E.J.Lattice Semiconductor Corporation - <u>LFXP2-17E-5FN484I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	282624
Number of I/O	358
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BBGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-17e-5fn484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

LatticeXP2 devices combine a Look-up Table (LUT) based FPGA fabric with non-volatile Flash cells in an architecture referred to as flexiFLASH.

The flexiFLASH approach provides benefits including instant-on, infinite reconfigurability, on chip storage with FlashBAK embedded block memory and Serial TAG memory and design security. The parts also support Live Update technology with TransFR, 128-bit AES Encryption and Dual-boot technologies.

The LatticeXP2 FPGA fabric was optimized for the new technology from the outset with high performance and low cost in mind. LatticeXP2 devices include LUT-based logic, distributed and embedded memory, Phase Locked Loops (PLLs), pre-engineered source synchronous I/O support and enhanced sysDSP blocks.

Lattice Diamond[®] design software allows large and complex designs to be efficiently implemented using the LatticeXP2 family of FPGA devices. Synthesis library support for LatticeXP2 is available for popular logic synthesis tools. The Diamond software uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeXP2 device. The Diamond tool extracts the timing from the routing and back-annotates it into the design for timing verification.

Lattice provides many pre-designed Intellectual Property (IP) LatticeCORE[™] modules for the LatticeXP2 family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

Figure 2-4. General Purpose PLL (GPLL) Diagram

Table 2-4 provides a description of the signals in the GPLL blocks.

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	I	"1" to reset PLL counters, VCO, charge pumps and M-dividers
RSTK	I	"1" to reset K-divider
DPHASE [3:0]	I	DPA Phase Adjust input
DDDUTY [3:0]	I	DPA Duty Cycle Select input
WRDEL	I	DPA Fine Delay Adjust input
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (no phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
CLKOK2	0	PLL output to clock tree (CLKOP divided by 3)
LOCK	0	"1" indicates PLL LOCK to CLKI

Clock Dividers

LatticeXP2 devices have two clock dividers, one on the left side and one on the right side of the device. These are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock based on the release of its reset signal. The clock dividers can be fed from the CLKOP output from the GPLLs or from the Edge Clocks (ECLK). The clock divider outputs serve as primary clock sources and feed into the clock distribution network. The Reset (RST) control signal resets the input and forces all outputs to low. The RELEASE signal releases outputs to the input clock. For further information on clock dividers, please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide. Figure 2-5 shows the clock divider connections.

Figure 2-5. Clock Divider Connections

Clock Distribution Network

LatticeXP2 devices have eight quadrant-based primary clocks and between six and eight flexible region-based secondary clocks/control signals. Two high performance edge clocks are available on each edge of the device to support high speed interfaces. The clock inputs are selected from external I/Os, the sysCLOCK PLLs, or routing. Clock inputs are fed throughout the chip via the primary, secondary and edge clock networks.

Primary Clock Sources

LatticeXP2 devices derive primary clocks from four sources: PLL outputs, CLKDIV outputs, dedicated clock inputs and routing. LatticeXP2 devices have two to four sysCLOCK PLLs, located in the four corners of the device. There are eight dedicated clock inputs, two on each side of the device. Figure 2-6 shows the primary clock sources.

Primary Clock Routing

The clock routing structure in LatticeXP2 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The primary clocks of each quadrant are generated from muxes located in the center of the device. All the clock sources are connected to these muxes. Figure 2-9 shows the clock routing for one quadrant. Each quadrant mux is identical. If desired, any clock can be routed globally.

Dynamic Clock Select (DCS)

The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent input clock sources without any glitches or runt pulses. This is achieved irrespective of when the select signal is toggled. There are two DCS blocks per quadrant; in total, eight DCS blocks per device. The inputs to the DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 (see Figure 2-9).

Figure 2-10 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see TN1126, <u>LatticeXP2 sysCLOCK PLL Design and</u> <u>Usage Guide</u>.

Figure 2-10. DCS Waveforms

Secondary Clock/Control Routing

Secondary clocks in the LatticeXP2 devices are region-based resources. The benefit of region-based resources is the relatively low injection delay and skew within the region, as compared to primary clocks. EBR rows, DSP rows and a special vertical routing channel bound the secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP block in the DSP row or the center of the DSP row. Figure 2-11 shows this special vertical routing channel and the eight secondary clock regions for the LatticeXP2-40.

Figure 2-14. Slice0 through Slice2 Control Selection

Edge Clock Routing

LatticeXP2 devices have eight high-speed edge clocks that are intended for use with the PIOs in the implementation of high-speed interfaces. Each device has two edge clocks per edge. Figure 2-15 shows the selection muxes for these clocks.

Figure 2-15. Edge Clock Mux Connections

sysDSP Block Capabilities

The sysDSP block in the LatticeXP2 family supports four functional elements in three 9, 18 and 36 data path widths. The user selects a function element for a DSP block and then selects the width and type (signed/unsigned) of its operands. The operands in the LatticeXP2 family sysDSP Blocks can be either signed or unsigned but not mixed within a function element. Similarly, the operand widths cannot be mixed within a block. DSP elements can be concatenated.

The resources in each sysDSP block can be configured to support the following four elements:

- MULT (Multiply)
- MAC (Multiply, Accumulate)
- MULTADDSUB (Multiply, Addition/Subtraction)
- MULTADDSUBSUM (Multiply, Addition/Subtraction, Accumulate)

The number of elements available in each block depends on the width selected from the three available options: x9, x18, and x36. A number of these elements are concatenated for highly parallel implementations of DSP functions. Table 2-6 shows the capabilities of the block.

Width of Multiply	x9	x18	x36
MULT	8	4	1
MAC	2	2	_
MULTADDSUB	4	2	_
MULTADDSUBSUM	2	1	_

Some options are available in four elements. The input register in all the elements can be directly loaded or can be loaded as shift register from previous operand registers. By selecting 'dynamic operation' the following operations are possible:

MAC sysDSP Element

In this case, the two operands, A and B, are multiplied and the result is added with the previous accumulated value. This accumulated value is available at the output. The user can enable the input and pipeline registers but the output register is always enabled. The output register is used to store the accumulated value. The Accumulators in the DSP blocks in LatticeXP2 family can be initialized dynamically. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-21 shows the MAC sysDSP element.

Figure 2-21. MAC sysDSP

Tristate Register Block

The tristate register block provides the ability to register tri-state control signals from the core of the device before they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for DDR operation. Figure 2-27 shows the Tristate Register Block with the Output Block

In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as Dtype or latch. In DDR mode, ONEG1 and OPOS1 are fed into registers on the positive edge of the clock. Then in the next clock the registered OPOS1 is latched. A multiplexer running off the same clock cycle selects the correct register for feeding to the output (D0).

Control Logic Block

The control logic block allows the selection and modification of control signals for use in the PIO block. A clock signal is selected from general purpose routing, ECLK1, ECLK2 or a DQS signal (from the programmable DQS pin) and is provided to the input register block. The clock can optionally be inverted.

DDR Memory Support

PICs have additional circuitry to allow implementation of high speed source synchronous and DDR memory interfaces.

PICs have registered elements that support DDR memory interfaces. Interfaces on the left and right edges are designed for DDR memories that support 16 bits of data, whereas interfaces on the top and bottom are designed for memories that support 18 bits of data. One of every 16 PIOs on the left and right and one of every 18 PIOs on the top and bottom contain delay elements to facilitate the generation of DQS signals. The DQS signals feed the DQS buses which span the set of 16 or 18 PIOs. Figure 2-28 and Figure 2-29 show the DQS pin assignments in each set of PIOs.

The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Additional detail is provided in the Signal Descriptions table. The DQS signal from the bus is used to strobe the DDR data from the memory into input register blocks. For additional information on using DDR memory support please see TN1138, <u>LatticeXP2 High Speed I/O Interface</u>.

DLL Calibrated DQS Delay Block

Source synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at the input register. For most interfaces a PLL is used for this adjustment. However, in DDR memories the clock, referred to as DQS, is not free-running, and this approach cannot be used. The DQS Delay block provides the required clock alignment for DDR memory interfaces.

The DQS signal (selected PIOs only, as shown in Figure 2-30) feeds from the PAD through a DQS delay element to a dedicated DQS routing resource. The DQS signal also feeds polarity control logic which controls the polarity of the clock to the sync registers in the input register blocks. Figure 2-30 and Figure 2-31 show how the DQS transition signals are routed to the PIOs.

The temperature, voltage and process variations of the DQS delay block are compensated by a set of 6-bit bus calibration signals from two dedicated DLLs (DDR_DLL) on opposite sides of the device. Each DLL compensates DQS delays in its half of the device as shown in Figure 2-30. The DLL loop is compensated for temperature, voltage and process variations by the system clock and feedback loop.

Figure 2-30. Edge Clock, DLL Calibration and DQS Local Bus Distribution

DQSXFER

LatticeXP2 devices provide a DQSXFER signal to the output buffer to assist it in data transfer to DDR memories that require DQS strobe be shifted 90°. This shifted DQS strobe is generated by the DQSDEL block. The DQSXFER signal runs the span of the data bus.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysIO Buffer Banks

LatticeXP2 devices have eight sysIO buffer banks for user I/Os arranged two per side. Each bank is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (V_{CCIO}). In addition, each bank has voltage references, V_{REF1} and V_{REF2} , that allow it to be completely independent from the others. Figure 2-32 shows the eight banks and their associated supplies.

In LatticeXP2 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs independent of V_{CCIO} .

Each bank can support up to two separate V_{REF} voltages, V_{REF1} and V_{REF2} , that set the threshold for the referenced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

тор

Figure 2-32. LatticeXP2 Banks

воттом

Table 2-13. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Nom.)		
Single-ended Interfaces				
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3		
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3		
LVCMOS25	4mA, 8mA, 12mA, 16mA, 20mA	2.5		
LVCMOS18	4mA, 8mA, 12mA, 16mA	1.8		
LVCMOS15	4mA, 8mA	1.5		
LVCMOS12	2mA, 6mA	1.2		
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—		
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA			
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA			
LVCMOS15, Open Drain	4mA, 8mA	_		
LVCMOS12, Open Drain	2mA, 6mA	_		
PCI33	N/A	3.3		
HSTL18 Class I, II	N/A	1.8		
HSTL15 Class I	N/A	1.5		
SSTL33 Class I, II	N/A	3.3		
SSTL25 Class I, II	N/A	2.5		
SSTL18 Class I, II	N/A	1.8		
Differential Interfaces				
Differential SSTL33, Class I, II	N/A	3.3		
Differential SSTL25, Class I, II	N/A	2.5		
Differential SSTL18, Class I, II	N/A	1.8		
Differential HSTL18, Class I, II	N/A	1.8		
Differential HSTL15, Class I	N/A	1.5		
LVDS ^{1, 2}	N/A	2.5		
MLVDS ¹	N/A	2.5		
BLVDS ¹	N/A	2.5		
LVPECL ¹	N/A	3.3		
RSDS ¹	N/A	2.5		
LVCMOS33D ¹	4mA, 8mA, 12mA, 16mA, 20mA	3.3		

1. Emulated with external resistors.

2. On the left and right edges, LVDS outputs are supported with a dedicated differential output driver on 50% of the I/Os. This solution does not require external resistors at the driver.

Hot Socketing

LatticeXP2 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the LatticeXP2 ideal for many multiple power supply and hot-swap applications.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeXP2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in

sysIO Single-Ended DC Electrical Characteristics

Input/Output		V _{IL}	V _{IH}		V _{OL}	V _{OH}		
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	Max. (V)	Min. (V)	l _{OL} 1 (mA)	l _{OH} ¹ (mA)
LVCMOS33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVTTL33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS25	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-16, -12, -8, -4
		0010		-	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS15	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
	-0.3	0.35 V _{CC}	0.65 V _{CC}	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
					0.2	V _{CCIO} - 0.2	0.1	-0.1
PCI33	-0.3	0.3 V _{CCIO}	0.5 V _{CCIO}	3.6	0.1 V _{CCIO}	0.9 V _{CCIO}	1.5	-0.5
SSTL33_I	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.7	V _{CCIO} - 1.1	8	-8
SSTL33_II	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.5	V _{CCIO} - 0.9	16	-16
SSTI 25 I	-0.3	Vpee - 0 18	Vp== ± 0.18	36	0.54	Vacua - 0.62	7.6	-7.6
001220_1	-0.0	VREF - 0.10	VREF + 0.10	0.0	0.04	ACCIO - 0.05	12	-12
SSTI 25 II	0.2	V 0.19	V 1019	2.6	0.35	V 0.42	15.2	-15.2
001225_11	-0.0	VREF - 0.10	VREF + 0.10	0.0	0.00	ACCIO - 0.42	20	-20
SSTL18_I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.6	0.4	V _{CCIO} - 0.4	6.7	-6.7
	-0.3	V0 125	V+0 125	36	0.28	Vac 0.28	8	-8
001210_1	-0.0	VREF - 0.120	VREF + 0.120	0.0	0.20	VCCIO - 0.20	11	-11
HSTI 15 I	-0.3	Vpcc - 0 1		3.6	0.4		4	-4
	0.0	v _{REF} - 0.1	V _{REF} + 0.1	3.0	0.4	VCCIO - 0.4	8	-8
HSTI 18 I	-0.3	Vp== - 0 1		2.6	0.4		8	-8
	0.0	.5 V _{REF} - 0.1	v REF + 0.1	0.0	U.7		12	-12
HSTL18_II	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	16	-16

Over Recommended Operating Conditions

 The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA, where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

LVPECL

The LatticeXP2 devices support the differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL

Table 3-3. LVPECL DC Conditions¹

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/-5%)	3.30	V
Z _{OUT}	Driver Impedance	10	Ω
R _S	Driver Series Resistor (+/-1%)	93	Ω
R _P	Driver Parallel Resistor (+/-1%)	196	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage (After R _P)	2.05	V
V _{OL}	Output Low Voltage (After R _P)	1.25	V
V _{OD}	Output Differential Voltage (After R _P)	0.80	V
V _{CM}	Output Common Mode Voltage	1.65	V
Z _{BACK}	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	12.11	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

MLVDS

The LatticeXP2 devices support the differential MLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors.

Table 3-5. MLVDS DC Conditions¹

		Тур		
Parameter	Description	Ζο=50 Ω	Ζο=70 Ω	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/-1%)	35.00	35.00	Ω
R _{TL}	Driver Parallel Resistor (+/-1%)	50.00	70.00	Ω
R _{TR}	Receiver Termination (+/-1%)	50.00	70.00	Ω
V _{OH}	Output High Voltage (After R _{TL})	1.52	1.60	V
V _{OL}	Output Low Voltage (After R _{TL})	0.98	0.90	V
V _{OD}	Output Differential Voltage (After R _{TL})	0.54	0.70	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	21.74	20.00	mA

1. For input buffer, see LVDS table.

For further information on LVPECL, RSDS, MLVDS, BLVDS and other differential interfaces please see details of additional technical information at the end of this data sheet.

LatticeXP2 External Switching Characteristics (Continued)

			-	7	-	-6 -5		5	
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
		XP2-5	1.00		1.30	_	1.60		ns
	Clock to Data Hold - PIO Input	XP2-8	1.00	_	1.30	_	1.60	_	ns
t _{HE}		XP2-17	1.00		1.30	_	1.60		ns
		XP2-30	1.20		1.60	_	1.90		ns
Parameter t _{HE} t _{SU_DELE} t _{H_DELE} f _{MAX_IOE} General I/O Pi t _{COPLL} t _{SUPLL} t _{HPLL}		XP2-40	1.20		1.60		1.90		ns
tsu_dele		XP2-5	1.00		1.30	_	1.60		ns
		XP2-8	1.00		1.30	_	1.60		ns
	Clock to Data Setup - PIO Input Begister with Data Input Delay	XP2-17	1.00		1.30	_	1.60		ns
		XP2-30	1.20		1.60		1.90		ns
		XP2-40	1.20		1.60		1.90		ns
		XP2-5	0.00		0.00		0.00		ns
		XP2-8	0.00	—	0.00	—	0.00	—	ns
t _{H_DELE}	Clock to Data Hold - PIO Input Begister with Input Data Delay	XP2-17	0.00	—	0.00	—	0.00	—	ns
		XP2-30	0.00		0.00		0.00		ns
		XP2-40	0.00		0.00		0.00		ns
f _{MAX_IOE}	Clock Frequency of I/O and PFU Register	XP2	_	420	_	357	_	311	MHz
General I/O Pir	Parameters (using Primary Clo	ck with PLL)1	1	1	1	1	1	
		XP2-5	—	3.00	—	3.30	—	3.70	ns
		XP2-8		3.00		3.30		3.70	ns
t _{COPLL}	Clock to Output - PIO Output	XP2-17		3.00		3.30		3.70	ns
		XP2-30	_	3.00		3.30		3.70	ns
COPLE		XP2-40		3.00		3.30		3.70	ns
		XP2-5	1.00		1.20		1.40		ns
		XP2-8	1.00		1.20		1.40		ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	XP2-17	1.00		1.20		1.40		ns
		XP2-30	1.00		1.20		1.40		ns
		XP2-40	1.00		1.20	_	1.40		ns
		XP2-5	0.90		1.10		1.30		ns
		XP2-8	0.90		1.10		1.30		ns
t _{HPLL}	Clock to Data Hold - PIO Input	XP2-17	0.90		1.10		1.30		ns
		XP2-30	1.00	—	1.20	—	1.40	—	ns
		XP2-40	1.00	—	1.20	—	1.40	—	ns
		XP2-5	1.90	—	2.10	—	2.30	—	ns
		XP2-8	1.90		2.10	—	2.30	_	ns
t _{SU_DELPLL}	Clock to Data Setup - PIO Input Begister with Data Input Delay	XP2-17	1.90	—	2.10	—	2.30	—	ns
	lingibion with Data input Delay	XP2-30	2.00	—	2.20	—	2.40	—	ns
		XP2-40	2.00	—	2.20	—	2.40	—	ns

LatticeXP2 Internal Switching Characteristics¹

		-7		-6		-5		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logi	c Mode Timing				I			I
t _{LUT4_PFU}	LUT4 delay (A to D inputs to F output)	_	0.216	_	0.238	_	0.260	ns
t _{LUT6_PFU}	LUT6 delay (A to D inputs to OFX output)	—	0.304		0.399		0.494	ns
t _{LSR_PFU}	Set/Reset to output of PFU (Asyn- chronous)	—	0.720		0.769		0.818	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.154	_	0.151	—	0.148	_	ns
t _{HM_PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.061	—	-0.057	—	-0.053	—	ns
t _{SUD_PFU}	Clock to D input setup time	0.061	—	0.077	—	0.093	—	ns
t _{HD_PFU}	Clock to D input hold time	0.002	—	0.003	—	0.003	—	ns
t _{CK2Q_PFU}	Clock to Q delay, (D-type Register Configuration)	—	0.342	—	0.363	—	0.383	ns
t _{RSTREC_PFU}	Asynchronous reset recovery time for PFU Logic	—	0.520		0.634		0.748	ns
t _{RST_PFU}	Asynchronous reset time for PFU Logic	_	0.720	—	0.769	—	0.818	ns
PFU Dual Por	t Memory Mode Timing							
t _{CORAM_PFU}	Clock to Output (F Port)	—	1.082	—	1.267	—	1.452	ns
t _{SUDATA_PFU}	Data Setup Time	-0.206	—	-0.240	_	-0.274	—	ns
t _{HDATA_PFU}	Data Hold Time	0.239	—	0.275	_	0.312	—	ns
t _{SUADDR_PFU}	Address Setup Time	-0.294	—	-0.333	_	-0.371	—	ns
t _{HADDR_PFU}	Address Hold Time	0.295	—	0.333	_	0.371	—	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.146	—	-0.169	_	-0.193	—	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.158	—	0.182	_	0.207	—	ns
PIO Input/Out	put Buffer Timing							
t _{IN_PIO}	Input Buffer Delay (LVCMOS25)	_	0.858	—	0.766	—	0.674	ns
t _{OUT_PIO}	Output Buffer Delay (LVCMOS25)	_	1.561	—	1.403	—	1.246	ns
IOLOGIC Inpu	t/Output Timing							
t _{SUI_PIO}	Input Register Setup Time (Data Before Clock)	0.583	_	0.893	_	1.201	_	ns
t _{HI_PIO}	Input Register Hold Time (Data after Clock)	0.062	_	0.322	_	0.482	_	ns
t _{COO_PIO}	Output Register Clock to Output Delay	_	0.608	_	0.661	_	0.715	ns
t _{SUCE_PIO}	Input Register Clock Enable Setup Time	0.032	_	0.037	_	0.041	_	ns
t _{HCE_PIO}	Input Register Clock Enable Hold Time	-0.022	_	-0.025	—	-0.028	_	ns
t _{SULSR_PIO}	Set/Reset Setup Time	0.184	—	0.201	—	0.217	—	ns
t _{HLSR_PIO}	Set/Reset Hold Time	-0.080	—	-0.086	—	-0.093	—	ns
t _{RSTREC_PIO}	Asynchronous reset recovery time for IO Logic	0.228	_	0.247	_	0.266	_	ns

LatticeXP2 Internal Switching Characteristics¹ (Continued)

		-	-7 -6		-			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{RST_PIO}	Asynchronous reset time for PFU Logic	—	0.386	—	0.419	—	0.452	ns
t _{DEL}	Dynamic Delay Step Size	0.035	0.035	0.035	0.035	0.035	0.035	ns
EBR Timing	· · · · · ·							
t _{CO_EBR}	Clock (Read) to Output from Address or Data	_	2.774	_	3.142	_	3.510	ns
t _{COO_EBR}	Clock (Write) to Output from EBR Output Register	_	0.360	_	0.408	—	0.456	ns
^t SUDATA_EBR	Setup Data to EBR Memory (Write Clk)	-0.167	—	-0.198	_	-0.229	—	ns
t _{HDATA_EBR}	Hold Data to EBR Memory (Write Clk)	0.194	—	0.231	_	0.267	_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory (Write Clk)	-0.117	—	-0.137	_	-0.157	—	ns
t _{HADDR_EBR}	Hold Address to EBR Memory (Write Clk)	0.157	_	0.182	_	0.207	_	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory (Write/Read Clk)	-0.135	_	-0.159	_	-0.182	_	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory (Write/Read Clk)	0.158	—	0.186	_	0.214	_	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register (Read Clk)	0.144	—	0.160	_	0.176	_	ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register (Read Clk)	-0.097	—	-0.113	_	-0.129	_	ns
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register (Asynchro- nous)	_	1.156	_	1.341	_	1.526	ns
t _{SUBE_EBR}	Byte Enable Set-Up Time to EBR Output Register	-0.117	—	-0.137	_	-0.157	_	ns
t _{HBE_EBR}	Byte Enable Hold Time to EBR Output Register Dynamic Delay on Each PIO	0.157	_	0.182	_	0.207	_	ns
t _{RSTREC_EBR}	Asynchronous reset recovery time for EBR	0.233	—	0.291		0.347	—	ns
t _{RST_EBR}	Asynchronous reset time for EBR	—	1.156	—	1.341	_	1.526	ns
PLL Paramete	ers							
t _{RSTKREC_PLL}	After RSTK De-assert, Recovery Time Before Next Clock Edge Can Toggle K-divider Counter	1.000	_	1.000	_	1.000	_	ns
t _{RSTREC_PLL}	After RST De-assert, Recovery Time Before Next Clock Edge Can Toggle M-divider Counter (Applies to M-Divider Portion of RST Only ²)	1.000	_	1.000		1.000	_	ns
DSP Block Tir	ning							
t _{SUI_DSP}	Input Register Setup Time	0.135		0.151		0.166		ns
t _{HI_DSP}	Input Register Hold Time	0.021	—	-0.006	—	-0.031		ns
t _{SUP_DSP}	Pipeline Register Setup Time	2.505	—	2.784	—	3.064	—	ns

Flash Download Time (from On-Chip Flash to SRAM)

Over Recommended Operating Conditions

Symbol	Parar	neter	Min.	Тур.	Max.	Units
PROGRAMN L High. Transitior High.		XP2-5	—	1.8	2.1	ms
	PROGRAMN Low-to-	XP2-8	—	1.9	2.3	ms
	High. Transition to Done	XP2-17	—	1.7	2.0	ms
	High.	XP2-30	—	2.0	2.1	ms
		XP2-40	—	2.0	2.3	ms
'REFRESH		XP2-5	—	1.8	2.1	ms
	Power-up refresh when	XP2-8	—	1.9	2.3	ms
	Up to Voc	XP2-17	—	1.7	2.0	ms
	$(V_{CC}=V_{CC} Min)$	XP2-30	—	2.0	2.1	ms
		XP2-40		2.0	2.3	ms

Flash Program Time

Over Recommended Operating Conditions

			Program Time	
Device	Flash	Density	Тур.	Units
	1.0M	TAG	1.0	ms
XF2-5	1.2101	Main Array	1.1	S
	2.0M	TAG	1.0	ms
XF2-0	2.0101	Main Array	1.4	S
VP0 17	2.6M	TAG	1.0	ms
AF2-17	3.0101	Main Array	1.8	S
	6.014	TAG	2.0	ms
XF2-30	0.0101	Main Array	3.0	S
VP2 40	8 OM	TAG	2.0	ms
ΛΓ 2 -40	0.000	Main Array	4.0	S

Flash Erase Time

			Erase Time	
Device	Flash I	Density	Тур.	Units
	1.2M	TAG	1.0	s
XI 2-3	1.2101	Main Array	3.0	s
YP2_8	2.0M	TAG	1.0	S
AF2-0	2.0101	Main Array	4.0	s
VD0 17	2.6M	TAG	1.0	s
XI 2-17	3.0101	Main Array	5.0	S
XD2-30	6 OM	TAG	2.0	s
XI 2-30	0.0101	Main Array	7.0	s
XP2-40	8.0M	TAG	2.0	S
XI 2-40	0.00	Main Array	9.0	S

Pin Information Summary

			XP	2-5			XP	2-8		XP2-17 XP2-30		XP2-40					
Pin Ty	ре	132 csBGA	144 TQFP	208 PQFP	256 ftBGA	132 csBGA	144 TQFP	208 PQFP	256 ftBGA	208 PQFP	256 ftBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	484 fpBGA	672 fpBGA
Single Ended Use	er I/O	86	100	146	172	86	100	146	201	146	201	358	201	363	472	363	540
Differential Pair	Normal	35	39	57	66	35	39	57	77	57	77	135	77	137	180	137	204
User I/O	Highspeed	8	11	16	20	8	11	16	23	16	23	44	23	44	56	44	66
	TAP	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Configuration	Muxed	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
	Dedicated	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Non Configura-	Muxed	5	5	7	7	7	7	9	9	11	11	21	7	11	13	11	13
tion	Dedicated	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Vcc		6	4	9	6	6	4	9	6	9	6	16	6	16	20	16	20
Vccaux		4	4	4	4	4	4	4	4	4	4	8	4	8	8	8	8
VCCPLL		2	2	2	-	2	2	2	-	4	-	-	-	-	-	-	-
	Bank0	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
	Bank1	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank2	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
VCCIO	Bank3	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
10010	Bank4	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank5	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
	Bank6	1	1	2	2	1	1	2	2	2	2	4	2	4	4	4	4
	Bank7	2	2	2	2	2	2	2	2	2	2	4	2	4	4	4	4
GND, GND0-GNI	77	15	15	20	20	15	15	22	20	22	20	56	20	56	64	56	64
NC		-	-	4	31	-	-	2	2	-	2	7	2	2	69	2	1
	Bank0	18/9	20/10	20/10	26/13	18/9	20/10	20/10	28/14	20/10	28/14	52/26	28/14	52/26	70/35	52/26	70/35
	Bank1	4/2	6/3	18/9	18/9	4/2	6/3	18/9	22/11	18/9	22/11	36/18	22/11	36/18	54/27	36/18	70/35
	Bank2	16/8	18/9	18/9	22/11	16/8	18/9	18/9	26/13	18/9	26/13	46/23	26/13	46/23	56/28	46/23	64/32
Single Ended/	Bank3	4/2	4/2	16/8	20/10	4/2	4/2	16/8	24/12	16/8	24/12	44/22	24/12	46/23	56/28	46/23	66/33
per Bank	Bank4	8/4	8/4	18/9	18/9	8/4	8/4	18/9	26/13	18/9	26/13	36/18	26/13	38/19	54/27	38/19	70/35
	Bank5	14/7	18/9	20/10	24/12	14/7	18/9	20/10	24/12	20/10	24/12	52/26	24/12	53/26	70/35	53/26	70/35
	Bank6	6/3	8/4	18/9	22/11	6/3	8/4	18/9	27/13	18/9	27/13	46/23	27/13	46/23	56/28	46/23	66/33
	Bank7	16/8	18/9	18/9	22/11	16/8	18/9	18/9	24/12	18/9	24/12	46/23	24/12	46/23	56/28	46/23	64/32
	Bank0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank2	3	4	4	5	3	4	4	6	4	6	11	6	11	14	11	16
True LVDS Pairs	Bank3	1	1	4	5	1	1	4	6	4	6	11	6	11	14	11	17
Bank	Bank4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank6	1	2	4	5	1	2	4	6	4	6	11	6	11	14	11	17
	Bank7	3	4	4	5	3	4	4	5	4	5	11	5	11	14	11	16
	Bank0	1	1	1	1	1	1	1	1	1	1	3	1	2	4	2	4
	Bank1	0	0	1	1	0	0	1	1	1	1	2	1	2	3	2	4
	Bank2	1	1	1	1	1	1	1	1	1	1	2	1	3	3	3	4
DDR Banks	Bank3	0	0	1	1	0	0	1	1	1	1	2	1	3	3	3	4
I/O Bank ¹	Bank4	0	0	1	1	0	0	1	1	1	1	2	1	2	3	2	4
	Bank5	1	1	1	1	1	1	1	1	1	1	3	1	2	4	2	4
	Bank6	0	0	1	1	0	0	1	1	1	1	2	1	3	3	3	4
	Bank7	1	1	1	1	1	1	1	1	1	1	2	1	3	3	3	4

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5F484C	1.2V	-5	fpBGA	484	COM	40
LFXP2-40E-6F484C	1.2V	-6	fpBGA	484	COM	40
LFXP2-40E-7F484C	1.2V	-7	fpBGA	484	COM	40
LFXP2-40E-5F672C	1.2V	-5	fpBGA	672	COM	40
LFXP2-40E-6F672C	1.2V	-6	fpBGA	672	COM	40
LFXP2-40E-7F672C	1.2V	-7	fpBGA	672	COM	40

Industrial

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-5E-5M132I	1.2V	-5	csBGA	132	IND	5
LFXP2-5E-6M132I	1.2V	-6	csBGA	132	IND	5
LFXP2-5E-6FT256I	1.2V	-6	ftBGA	256	IND	5

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-8E-5M132I	1.2V	-5	csBGA	132	IND	8
LFXP2-8E-6M132I	1.2V	-6	csBGA	132	IND	8
LFXP2-5E-5FT256I	1.2V	-5	ftBGA	256	IND	5
LFXP2-8E-5FT256I	1.2V	-5	ftBGA	256	IND	8
LFXP2-8E-6FT256I	1.2V	-6	ftBGA	256	IND	8

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-17E-5FT256I	1.2V	-5	ftBGA	256	IND	17
LFXP2-17E-6FT256I	1.2V	-6	ftBGA	256	IND	17
LFXP2-17E-5F484I	1.2V	-5	fpBGA	484	IND	17
LFXP2-17E-6F484I	1.2V	-6	fpBGA	484	IND	17

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FT256I	1.2V	-5	ftBGA	256	IND	30
LFXP2-30E-6FT256I	1.2V	-6	ftBGA	256	IND	30
LFXP2-30E-5F484I	1.2V	-5	fpBGA	484	IND	30
LFXP2-30E-6F484I	1.2V	-6	fpBGA	484	IND	30
LFXP2-30E-5F672I	1.2V	-5	fpBGA	672	IND	30
LFXP2-30E-6F672I	1.2V	-6	fpBGA	672	IND	30