\theta_{JA} \times P_D)$$

where:

 T_A = ambient temperature (°C).

In Table 38 through Table 40, airflow measurements comply with JEDEC standards JESD51–2 and JESD51–6, and the junction-to-board measurement complies with JESD51–8. The junction-to-case measurement complies with MIL-STD-883 (Method 1012.1). All measurements use a 2S2P JEDEC test board.

Thermal resistance θ_{JA} in Table 38 through Table 40 is the figure of merit relating to performance of the package and board in a convective environment. θ_{JMA} represents the thermal resistance under two conditions of airflow. Ψ_{JT} represents the correlation between T_J and T_{CASE} .

Table 38. Thermal Characteristics for BC-160 Package

Parameter	Condition	Typical	Unit
θ_{JA}	0 Linear m/s Airflow	27.1	°C/W
θ_{JMA}	1 Linear m/s Airflow	23.85	°C/W
θ_{JMA}	2 Linear m/s Airflow	22.7	°C/W
θ_{JC}	Not Applicable	7.26	°C/W
Ψ_{JT}	0 Linear m/s Airflow	0.14	°C/W
Ψ_{JT}	1 Linear m/s Airflow	0.26	°C/W
Ψ_{JT}	2 Linear m/s Airflow	0.35	°C/W

Table 39. Thermal Characteristics for ST-176-1 Package

Parameter	Condition	Typical	Unit
θ_{JA}	0 Linear m/s Airflow	34.9	°C/W
θ_{JMA}	1 Linear m/s Airflow	33.0	°C/W
θ_{JMA}	2 Linear m/s Airflow	32.0	°C/W
Ψ_{JT}	0 Linear m/s Airflow	0.50	°C/W
Ψ_{JT}	1 Linear m/s Airflow	0.75	°C/W
$\Psi_{ m JT}$	2 Linear m/s Airflow	1.00	°C/W

Table 40. Thermal Characteristics for B-169 Package

Parameter	Condition	Typical	Unit
θ_{JA}	0 Linear m/s Airflow	22.8	°C/W
θ_{JMA}	1 Linear m/s Airflow	20.3	°C/W
θ_{JMA}	2 Linear m/s Airflow	19.3	°C/W
θ_{JC}	Not Applicable	10.39	°C/W
Ψ_{JT}	0 Linear m/s Airflow	0.59	°C/W
Ψ_{JT}	1 Linear m/s Airflow	0.88	°C/W
$\Psi_{ m JT}$	2 Linear m/s Airflow	1.37	°C/W

160-BALL CSP_BGA BALL ASSIGNMENT

Table 41 lists the CSP_BGA ball assignment by signal. Table 42on Page 51 lists the CSP_BGA ball assignment by ball number.

Table 41.	160-Ball CSP	BGA Ball Assignme	ent (Alphabetical	by Signal)
1 abic 41.	100-Dan Col	_DOM Dan Mooiginn	int (mphabetical	by orginar)

Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.
ABEO	H13	DATA4	N8	GND	L6	SCK	D1
ABE1	H12	DATA5	P8	GND	L8	SCKE	B13
ADDR1	J14	DATA6	M7	GND	L10	SMS	C13
ADDR2	K14	DATA7	N7	GND	M4	SRAS	D13
ADDR3	L14	DATA8	P7	GND	M10	SWE	D12
ADDR4	J13	DATA9	M6	GND	P14	ТСК	P2
ADDR5	K13	DATA10	N6	MISO	E2	TDI	M3
ADDR6	L13	DATA11	P6	MOSI	D3	TDO	N3
ADDR7	K12	DATA12	M5	NMI	B10	TFS0	H3
ADDR8	L12	DATA13	N5	PFO	D2	TFS1	E1
ADDR9	M12	DATA14	P5	PF1	C1	TMR0	L2
ADDR10	M13	DATA15	P4	PF2	C2	TMR1	M1
ADDR11	M14	DROPRI	K1	PF3	C3	TMR2	К2
ADDR12	N14	DR0SEC	J2	PF4	B1	TMS	N2
ADDR13	N13	DR1PRI	G3	PF5	B2	TRST	N1
ADDR14	N12	DR1SEC	F3	PF6	B3	TSCLK0	J1
ADDR15	M11	DTOPRI	H1	PF7	B4	TSCLK1	F1
ADDR16	N11	DT0SEC	H2	PF8	A2	тх	К3
ADDR17	P13	DT1PRI	F2	PF9	A3	V _{DDEXT}	A1
ADDR18	P12	DT1SEC	E3	PF10	A4	V _{DDEXT}	C7
ADDR19	P11	EMU	M2	PF11	A5	V _{DDEXT}	C12
AMS0	E14	GND	A10	PF12	B5	V _{DDEXT}	D5
AMS1	F14	GND	A14	PF13	B6	V _{DDEXT}	D9
AMS2	F13	GND	B11	PF14	A6	V _{DDEXT}	F12
AMS3	G12	GND	C4	PF15	C6	V _{DDEXT}	G4
AOE	G13	GND	C5	PPI_CLK	C9	V _{DDEXT}	J4
ARDY	E13	GND	C11	PPI0	C8	V _{DDEXT}	J12
ARE	G14	GND	D4	PPI1	B8	V _{DDEXT}	L7
AWE	H14	GND	D7	PPI2	A7	V _{DDEXT}	L11
BG	P10	GND	D8	PPI3	B7	V _{DDEXT}	P1
BGH	N10	GND	D10	RESET	C10	V _{DDINT}	D6
BMODE0	N4	GND	D11	RFS0	J3	V _{DDINT}	E4
BMODE1	P3	GND	F4	RFS1	G2	V _{DDINT}	E11
BR	D14	GND	F11	RSCLK0	L1	V _{DDINT}	J11
CLKIN	A12	GND	G11	RSCLK1	G1	V _{DDINT}	L4
CLKOUT	B14	GND	H4	RTXI	A9	V _{DDINT}	L9
DATA0	M9	GND	H11	RTXO	A8	V _{DDRTC}	B9
DATA1	N9	GND	K4	RX	L3	VROUT0	A13
DATA2	P9	GND	K11	SA10	E12	VROUT1	B12
DATA3	M8	GND	L5	SCAS	C14	XTAL	A11

169-BALL PBGA BALL ASSIGNMENT

Table 43 lists the PBGA ball assignment by signal. Table 44 onPage 54 lists the PBGA ball assignment by ball number.

Table 43	169-Ball PBGA	Ball Assignment	(Alphabetical	by Signal)
----------	---------------	-----------------	---------------	------------

Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.
ABEO	H16	DATA4	U12	GND	К9	RTXI	A10	V _{DDEXT}	K6
ABE1	H17	DATA5	U11	GND	K10	RTXO	A11	V _{DDEXT}	L6
ADDR1	J16	DATA6	T10	GND	K11	RX	T1	V _{DDEXT}	M6
ADDR2	J17	DATA7	U10	GND	L7	SA10	B15	V _{DDEXT}	M7
ADDR3	K16	DATA8	Т9	GND	L8	SCAS	A16	V _{DDEXT}	M8
ADDR4	K17	DATA9	U9	GND	L9	SCK	D1	V _{DDEXT}	T2
ADDR5	L16	DATA10	Т8	GND	L10	SCKE	B14	VROUT0	B12
ADDR6	L17	DATA11	U8	GND	L11	SMS	A17	VROUT1	B13
ADDR7	M16	DATA12	U7	GND	M9	SRAS	A15	XTAL	A13
ADDR8	M17	DATA13	Τ7	GND	T16	SWE	B17		
ADDR9	N17	DATA14	U6	MISO	E2	ТСК	U4		
ADDR10	N16	DATA15	T6	MOSI	E1	TDI	U3		
ADDR11	P17	DROPRI	M2	NMI	B11	TDO	T4		
ADDR12	P16	DR0SEC	M1	PF0	D2	TFS0	L1		
ADDR13	R17	DR1PRI	H1	PF1	C1	TFS1	G2		
ADDR14	R16	DR1SEC	H2	PF2	B1	TMR0	R1		
ADDR15	T17	DTOPRI	K2	PF3	C2	TMR1	P2		
ADDR16	U15	DT0SEC	K1	PF4	A1	TMR2	P1		
ADDR17	T15	DT1PRI	F1	PF5	A2	TMS	Т3		
ADDR18	U16	DT1SEC	F2	PF6	B3	TRST	U2		
ADDR19	T14	EMU	U1	PF7	A3	TSCLK0	L2		
AMS0	D17	GND	B16	PF8	B4	TSCLK1	G1		
AMS1	E16	GND	F11	PF9	A4	ТХ	R2		
AMS2	E17	GND	G7	PF10	B5	VDD	F12		
AMS3	F16	GND	G8	PF11	A5	VDD	G12		
AOE	F17	GND	G9	PF12	A6	VDD	H12		
ARDY	C16	GND	G10	PF13	B6	VDD	J12		
ARE	G16	GND	G11	PF14	A7	VDD	K12		
AWE	G17	GND	H7	PF15	B7	VDD	L12		
BG	T13	GND	H8	PPI_CLK	B10	VDD	M10		
BGH	U17	GND	H9	PPI0	B9	VDD	M11		
BMODE0	U5	GND	H10	PPI1	A9	VDD	M12		
BMODE1	T5	GND	H11	PPI2	B8	V _{DDEXT}	B2		
BR	C17	GND	J7	PPI3	A8	V _{DDEXT}	F6		
CLKIN	A14	GND	78	RESET	A12	V _{DDEXT}	F7		
CLKOUT	D16	GND	J9	RFS0	N1	V _{DDEXT}	F8		
DATA0	U14	GND	J10	RFS1	J1	V _{DDEXT}	F9		
DATA1	T12	GND	J11	RSCLK0	N2	V _{DDEXT}	G6		
DATA2	U13	GND	K7	RSCLK1	J2	V _{DDEXT}	H6		
DATA3	T11	GND	K8	RTCVDD	F10	V _{DDEXT}	J6		

Lead No.	Signal								
1	GND	41	GND	81	ТХ	121	ADDR19	161	AMS0
2	GND	42	GND	82	RX	122	ADDR18	162	ARDY
3	GND	43	GND	83	EMU	123	ADDR17	163	BR
4	VROUT1	44	GND	84	TRST	124	ADDR16	164	SA10
5	VROUT0	45	V _{DDEXT}	85	TMS	125	ADDR15	165	SWE
6	V _{DDEXT}	46	PF5	86	TDI	126	ADDR14	166	SCAS
7	GND	47	PF4	87	TDO	127	ADDR13	167	SRAS
8	GND	48	PF3	88	GND	128	GND	168	V _{DDINT}
9	GND	49	PF2	89	GND	129	GND	169	CLKOUT
10	CLKIN	50	PF1	90	GND	130	GND	170	GND
11	XTAL	51	PF0	91	GND	131	GND	171	V _{DDEXT}
12	V _{DDEXT}	52	V _{DDINT}	92	GND	132	GND	172	SMS
13	RESET	53	SCK	93	V _{DDEXT}	133	GND	173	SCKE
14	NMI	54	MISO	94	ТСК	134	V _{DDEXT}	174	GND
15	GND	55	MOSI	95	BMODE1	135	ADDR12	175	GND
16	RTXO	56	GND	96	BMODE0	136	ADDR11	176	GND
17	RTXI	57	V _{DDEXT}	97	GND	137	ADDR10		
18	V _{DDRTC}	58	DT1SEC	98	DATA15	138	ADDR9		
19	GND	59	DT1PRI	99	DATA14	139	ADDR8		
20	V _{DDEXT}	60	TFS1	100	DATA13	140	ADDR7		
21	PPI_CLK	61	TSCLK1	101	DATA12	141	ADDR6		
22	PPI0	62	DR1SEC	102	DATA11	142	ADDR5		
23	PPI1	63	DR1PRI	103	DATA10	143	V _{DDINT}		
24	PPI2	64	RFS1	104	DATA9	144	GND		
25	V _{DDINT}	65	RSCLK1	105	DATA8	145	V _{DDEXT}		
26	PPI3	66	V _{DDINT}	106	GND	146	ADDR4		
27	PF15	67	DT0SEC	107	V _{DDEXT}	147	ADDR3		
28	PF14	68	DTOPRI	108	DATA7	148	ADDR2		
29	PF13	69	TFS0	109	DATA6	149	ADDR1		
30	GND	70	GND	110	DATA5	150	ABE1		
31	V _{DDEXT}	71	V _{DDEXT}	111	V _{DDINT}	151	ABE0		
32	PF12	72	TSCLK0	112	DATA4	152	AWE		
33	PF11	73	DR0SEC	113	DATA3	153	ARE		
34	PF10	74	DROPRI	114	DATA2	154	AOE		
35	PF9	75	RFS0	115	DATA1	155	GND		
36	PF8	76	RSCLK0	116	DATA0	156	V _{DDEXT}		
37	PF7	77	TMR2	117	GND	157	V _{DDINT}		
38	PF6	78	TMR1	118	V _{DDEXT}	158	AMS3		
39	GND	79	TMR0	119	BG	159	AMS2		
40	GND	80	V _{DDINT}	120	BGH	160	AMS1		

Table 46. 176-Lead LQFP Pin Assignment (Numerical by Lead Number)