

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	Fixed Point
Interface	SPI, SSP, UART
Clock Rate	500MHz
Non-Volatile Memory	ROM (1kB)
On-Chip RAM	148kB
Voltage - I/O	3.30V
Voltage - Core	1.20V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	160-LFBGA, CSPBGA
Supplier Device Package	160-CSPBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf533sbbcz500

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	CORE MMR REGISTERS (2M BYTE)	\int	
	SYSTEM MMR REGISTERS (2M BYTE)		
	RESERVED		
0XFFB0 1000	SCRATCHPAD SRAM (4K BYTE)		
0xFFB0 0000	RESERVED		
0xFFA1 4000	INSTRUCTION SRAM/CACHE (16K BYTE)		ИАР
0xFFA1 0000	RESERVED		RY I
0xFFA0 C000	INSTRUCTION SRAM (16K BYTE)		×≣
0xFFA0 8000	RESERVED		ALN
0xFFA0 0000	RESERVED		ERN
0xFF90 8000	RESERVED		I
0xFF90 4000	RESERVED		
0xFF80 8000	DATA BANK A SRAM/CACHE (16K BYTE)		
0xFF80 4000	RESERVED		
0xEF00 0000	RESERVED	К	
0x2040 0000	ASYNC MEMORY BANK 3 (1M BYTE)		MAP
0x2030 0000	ASYNC MEMORY BANK 2 (1M BYTE)		ову
0x2020 0000	ASYNC MEMORY BANK 1 (1M BYTE)		MEM
0x2010 0000	ASYNC MEMORY BANK 0 (1M BYTE)	(I AL I
0x2000 0000	RESERVED		TER
0x0800 0000	SDRAM MEMORY (16M BYTE TO 128M BYTE)		.X
0x0000 0000	(IOW BITE TO IZOW BITE)	J	

Figure 3. ADSP-BF531 Internal/External Memory Map

Figure 4. ADSP-BF532 Internal/External Memory Map

Figure 5. ADSP-BF533 Internal/External Memory Map

Event Handling

The event controller on the processors handle all asynchronous and synchronous events to the processor. The ADSP-BF531/ ADSP-BF532/ADSP-BF533 processors provide event handling that supports both nesting and prioritization. Nesting allows multiple event service routines to be active simultaneously. Prioritization ensures that servicing of a higher priority event takes precedence over servicing of a lower priority event. The controller provides support for five different types of events:

- Emulation An emulation event causes the processor to enter emulation mode, allowing command and control of the processor via the JTAG interface.
- Reset This event resets the processor.
- Nonmaskable Interrupt (NMI) The NMI event can be generated by the software watchdog timer or by the NMI input signal to the processor. The NMI event is frequently used as a power-down indicator to initiate an orderly shutdown of the system.
- Exceptions Events that occur synchronously to program flow (i.e., the exception is taken before the instruction is allowed to complete). Conditions such as data alignment violations and undefined instructions cause exceptions.
- Interrupts Events that occur asynchronously to program flow. They are caused by input pins, timers, and other peripherals, as well as by an explicit software instruction.

Each event type has an associated register to hold the return address and an associated return-from-event instruction. When an event is triggered, the state of the processor is saved on the supervisor stack.

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors' event controller consists of two stages, the core event controller (CEC) and the system interrupt controller (SIC). The core event controller works with the system interrupt controller to prioritize and control all system events. Conceptually, interrupts from the peripherals enter into the SIC, and are then routed directly into the general-purpose interrupts of the CEC.

Core Event Controller (CEC)

The CEC supports nine general-purpose interrupts (IVG15–7), in addition to the dedicated interrupt and exception events. Of these general-purpose interrupts, the two lowest priority interrupts (IVG15–14) are recommended to be reserved for software interrupt handlers, leaving seven prioritized interrupt inputs to support the peripherals of the processor. Table 2 describes the inputs to the CEC, identifies their names in the event vector table (EVT), and lists their priorities.

Table 2. Core Event Controller (CEC)

Priority		
(0 is Highest)	Event Class	EVT Entry
0	Emulation/Test Control	EMU
1	Reset	RST
2	Nonmaskable Interrupt	NMI
3	Exception	EVX
4	Reserved	
5	Hardware Error	IVHW
6	Core Timer	IVTMR
7	General Interrupt 7	IVG7
8	General Interrupt 8	IVG8
9	General Interrupt 9	IVG9
10	General Interrupt 10	IVG10
11	General Interrupt 11	IVG11
12	General Interrupt 12	IVG12
13	General Interrupt 13	IVG13
14	General Interrupt 14	IVG14
15	General Interrupt 15	IVG15

System Interrupt Controller (SIC)

The system interrupt controller provides the mapping and routing of events from the many peripheral interrupt sources to the prioritized general-purpose interrupt inputs of the CEC. Although the processors provide a default mapping, the user can alter the mappings and priorities of interrupt events by writing the appropriate values into the interrupt assignment registers (SIC_IARx). Table 3 describes the inputs into the SIC and the default mappings into the CEC. Table 3. System Interrupt Controller (SIC)

Peripheral Interrupt Event	Default Mapping
PLL Wakeup	IVG7
DMA Error	IVG7
PPI Error	IVG7
SPORT 0 Error	IVG7
SPORT 1 Error	IVG7
SPI Error	IVG7
UART Error	IVG7
Real-Time Clock	IVG8
DMA Channel 0 (PPI)	IVG8
DMA Channel 1 (SPORT 0 Receive)	IVG9
DMA Channel 2 (SPORT 0 Transmit)	IVG9
DMA Channel 3 (SPORT 1 Receive)	IVG9
DMA Channel 4 (SPORT 1 Transmit)	IVG9
DMA Channel 5 (SPI)	IVG10
DMA Channel 6 (UART Receive)	IVG10
DMA Channel 7 (UART Transmit)	IVG10
Timer 0	IVG11
Timer 1	IVG11
Timer 2	IVG11
Port F GPIO Interrupt A	IVG12
Port F GPIO Interrupt B	IVG12
Memory DMA Stream 0	IVG13
Memory DMA Stream 1	IVG13
Software Watchdog Timer	IVG13

Event Control

The processors provide a very flexible mechanism to control the processing of events. In the CEC, three registers are used to coordinate and control events. Each register is 32 bits wide:

- CEC interrupt latch register (ILAT) The ILAT register indicates when events have been latched. The appropriate bit is set when the processor has latched the event and cleared when the event has been accepted into the system. This register is updated automatically by the controller, but it can also be written to clear (cancel) latched events. This register can be read while in supervisor mode and can only be written while in supervisor mode when the corresponding IMASK bit is cleared.
- CEC interrupt mask register (IMASK) The IMASK register controls the masking and unmasking of individual events. When a bit is set in the IMASK register, that event is unmasked and is processed by the CEC when asserted. A cleared bit in the IMASK register masks the event, preventing the processor from servicing the event even though the event may be latched in the ILAT register. This register can be read or written while in supervisor mode. Note that general-purpose interrupts can be globally enabled and disabled with the STI and CLI instructions, respectively.

 CEC interrupt pending register (IPEND) – The IPEND register keeps track of all nested events. A set bit in the IPEND register indicates the event is currently active or nested at some level. This register is updated automatically by the controller but can be read while in supervisor mode.

The SIC allows further control of event processing by providing three 32-bit interrupt control and status registers. Each register contains a bit corresponding to each of the peripheral interrupt events shown in Table 3.

- SIC interrupt mask register (SIC_IMASK) This register controls the masking and unmasking of each peripheral interrupt event. When a bit is set in this register, that peripheral event is unmasked and is processed by the system when asserted. A cleared bit in this register masks the peripheral event, preventing the processor from servicing the event.
- SIC interrupt status register (SIC_ISR) As multiple peripherals can be mapped to a single event, this register allows the software to determine which peripheral event source triggered the interrupt. A set bit indicates the peripheral is asserting the interrupt, and a cleared bit indicates the peripheral is not asserting the event.
- SIC interrupt wakeup enable register (SIC_IWR) By enabling the corresponding bit in this register, a peripheral can be configured to wake up the processor, should the core be idled when the event is generated. See Dynamic Power Management on Page 11.

Because multiple interrupt sources can map to a single generalpurpose interrupt, multiple pulse assertions can occur simultaneously, before or during interrupt processing for an interrupt event already detected on this interrupt input. The IPEND register contents are monitored by the SIC as the interrupt acknowledgement.

The appropriate ILAT register bit is set when an interrupt rising edge is detected (detection requires two core clock cycles). The bit is cleared when the respective IPEND register bit is set. The IPEND bit indicates that the event has entered into the processor pipeline. At this point the CEC recognizes and queues the next rising edge event on the corresponding event input. The minimum latency from the rising edge transition of the general-purpose interrupt to the IPEND output asserted is three core clock cycles; however, the latency can be much higher, depending on the activity within and the state of the processor.

DMA CONTROLLERS

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors have multiple, independent DMA channels that support automated data transfers with minimal overhead for the processor core. DMA transfers can occur between the processor's internal memories and any of its DMA-capable peripherals. Additionally, DMA transfers can be accomplished between any of the DMA-capable peripherals and external devices connected to the external memory interfaces, including the SDRAM controller and the asynchronous memory controller. DMA-capable peripherals include the SPORTs, SPI port, UART, and PPI. Each individual DMA-capable peripheral has at least one dedicated DMA channel.

The DMA controller supports both 1-dimensional (1-D) and 2dimensional (2-D) DMA transfers. DMA transfer initialization can be implemented from registers or from sets of parameters called descriptor blocks.

The 2-D DMA capability supports arbitrary row and column sizes up to 64K elements by 64K elements, and arbitrary row and column step sizes up to ± 32 K elements. Furthermore, the column step size can be less than the row step size, allowing implementation of interleaved data streams. This feature is especially useful in video applications where data can be de-interleaved on the fly.

Examples of DMA types supported by the DMA controller include:

- A single, linear buffer that stops upon completion
- A circular, autorefreshing buffer that interrupts on each full or fractionally full buffer
- 1-D or 2-D DMA using a linked list of descriptors
- 2-D DMA using an array of descriptors, specifying only the base DMA address within a common page

In addition to the dedicated peripheral DMA channels, there are two pairs of memory DMA channels provided for transfers between the various memories of the processor system. This enables transfers of blocks of data between any of the memories—including external SDRAM, ROM, SRAM, and flash memory—with minimal processor intervention. Memory DMA transfers can be controlled by a very flexible descriptor-based methodology or by a standard register-based autobuffer mechanism.

REAL-TIME CLOCK

The processor real-time clock (RTC) provides a robust set of digital watch features, including current time, stopwatch, and alarm. The RTC is clocked by a 32.768 kHz crystal external to the ADSP-BF531/ADSP-BF532/ADSP-BF533 processors. The RTC peripheral has dedicated power supply pins so that it can remain powered up and clocked even when the rest of the processor is in a low power state. The RTC provides several programmable interrupt options, including interrupt per second, minute, hour, or day clock ticks, interrupt on programmable stopwatch countdown, or interrupt at a programmed alarm time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal by a prescaler. The counter function of the timer consists of four counters: a 60 second counter, a 60 minute counter, a 24 hour counter, and a 32,768 day counter.

When enabled, the alarm function generates an interrupt when the output of the timer matches the programmed value in the alarm control register. The two alarms are time of day and a day and time of that day.

The stopwatch function counts down from a programmed value, with one second resolution. When the stopwatch is enabled and the counter underflows, an interrupt is generated.

Like other peripherals, the RTC can wake up the processor from sleep mode upon generation of any RTC wakeup event. Additionally, an RTC wakeup event can wake up the processor from deep sleep mode, and wake up the on-chip internal voltage regulator from a powered-down state.

Connect RTC pins RTXI and RTXO with external components as shown in Figure 6.

SUGGESTED COMPONENTS: X1 = ECLIPTEK EC38J (THROUGH-HOLE PACKAGE) OR EPSON MC405 12 pF LOAD (SURFACE-MOUNT PACKAGE) C1 = 22 pF C2 = 22 pF R1 = 10 MΩ

NOTE: C1 AND C2 ARE SPECIFIC TO CRYSTAL SPECIFIED FOR X1. CONTACT CRYSTAL MANUFACTURER FOR DETAILS. C1 AND C2 SPECIFICATIONS ASSUME BOARD TRACE CAPACITANCE OF 3 pF.

Figure 6. External Components for RTC

WATCHDOG TIMER

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors include a 32-bit timer that can be used to implement a software watchdog function. A software watchdog can improve system availability by forcing the processor to a known state through generation of a hardware reset, nonmaskable interrupt (NMI), or general-purpose interrupt, if the timer expires before being reset by software. The programmer initializes the count value of the timer, enables the appropriate interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts to zero from the programmed value. This protects the system from remaining in an unknown state where software, which would normally reset the timer, has stopped running due to an external noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both the core and the processor peripherals. After a reset, software can determine if the watchdog was the source of the hardware reset by interrogating a status bit in the watchdog timer control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency of f_{SCLK} .

TIMERS

There are four general-purpose programmable timer units in the ADSP-BF531/ADSP-BF532/ADSP-BF533 processors. Three timers have an external pin that can be configured either as a pulse-width modulator (PWM) or timer output, as an input to clock the timer, or as a mechanism for measuring pulse widths and periods of external events. These timers can be synchronized to an external clock input to the PF1 pin (TACLK), an external clock input to the PP1_CLK pin (TMRCLK), or to the internal SCLK.

The timer units can be used in conjunction with the UART to measure the width of the pulses in the data stream to provide an autobaud detect function for a serial channel.

The timers can generate interrupts to the processor core providing periodic events for synchronization, either to the system clock or to a count of external signals.

In addition to the three general-purpose programmable timers, a fourth timer is also provided. This extra timer is clocked by the internal processor clock and is typically used as a system tick clock for generation of operating system periodic interrupts.

SERIAL PORTS (SPORTs)

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors incorporate two dual-channel synchronous serial ports (SPORT0 and SPORT1) for serial and multiprocessor communications. The SPORTs support the following features:

- I²S capable operation.
- Bidirectional operation Each SPORT has two sets of independent transmit and receive pins, enabling eight channels of I²S stereo audio.
- Buffered (8-deep) transmit and receive ports Each port has a data register for transferring data words to and from other processor components and shift registers for shifting data in and out of the data registers.
- Clocking Each transmit and receive port can either use an external serial clock or generate its own, in frequencies ranging from ($f_{SCLK}/131,070$) Hz to ($f_{SCLK}/2$) Hz.
- Word length Each SPORT supports serial data words from 3 bits to 32 bits in length, transferred most-significant-bit first or least-significant-bit first.
- Framing Each transmit and receive port can run with or without frame sync signals for each data word. Frame sync signals can be generated internally or externally, active high or low, and with either of two pulse widths and early or late frame sync.
- Companding in hardware Each SPORT can perform A-law or μ-law companding according to ITU recommendation G.711. Companding can be selected on the transmit and/or receive channel of the SPORT without additional latencies.
- DMA operations with single-cycle overhead Each SPORT can automatically receive and transmit multiple buffers of memory data. The processor can link or chain sequences of DMA transfers between a SPORT and memory.

As shown in Figure 9, the core clock (CCLK) and system peripheral clock (SCLK) are derived from the input clock (CLKIN) signal. An on-chip PLL is capable of multiplying the CLKIN signal by a user programmable 0.5× to 64× multiplication factor (bounded by specified minimum and maximum VCO frequencies). The default multiplier is 10×, but it can be modified by a software instruction sequence. On-the-fly frequency changes can be effected by simply writing to the PLL_DIV register.

Figure 9. Frequency Modification Methods

All on-chip peripherals are clocked by the system clock (SCLK). The system clock frequency is programmable by means of the SSEL3–0 bits of the PLL_DIV register. The values programmed into the SSEL fields define a divide ratio between the PLL output (VCO) and the system clock. SCLK divider values are 1 through 15. Table 6 illustrates typical system clock ratios.

Table 6.	Example System	Clock Ratios
----------	-----------------------	---------------------

Signal Name	Divider Ratio	Example Free (M	quency Ratios Hz)
SSEL3-0	VCO/SCLK	VCO	SCLK
0001	1:1	100	100
0101	5:1	400	80
1010	10:1	500	50

The maximum frequency of the system clock is f_{SCLK} . The divisor ratio must be chosen to limit the system clock frequency to its maximum of f_{SCLK} . The SSEL value can be changed dynamically without any PLL lock latencies by writing the appropriate values to the PLL divisor register (PLL_DIV). When the SSEL value is changed, it affects all of the peripherals that derive their clock signals from the SCLK signal.

The core clock (CCLK) frequency can also be dynamically changed by means of the CSEL1–0 bits of the PLL_DIV register. Supported CCLK divider ratios are 1, 2, 4, and 8, as shown in Table 7. This programmable core clock capability is useful for fast core frequency modifications.

Table 7. Core Clock Ratios

Signal Name	Divider Ratio	Example Frequency Rati (MHz)				
CSEL1-0	VCO/CCLK	VCO	CCLK			
00	1:1	300	300			
01	2:1	300	150			
10	4:1	400	100			
11	8:1	200	25			

BOOTING MODES

The ADSP-BF531/ADSP-BF532/ADSP-BF533 processors have two mechanisms (listed in Table 8) for automatically loading internal L1 instruction memory after a reset. A third mode is provided to execute from external memory, bypassing the boot sequence.

Table 8. Booting Modes

BMODE1-0	Description
00	Execute from 16-bit external memory (bypass boot ROM)
01	Boot from 8-bit or 16-bit FLASH
10	Boot from serial master connected to SPI
11	Boot from serial slave EEPROM/flash (8-,16-, or 24- bit address range, or Atmel AT45DB041, AT45DB081, or AT45DB161serial flash)

The BMODE pins of the reset configuration register, sampled during power-on resets and software-initiated resets, implement the following modes:

- Execute from 16-bit external memory Execution starts from address 0x2000 0000 with 16-bit packing. The boot ROM is bypassed in this mode. All configuration settings are set for the slowest device possible (3-cycle hold time; 15-cycle R/W access times; 4-cycle setup).
- Boot from 8-bit or 16-bit external flash memory The flash boot routine located in boot ROM memory space is set up using asynchronous Memory Bank 0. All configuration settings are set for the slowest device possible (3-cycle hold time; 15-cycle R/W access times; 4-cycle setup).
- Boot from SPI serial EEPROM/flash (8-, 16-, or 24-bit addressable, or Atmel AT45DB041, AT45DB081, or AT45DB161) The SPI uses the PF2 output pin to select a single SPI EEPROM/flash device, submits a read command and successive address bytes (0x00) until a valid 8-, 16-, or 24-bit addressable EEPROM/flash device is detected, and begins clocking data into the processor at the beginning of L1 instruction memory.
- Boot from SPI serial master The Blackfin processor operates in SPI slave mode and is configured to receive the bytes of the LDR file from an SPI host (master) agent. To hold off the host device from transmitting while the boot ROM is busy, the Blackfin processor asserts a GPIO pin, called host wait (HWAIT), to signal the host device not to send any

SPECIFICATIONS

Component specifications are subject to change without notice.

OPERATING CONDITIONS

Param	eter	Conditions	Min	Nominal	Мах	Unit
V _{DDINT}	Internal Supply Voltage ¹	Nonautomotive 400 MHz and 500 MHz speed grade models ²	0.8	1.2	1.45	V
V _{DDINT}	Internal Supply Voltage ¹	Nonautomotive 533 MHz speed grade models ²	0.8	1.25	1.45	v
V _{DDINT}	Internal Supply Voltage ¹	600 MHz speed grade models ²	0.8	1.30	1.45	v
V _{DDINT}	Internal Supply Voltage ¹	Automotive 400 MHz speed grade models ²	0.95	1.2	1.45	v
V _{DDINT}	Internal Supply Voltage ¹	Automotive 533 MHz speed grade models ²	0.95	1.25	1.45	v
V_{DDEXT}	External Supply Voltage ³	Nonautomotive grade models ²	1.75	1.8/3.3	3.6	v
V_{DDEXT}	External Supply Voltage	Automotive grade models ²	2.7	3.3	3.6	v
V _{DDRTC}	Real-Time Clock Power Supply Voltage	Nonautomotive grade models ²	1.75	1.8/3.3	3.6	V
V _{DDRTC}	Real-Time Clock Power Supply Voltage	Automotive grade models ²	2.7	3.3	3.6	V
V _{IH}	High Level Input Voltage ^{4, 5}	V _{DDEXT} = 1.85 V	1.3			v
V _{IH}	High Level Input Voltage ^{4, 5}	V _{DDEXT} = Maximum	2.0			v
VIHCLKIN	High Level Input Voltage ⁶	V _{DDEXT} = Maximum	2.2			v
V_{IL}	Low Level Input Voltage ⁷	V _{DDEXT} = 1.75 V			+0.3	v
V_{IL}	Low Level Input Voltage ⁷	$V_{DDEXT} = 2.7 V$			+0.6	v
TJ	Junction Temperature	160-Ball Chip Scale Ball Grid Array (CSP_BGA) @ T _{AMBIENT} = 0°C to + 70°C	0		+95	°C
TJ	Junction Temperature	160-Ball Chip Scale Ball Grid Array (CSP_BGA) @ T _{AMBIENT} = -40°C to +85°C	-40		+105	°C
TJ	Junction Temperature	160-Ball Chip Scale Ball Grid Array (CSP_BGA) @ $T_{AMBIENT} = -40^{\circ}C$ to $+105^{\circ}C$	-40		+125	°C
TJ	Junction Temperature	169-Ball Plastic Ball Grid Array (PBGA) @ $T_{AMBIENT} = -40^{\circ}C \text{ to } + 105^{\circ}C$	-40		+125	°C
TJ	Junction Temperature	169-Ball Plastic Ball Grid Array (PBGA) @ $T_{AMBIENT} = -40^{\circ}C \text{ to } +85^{\circ}C$	-40		+105	°C
TJ	Junction Temperature	176-Lead Quad Flatpack (LQFP) @ $T_{AMBIENT} = -40^{\circ}C \text{ to } +85^{\circ}C$	-40		+100	°C

¹The regulator can generate V_{DDINT} at levels of 0.85 V to 1.2 V with -5% to +10% tolerance, 1.25 V with -4% to +10% tolerance, and 1.3 V with -0% to +10% tolerance. ²See Ordering Guide on Page 63.

 3 When V_{\rm DDEXT} < 2.25 V, on-chip voltage regulation is not supported.

⁴ Applies to all input and bidirectional pins except CLKIN.

⁵ The ADSP-BF531/ADSP-BF532/ADSP-BF532 processors are 3.3 V tolerant (always accepts up to 3.6 V maximum V_{IH}), but voltage compliance (on outputs, V_{OH}) depends on the input V_{DDEXT}, because V_{OH} (maximum) approximately equals V_{DDEXT} (maximum). This 3.3 V tolerance applies to bidirectional pins (DATA15-0, TMR2-0, PF15-0, PP13-0, RSCLK1-0, TSCLK1-0, TFS1-0, MOSI, MISO, SCK) and input only pins (BR, ARDY, PP1_CLK, DR0PRI, DR0SEC, DR1PRI, DR1SEC, RX, RTXI, TCK, TDI, TMS, TRST, CLKIN, RESET, NMI, and BMODE1-0).

⁶ Applies to CLKIN pin only.

⁷ Applies to all input and bidirectional pins.

Table 16. Activity Scaling Factors

I _{DDINT} Power Vector ¹	Activity Scaling Factor (ASF) ²
I _{DD-PEAK}	1.27
I _{DD-HIGH}	1.25
I _{DD-TYP}	1.00
I _{DD-APP}	0.86
I _{DD-NOP}	0.72
I _{DD-IDLE}	0.41

¹See EE-229 for power vector definitions.

² All ASF values determined using a 10:1 CCLK:SCLK ratio.

Table 17. Dynamic Current (mA, with ASF = 1.0)¹

		Voltage (V _{DDINT}) ²													
Frequency (MHz) ²	0.80 V	0.85 V	0.90 V	0.95 V	1.00 V	1.05 V	1.10 V	1.15 V	1.20 V	1.25 V	1.30 V	1.32 V	1.375 V	1.43 V	1.45 V
50	12.7	13.9	15.3	16.8	18.1	19.4	21.0	22.3	24.0	25.4	26.4	27.2	28.7	30.3	30.7
100	22.6	24.2	26.2	28.1	30.1	31.8	34.7	36.2	38.4	40.5	43.0	43.4	45.7	47.9	48.9
200	40.8	44.1	46.9	50.3	53.3	56.9	59.9	63.1	66.7	70.2	73.8	75.0	78.7	82.4	84.6
250	50.1	53.8	57.2	61.4	64.7	68.9	72.9	76.8	81.0	85.1	89.3	90.8	95.2	99.6	102.0
300	N/A	63.5	67.4	72.4	76.2	81.0	85.9	90.6	95.2	100.0	104.8	106.6	111.8	116.9	119.4
375	N/A	N/A	N/A	88.6	93.5	99.0	104.6	110.3	116.0	122.1	128.0	130.0	136.2	142.4	145.5
400	N/A	N/A	N/A	93.9	99.3	105.0	110.8	116.8	123.0	129.4	135.7	137.9	144.6	151.2	154.3
425	N/A	N/A	N/A	N/A	N/A	111.0	117.3	123.5	129.9	136.8	143.2	145.6	152.6	159.7	162.8
475	N/A	N/A	N/A	N/A	N/A	N/A	130.3	136.8	143.8	151.4	158.1	161.1	168.9	176.6	179.7
500	N/A	N/A	N/A	N/A	N/A	N/A	N/A	143.5	150.7	158.7	165.6	168.8	177.0	185.2	188.2
533	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	160.4	168.8	176.5	179.6	188.2	196.8	200.5
600	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	196.2	199.6	209.3	219.0	222.6

¹ The values are not guaranteed as stand-alone maximum specifications, they must be combined with static current per the equations of Electrical Characteristics on Page 22. ² Valid temperature and voltage ranges are model-specific. See Operating Conditions on Page 20.

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed in Table 18 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods can affect device reliability.

Table 18. Absolute Maximum Ratings

Parameter	Rating
Internal (Core) Supply Voltage (V _{DDINT})	–0.3 V to +1.45 V
External (I/O) Supply Voltage (V _{DDEXT})	–0.5 V to +3.8 V
Input Voltage ^{1, 2}	–0.5 V to +3.8 V
Output Voltage Swing	-0.5 V to V _{DDEXT} + 0.5 V
Storage Temperature Range	–65°C to +150°C
Junction Temperature While Biased	125°C

¹ Applies to 100% transient duty cycle. For other duty cycles see Table 19.

 2 Applies only when V_{DDEXT} is within specifications. When V_{DDEXT} is outside specifications, the range is $V_{DDEXT}\pm0.2$ V.

Table 19. Maximum Duty Cycle for Input Transient Voltage¹

V _{IN} Min (V) ²	V _{IN} Max (V) ²	Maximum Duty Cycle ³
-0.50	+3.80	100%
-0.70	+4.00	40%
-0.80	+4.10	25%
-0.90	+4.20	15%
-1.00	+4.30	10%

¹ Applies to all signal pins with the exception of CLKIN, XTAL, VROUT1-0.

² The individual values cannot be combined for analysis of a single instance of overshoot or undershoot. The worst case observed value must fall within one of the voltages specified and the total duration of the overshoot or undershoot (exceeding the 100% case) must be less than or equal to the corresponding duty cycle.

³ Duty cycle refers to the percentage of time the signal exceeds the value for the 100% case. This is equivalent to the measured duration of a single instance of overshoot or undershoot as a percentage of the period of occurrence.

ESD SENSITIVITY

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Figure 20. PPI GP Tx Mode with Internal Frame Sync Timing

Figure 21. PPI GP Tx Mode with External Frame Sync Timing (PPI_CONTROL Bit 8 = 1)

Figure 22. PPI GP Tx Mode with External Frame Sync Timing (PPI_CONTROL Bit 8 = 0)

Table 30. Serial Ports—Enable and Three-State

		V _{DDE}	_{(T} = 1.8 V	V _{DDEXT} =	= 2.5 V/3.3 V	
Param	eter	Min	Max	Min	Max	Unit
Switch	ing Characteristics					
t _{DTENE}	Data Enable Delay from External TSCLKx ¹	0		0		ns
t _{DDTTE}	Data Disable Delay from External TSCLKx ^{1, 2, 3}		10.0		10.0	ns
t _{DTENI}	Data Enable Delay from Internal TSCLKx ¹	-2.0		-2.0		ns
t _{DDTTI}	Data Disable Delay from Internal TSCLKx ^{1, 2, 3}		3.0		3.0	ns

¹Referenced to drive edge.

² Applicable to multichannel mode only.

³ TSCLKx is tied to RSCLKx.

Figure 25. Enable and Three-State

Table 31. External Late Frame Sync

		V _{DDEXT} = 1.8 V LQFP/PBGA Packages		V _{DDEXT} = 1.8 V CSP_BGA Package		V _{DDEXT} = 2.5 V/3.3 V All Packages	
Parameter	Min	Max	Min	Max	Min	Max	Unit
Switching Characteristics							
$t_{DDTLFSE}$ Data Delay from Late External TFSx or External RFSx in multichannel mode with MCMEN = 0 ^{1, 2}		10.5		10.0		10.0	ns
$t_{DTENLFS}$ Data Enable from Late FS or in multichannel mode with MCMEN = $0^{1,2}$	0		0		0		ns

 1 In multichannel mode, TFSx enable and TFSx valid follow $t_{\mbox{\scriptsize DTENLFS}}$ and $t_{\mbox{\scriptsize DDTLFSE}}$

 2 If external RFSx/TFSx setup to RSCLKx/TSCLKx > t_{SCLKE}/2, then t_{DDTTE/I} and t_{DTENE/I} apply; otherwise t_{DDTLFSE} and t_{DTENLFS} apply.

Figure 26. External Late Frame Sync

Serial Peripheral Interface (SPI) Port—Master Timing

Table 32. Serial Peripheral Interface (SPI) Port—Master Timing

		V _{DDEXT} = 1 LQFP/PBGA P	.8 V ackages	V _{DDEXT} = 1 CSP_BGA Pa	.8 V ackage	V _{DDEXT} = 2.5 \ All Packa	//3.3 V ges	
Parame	eter	Min	Max	Min	Max	Min	Max	Unit
Timing	Requirements							
t _{sspidm}	Data Input Valid to SCK Edge (Data Input Setup)	10.5		9		7.5		ns
t _{HSPIDM}	SCK Sampling Edge to Data Input Invalid	-1.5		-1.5		-1.5		ns
Switchi	ng Characteristics							
t _{sdscim}	SPISELx Low to First SCK Edge	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns
t _{spichm}	Serial Clock High Period	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns
t _{SPICLM}	Serial Clock Low Period	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns
t _{spiclk}	Serial Clock Period	$4 \times t_{SCLK} - 1.5$		$4 \times t_{SCLK} - 1.5$		$4 \times t_{SCLK} - 1.5$		ns
t _{HDSM}	Last SCK Edge to SPISELx High	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns
t _{spitdm}	Sequential Transfer Delay	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns
t _{DDSPIDM}	SCK Edge to Data Out Valid (Data Out Delay)		6		6		6	ns
t _{HDSPIDM}	SCK Edge to Data Out Invalid (Data Out Hold)	-1.0		-1.0		-1.0		ns

Serial Peripheral Interface (SPI) Port—Slave Timing

Table 33. Serial Peripheral Interface (SPI) Port—Slave Timing

		V _{DDEXT} = ⁻ LQFP/PBGA F	1.8 V Packages	V _{DDEXT} = 1.8 V CSP_BGA Package		V _{DDEXT} = 2.5 V/3.3 V All Packages			
Param	eter	Min	Max	Min	Max	Min	Max	Unit	
Timing	Requirements								
t _{SPICHS}	Serial Clock High Period	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns	
t _{SPICLS}	Serial Clock Low Period	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns	
t _{SPICLK}	Serial Clock Period	$4 \times t_{SCLK}$		$4 \times t_{SCLK}$		$4 \times t_{SCLK}$		ns	
t _{HDS}	Last SCK Edge to SPISS Not Asserted	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns	
t _{spitds}	Sequential Transfer Delay	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns	
t _{SDSCI}	SPISS Assertion to First SCK Edge	$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		$2 \times t_{SCLK} - 1.5$		ns	
t _{sspid}	Data Input Valid to SCK Edge (Data Input Setup)	1.6		1.6		1.6		ns	
t _{HSPID}	SCK Sampling Edge to Data Input Invalid	1.6		1.6		1.6		ns	
Switch	ing Characteristics								
t _{DSOE}	SPISS Assertion to Data Out Active	0	10	0	9	0	8	ns	
t _{DSDHI}	SPISS Deassertion to Data High Impedance	0	10	0	9	0	8	ns	
t _{DDSPID}	SCK Edge to Data Out Valid (Data Out Delay)		10		10		10	ns	
t _{hdspid}	SCK Edge to Data Out Invalid (Data Out Hold)	0		0		0		ns	

Figure 28. Serial Peripheral Interface (SPI) Port—Slave Timing

Timer Clock Timing

Table 35 and Figure 30 describe timer clock timing.

Table 35. Timer Clock Timing

Figure 30. Timer Clock Timing

Timer Cycle Timing

Table 36 and Figure 31 describe timer expired operations. The input signal is asynchronous in width capture mode and external clock mode and has an absolute maximum input frequency of $f_{SCLK}/2$ MHz.

Table 36. Timer Cycle Timing

	V _{DD}	_{EXT} = 1.8 V	V _{DDEXT}	= 2.5 V/3.3 V	
Parameter	Min	Max	Min	Max	Unit
Timing Characteristics					
t _{WL} Timer Pulse Width Low ¹	$1 \times t_{\text{SCLK}}$		$1 \times t_{SCLK}$		ns
t _{wH} Timer Pulse Width High ¹	$1 \times t_{SCLK}$		$1 \times t_{SCLK}$		ns
t _{TIS} Timer Input Setup Time Before CLKOUT Low ²	8.0		6.5		ns
$t_{\Pi H}$ Timer Input Hold Time After CLKOUT Low^2	1.5		1.5		ns
Switching Characteristics					
t _{HTO} Timer Pulse Width Output	$1 \times t_{SCLK}$	$(2^{32}-1) \times t_{SCLK}$	$1 \times t_{SCLK}$	$(2^{32}-1) \times t_{SCLK}$	ns
t_{TOD} Timer Output Update Delay After CLKOUT High		7.5		6.5	ns

¹ The minimum pulse widths apply for TMRx input pins in width capture and external clock modes. They also apply to the PF1 or PPI_CLK input pins in PWM output mode. ² Either a valid setup and hold time or a valid pulse width is sufficient. There is no need to resynchronize programmable flag inputs.

Figure 31. Timer PWM_OUT Cycle Timing

Ball No.	Signal						
A1	V _{DDEXT}	C13	SMS	H1	DTOPRI	M3	TDI
A2	PF8	C14	SCAS	H2	DT0SEC	M4	GND
A3	PF9	D1	SCK	H3	TFS0	M5	DATA12
A4	PF10	D2	PF0	H4	GND	M6	DATA9
A5	PF11	D3	MOSI	H11	GND	M7	DATA6
A6	PF14	D4	GND	H12	ABE1	M8	DATA3
A7	PPI2	D5	V _{DDEXT}	H13	ABE0	M9	DATA0
A8	RTXO	D6	V _{DDINT}	H14	AWE	M10	GND
A9	RTXI	D7	GND	J1	TSCLK0	M11	ADDR15
A10	GND	D8	GND	J2	DROSEC	M12	ADDR9
A11	XTAL	D9	V _{DDEXT}	J3	RFS0	M13	ADDR10
A12	CLKIN	D10	GND	J4	V _{DDEXT}	M14	ADDR11
A13	VROUT0	D11	GND	J11	V _{DDINT}	N1	TRST
A14	GND	D12	SWE	J12	V _{DDEXT}	N2	TMS
B1	PF4	D13	SRAS	J13	ADDR4	N3	TDO
B2	PF5	D14	BR	J14	ADDR1	N4	BMODE0
B3	PF6	E1	TFS1	К1	DROPRI	N5	DATA13
B4	PF7	E2	MISO	К2	TMR2	N6	DATA10
B5	PF12	E3	DT1SEC	К3	ТХ	N7	DATA7
B6	PF13	E4	V _{DDINT}	K4	GND	N8	DATA4
B7	PPI3	E11	V _{DDINT}	K11	GND	N9	DATA1
B8	PPI1	E12	SA10	K12	ADDR7	N10	BGH
B9	V _{DDRTC}	E13	ARDY	K13	ADDR5	N11	ADDR16
B10	NMI	E14	AMS0	K14	ADDR2	N12	ADDR14
B11	GND	F1	TSCLK1	L1	RSCLK0	N13	ADDR13
B12	VROUT1	F2	DT1PRI	L2	TMR0	N14	ADDR12
B13	SCKE	F3	DR1SEC	L3	RX	P1	V _{DDEXT}
B14	CLKOUT	F4	GND	L4	V _{DDINT}	P2	ТСК
C1	PF1	F11	GND	L5	GND	Р3	BMODE1
C2	PF2	F12	V _{DDEXT}	L6	GND	P4	DATA15
C3	PF3	F13	AMS2	L7	V _{DDEXT}	P5	DATA14
C4	GND	F14	AMS1	L8	GND	P6	DATA11
C5	GND	G1	RSCLK1	L9	V _{DDINT}	P7	DATA8
C6	PF15	G2	RFS1	L10	GND	P8	DATA5
C7	V _{DDEXT}	G3	DR1PRI	L11	V _{DDEXT}	Р9	DATA2
C8	PPIO	G4	V _{DDEXT}	L12	ADDR8	P10	BG
С9	PPI_CLK	G11	GND	L13	ADDR6	P11	ADDR19
C10	RESET	G12	AMS3	L14	ADDR3	P12	ADDR18
C11	GND	G13	AOE	M1	TMR1	P13	ADDR17
C12	V _{DDEXT}	G14	ARE	M2	EMU	P14	GND

Table 42. 160-Ball CSP_BGA Ball Assignment (Numerical by Ball Number)

169-BALL PBGA BALL ASSIGNMENT

Table 43 lists the PBGA ball assignment by signal. Table 44 onPage 54 lists the PBGA ball assignment by ball number.

Table 43	169-Ball PBGA	Ball Assignment	(Alphabetical	by Signal)
----------	---------------	-----------------	---------------	------------

Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.
ABEO	H16	DATA4	U12	GND	К9	RTXI	A10	V _{DDEXT}	K6
ABE1	H17	DATA5	U11	GND	K10	RTXO	A11	V _{DDEXT}	L6
ADDR1	J16	DATA6	T10	GND	K11	RX	T1	V _{DDEXT}	M6
ADDR2	J17	DATA7	U10	GND	L7	SA10	B15	V _{DDEXT}	M7
ADDR3	K16	DATA8	Т9	GND	L8	SCAS	A16	V _{DDEXT}	M8
ADDR4	K17	DATA9	U9	GND	L9	SCK	D1	V _{DDEXT}	T2
ADDR5	L16	DATA10	Т8	GND	L10	SCKE	B14	VROUT0	B12
ADDR6	L17	DATA11	U8	GND	L11	SMS	A17	VROUT1	B13
ADDR7	M16	DATA12	U7	GND	M9	SRAS	A15	XTAL	A13
ADDR8	M17	DATA13	Τ7	GND	T16	SWE	B17		
ADDR9	N17	DATA14	U6	MISO	E2	ТСК	U4		
ADDR10	N16	DATA15	T6	MOSI	E1	TDI	U3		
ADDR11	P17	DROPRI	M2	NMI	B11	TDO	T4		
ADDR12	P16	DR0SEC	M1	PF0	D2	TFS0	L1		
ADDR13	R17	DR1PRI	H1	PF1	C1	TFS1	G2		
ADDR14	R16	DR1SEC	H2	PF2	B1	TMR0	R1		
ADDR15	T17	DTOPRI	K2	PF3	C2	TMR1	P2		
ADDR16	U15	DT0SEC	K1	PF4	A1	TMR2	P1		
ADDR17	T15	DT1PRI	F1	PF5	A2	TMS	Т3		
ADDR18	U16	DT1SEC	F2	PF6	B3	TRST	U2		
ADDR19	T14	EMU	U1	PF7	A3	TSCLK0	L2		
AMS0	D17	GND	B16	PF8	B4	TSCLK1	G1		
AMS1	E16	GND	F11	PF9	A4	ТХ	R2		
AMS2	E17	GND	G7	PF10	B5	VDD	F12		
AMS3	F16	GND	G8	PF11	A5	VDD	G12		
AOE	F17	GND	G9	PF12	A6	VDD	H12		
ARDY	C16	GND	G10	PF13	B6	VDD	J12		
ARE	G16	GND	G11	PF14	A7	VDD	K12		
AWE	G17	GND	H7	PF15	B7	VDD	L12		
BG	T13	GND	H8	PPI_CLK	B10	VDD	M10		
BGH	U17	GND	H9	PPI0	B9	VDD	M11		
BMODE0	U5	GND	H10	PPI1	A9	VDD	M12		
BMODE1	T5	GND	H11	PPI2	B8	V _{DDEXT}	B2		
BR	C17	GND	J7	PPI3	A8	V _{DDEXT}	F6		
CLKIN	A14	GND	78	RESET	A12	V _{DDEXT}	F7		
CLKOUT	D16	GND	J9	RFS0	N1	V _{DDEXT}	F8		
DATA0	U14	GND	J10	RFS1	J1	V _{DDEXT}	F9		
DATA1	T12	GND	J11	RSCLK0	N2	V _{DDEXT}	G6		
DATA2	U13	GND	K7	RSCLK1	J2	V _{DDEXT}	H6		
DATA3	T11	GND	K8	RTCVDD	F10	V _{DDEXT}	J6		

OUTLINE DIMENSIONS

Dimensions in the outline dimension figures are shown in millimeters.

COMPLIANT TO JEDEC STANDARDS MS-026-BGA

Figure 64. 176-Lead Low Profile Quad Flat Package [LQFP] (ST-176-1) Dimensions shown in millimeters

Figure 65. 160-Ball Chip Scale Package Ball Grid Array [CSP_BGA] (BC-160-2) Dimensions shown in millimeters

AUTOMOTIVE PRODUCTS

The ADBF531W, ADBF532W, and ADBF533W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models and designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown in Table 48 are available for use in automotive applications. Contact your local ADI account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

Table 48. Automotive Products

		Speed Grade		
Product Family ^{1,2}	Temperature Range ³	(Max)	Package Description	Package Option
ADBF531WBSTZ4xx	-40°C to +85°C	400 MHz	176-Lead LQFP	ST-176-1
ADBF531WBBCZ4xx	-40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADBF531WYBCZ4xx	–40°C to +105°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADBF532WBSTZ4xx	–40°C to +85°C	400 MHz	176-Lead LQFP	ST-176-1
ADBF532WBBCZ4xx	-40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADBF532WYBCZ4xx	–40°C to +105°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADBF533WBBCZ5xx	–40°C to +85°C	533 MHz	160-Ball CSP_BGA	BC-160-2
ADBF533WBBZ5xx	-40°C to +85°C	533 MHz	169-Ball PBGA	B-169
ADBF533WYBCZ4xx	–40°C to +105°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADBF533WYBBZ4xx	–40°C to +105°C	400 MHz	169-Ball PBGA	B-169

¹Z = RoHS compliant part.

² xx denotes silicon revision.

³ Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 20 for junction temperature (T_J) specification which is the only temperature specification.

ORDERING GUIDE

	Temperature	Speed Grade		Package
Model	Range	(Max)	Package Description	Option
ADSP-BF531SBB400	–40°C to +85°C	400 MHz	169-Ball PBGA	B-169
ADSP-BF531SBBZ400	–40°C to +85°C	400 MHz	169-Ball PBGA	B-169
ADSP-BF531SBBC400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF531SBBCZ400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF531SBBCZ4RL	–40°C to +85°C	400 MHz	160-Ball CSP_BGA, 13" Tape and Reel	BC-160-2
ADSP-BF531SBSTZ400	–40°C to +85°C	400 MHz	176-Lead LQFP	ST-176-1
ADSP-BF532SBBZ400	–40°C to +85°C	400 MHz	169-Ball PBGA	B-169
ADSP-BF532SBBC400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF532SBBCZ400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF532SBSTZ400	–40°C to +85°C	400 MHz	176-Lead LQFP	ST-176-1
ADSP-BF533SBBZ400	–40°C to +85°C	400 MHz	169-Ball PBGA	B-169
ADSP-BF533SBBC400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SBBCZ400	–40°C to +85°C	400 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SBSTZ400	–40°C to +85°C	400 MHz	176-Lead LQFP	ST-176-1
ADSP-BF533SBB500	–40°C to +85°C	500 MHz	169-Ball PBGA	B-169
ADSP-BF533SBBZ500	–40°C to +85°C	500 MHz	169-Ball PBGA	B-169
ADSP-BF533SBBC500	–40°C to +85°C	500 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SBBCZ500	–40°C to +85°C	500 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SBBC-5V	–40°C to +85°C	533 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SBBCZ-5V	–40°C to +85°C	533 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SKBC-6V	0°C to +70°C	600 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SKBCZ-6V	0°C to +70°C	600 MHz	160-Ball CSP_BGA	BC-160-2
ADSP-BF533SKSTZ-5V	0°C to +70°C	533 MHz	176-Lead LQFP	ST-176-1

 1 Z = RoHS compliant part.

² Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 20 for junction temperature (T_j) specification which is the only temperature specification.