

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	282624
Number of I/O	201
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-17e-5ftn256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-3. Slice Diagram

DI[3:2] for Slice 2 and DI[1:0] for Slice 0 data

WAD [A:D] is a 4bit address from slice 1 LUT input

Table 2-2. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	MO	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCI	Fast Carry-In ¹
Input	Inter-slice signal	FXA	Intermediate signal to generate LUT6 and LUT7
Input	Inter-slice signal	FXB	Intermediate signal to generate LUT6 and LUT7
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	Slice 2 of each PFU is the fast carry chain output ¹

1. See Figure 2-3 for connection details.

2. Requires two PFUs.

Figure 2-4. General Purpose PLL (GPLL) Diagram

Table 2-4 provides a description of the signals in the GPLL blocks.

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock (PIN or logic)
RST	I	"1" to reset PLL counters, VCO, charge pumps and M-dividers
RSTK	I	"1" to reset K-divider
DPHASE [3:0]	I	DPA Phase Adjust input
DDDUTY [3:0]	I	DPA Duty Cycle Select input
WRDEL	I	DPA Fine Delay Adjust input
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (no phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
CLKOK2	0	PLL output to clock tree (CLKOP divided by 3)
LOCK	0	"1" indicates PLL LOCK to CLKI

Clock Dividers

LatticeXP2 devices have two clock dividers, one on the left side and one on the right side of the device. These are intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or ÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock based on the release of its reset signal. The clock dividers can be fed from the CLKOP output from the GPLLs or from the Edge Clocks (ECLK). The clock divider outputs serve as primary clock sources and feed into the clock distribution network. The Reset (RST) control signal resets the input and forces all outputs to low. The RELEASE signal releases outputs to the input clock. For further information on clock dividers, please see TN1126, LatticeXP2 sysCLOCK PLL Design and Usage Guide. Figure 2-5 shows the clock divider connections.

Figure 2-6. Primary Clock Sources for XP2-17

Note: This diagram shows sources for the XP2-17 device. Smaller LatticeXP2 devices have two GPLLs.

Primary Clock Routing

The clock routing structure in LatticeXP2 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The primary clocks of each quadrant are generated from muxes located in the center of the device. All the clock sources are connected to these muxes. Figure 2-9 shows the clock routing for one quadrant. Each quadrant mux is identical. If desired, any clock can be routed globally.

Dynamic Clock Select (DCS)

The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent input clock sources without any glitches or runt pulses. This is achieved irrespective of when the select signal is toggled. There are two DCS blocks per quadrant; in total, eight DCS blocks per device. The inputs to the DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 (see Figure 2-9).

Figure 2-10 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see TN1126, <u>LatticeXP2 sysCLOCK PLL Design and</u> <u>Usage Guide</u>.

Figure 2-10. DCS Waveforms

Secondary Clock/Control Routing

Secondary clocks in the LatticeXP2 devices are region-based resources. The benefit of region-based resources is the relatively low injection delay and skew within the region, as compared to primary clocks. EBR rows, DSP rows and a special vertical routing channel bound the secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP block in the DSP row or the center of the DSP row. Figure 2-11 shows this special vertical routing channel and the eight secondary clock regions for the LatticeXP2-40.

Figure 2-14. Slice0 through Slice2 Control Selection

Edge Clock Routing

LatticeXP2 devices have eight high-speed edge clocks that are intended for use with the PIOs in the implementation of high-speed interfaces. Each device has two edge clocks per edge. Figure 2-15 shows the selection muxes for these clocks.

Figure 2-15. Edge Clock Mux Connections

MAC sysDSP Element

In this case, the two operands, A and B, are multiplied and the result is added with the previous accumulated value. This accumulated value is available at the output. The user can enable the input and pipeline registers but the output register is always enabled. The output register is used to store the accumulated value. The Accumulators in the DSP blocks in LatticeXP2 family can be initialized dynamically. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-21 shows the MAC sysDSP element.

Figure 2-21. MAC sysDSP

register. Similarly, CE and RST are selected from their four respective sources (CE0, CE1, CE2, CE3 and RST0, RST1, RST2, RST3) at each input register, pipeline register and output register.

Signed and Unsigned with Different Widths

The DSP block supports other widths, in addition to x9, x18 and x36 widths, of signed and unsigned multipliers. For unsigned operands, unused upper data bits should be filled to create a valid x9, x18 or x36 operand. For signed two's complement operands, sign extension of the most significant bit should be performed until x9, x18 or x36 width is reached. Table 2-7 provides an example of this.

Table 2-7. Sign Extension Example

Number	Unsigned	Unsigned 9-bit	Unsigned 18-bit	Signed	Two's Complement Signed 9 Bits	Two's Complement Signed 18 Bits
+5	0101	000000101	00000000000000101	0101	00000101	00000000000000101
-6	N/A	N/A	N/A	1010	111111010	1111111111111111010

OVERFLOW Flag from MAC

The sysDSP block provides an overflow output to indicate that the accumulator has overflowed. "Roll-over" occurs and an overflow signal is indicated when any of the following is true: two unsigned numbers are added and the result is a smaller number than the accumulator, two positive numbers are added with a negative sum or two negative numbers are added with a positive sum. Note that when overflow occurs the overflow flag is present for only one cycle. By counting these overflow pulses in FPGA logic, larger accumulators can be constructed. The conditions for the overflow signal for signed and unsigned operands are listed in Figure 2-24.

Figure 2-24. Accumulator Overflow/Underflow

Programmable I/O Cells (PIC)

Each PIC contains two PIOs connected to their respective sysIO buffers as shown in Figure 2-25. The PIO Block supplies the output data (DO) and the tri-state control signal (TO) to the sysIO buffer and receives input from the buffer. Table 2-11 provides the PIO signal list.

Figure 2-25. PIC Diagram

Signals are available on left/right/bottom edges only.
 Selected blocks.

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as "T" and "C") as shown in Figure 2-25. The PAD Labels "T" and "C" distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as inputs.

Figure 2-28. DQS Input Routing (Left and Right)

	PIO A		PADA "T"
	PIO B		PADB "C"
	PIO A		PADA "T"
	PIO B	· · · · ·	PADB "C"
	PIO A		PADA "T"
	PIO B	↓+	PADB "C"
	PIO A		PADA "T"
	PIO B	┃┣	PADB "C"
DOG	PIO A	sysIO Buffer	
 ■ DQ5 		Delay	LVDS Pair
+ DQS	PIO B	Delay	LVDS Pair
↓ DQS	PIO B PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
	→ PIO B → PIO A → PIO B		PADA "1" LVDS Pair PADB "C" PADA "T" LVDS Pair LVDS Pair PADA "C"
	→ PIO B → PIO A → PIO B → PIO A		PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
			PADA T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair LVDS Pair PADB "C"
			PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"

Figure 2-29. DQS Input Routing (Top and Bottom)

	PIO A		PADA "T"
	PIO B	+	PADB "C"
	PIO A		PADA "T"
	PIO B	· · · · ·	PADB "C"
—	PIO A		PADA "T" LVDS Pair
	PIO B	→	PADB "C"
—	PIO A		PADA "T"
<u> </u>	PIO B	→	PADB "C"
	PIO A	syslO Buffer	·
DQS		Palay	
•		Delay	LVDS Pair
	PIO B		LVDS Pair I I PADB "C" I
	PIO B PIO A		LVDS Pair I PADB "C"
	→ PIO B → PIO A → PIO B		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"
	→ PIO B → PIO A → PIO B → PIO A		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair
	→ PIO B → PIO A → PIO B → PIO A → PIO B		LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "C" PADA "C"
	→ PIO B → PIO A → PIO A → PIO A → PIO A → PIO B → PIO A		LVDS Pair PADA "T" LVDS Pair PADA "T" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "T" LVDS Pair
			LVDS Pair PADA "T" LVDS Pair PADA "T" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADB "C"
			LVDS Pair PADA "T" LVDS Pair PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADB "C" PADA "T" LVDS Pair PADB "C" PADA "T" LVDS Pair PADA "T" LVDS Pair

DQSXFER

LatticeXP2 devices provide a DQSXFER signal to the output buffer to assist it in data transfer to DDR memories that require DQS strobe be shifted 90°. This shifted DQS strobe is generated by the DQSDEL block. The DQSXFER signal runs the span of the data bus.

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.

sysIO Buffer Banks

LatticeXP2 devices have eight sysIO buffer banks for user I/Os arranged two per side. Each bank is capable of supporting multiple I/O standards. Each sysIO bank has its own I/O supply voltage (V_{CCIO}). In addition, each bank has voltage references, V_{REF1} and V_{REF2} , that allow it to be completely independent from the others. Figure 2-32 shows the eight banks and their associated supplies.

In LatticeXP2 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs independent of V_{CCIO} .

Each bank can support up to two separate V_{REF} voltages, V_{REF1} and V_{REF2} , that set the threshold for the referenced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

тор

Figure 2-32. LatticeXP2 Banks

воттом

Table 2-13. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Nom.)
Single-ended Interfaces		
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3
LVCMOS25	4mA, 8mA, 12mA, 16mA, 20mA	2.5
LVCMOS18	4mA, 8mA, 12mA, 16mA	1.8
LVCMOS15	4mA, 8mA	1.5
LVCMOS12	2mA, 6mA	1.2
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA	
LVCMOS15, Open Drain	4mA, 8mA	_
LVCMOS12, Open Drain	2mA, 6mA	_
PCI33	N/A	3.3
HSTL18 Class I, II	N/A	1.8
HSTL15 Class I	N/A	1.5
SSTL33 Class I, II	N/A	3.3
SSTL25 Class I, II	N/A	2.5
SSTL18 Class I, II	N/A	1.8
Differential Interfaces		
Differential SSTL33, Class I, II	N/A	3.3
Differential SSTL25, Class I, II	N/A	2.5
Differential SSTL18, Class I, II	N/A	1.8
Differential HSTL18, Class I, II	N/A	1.8
Differential HSTL15, Class I	N/A	1.5
LVDS ^{1, 2}	N/A	2.5
MLVDS ¹	N/A	2.5
BLVDS ¹	N/A	2.5
LVPECL ¹	N/A	3.3
RSDS ¹	N/A	2.5
LVCMOS33D ¹	4mA, 8mA, 12mA, 16mA, 20mA	3.3

1. Emulated with external resistors.

2. On the left and right edges, LVDS outputs are supported with a dedicated differential output driver on 50% of the I/Os. This solution does not require external resistors at the driver.

Hot Socketing

LatticeXP2 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the LatticeXP2 ideal for many multiple power supply and hot-swap applications.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeXP2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in

sysIO Recommended Operating Conditions

		V _{CCIO}			V _{REF} (V)	
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS33 ²	3.135	3.3	3.465	—		
LVCMOS25 ²	2.375	2.5	2.625	—		
LVCMOS18	1.71	1.8	1.89	—	—	—
LVCMOS15	1.425	1.5	1.575	—		
LVCMOS12 ²	1.14	1.2	1.26	—		
LVTTL33 ²	3.135	3.3	3.465	—	—	—
PCI33	3.135	3.3	3.465	—		—
SSTL18_I ² , SSTL18_II ²	1.71	1.8	1.89	0.833	0.9	0.969
SSTL25_I ² , SSTL25_II ²	2.375	2.5	2.625	1.15	1.25	1.35
SSTL33_I ² , SSTL33_II ²	3.135	3.3	3.465	1.3	1.5	1.7
HSTL15_l ²	1.425	1.5	1.575	0.68	0.75	0.9
HSTL18_I ² , HSTL18_II ²	1.71	1.8	1.89	0.816	0.9	1.08
LVDS25 ²	2.375	2.5	2.625	—		
MLVDS251	2.375	2.5	2.625	—		
LVPECL33 ^{1, 2}	3.135	3.3	3.465	—		
BLVDS25 ^{1, 2}	2.375	2.5	2.625	—		
RSDS ^{1, 2}	2.375	2.5	2.625	—		
SSTL18D_I ² , SSTL18D_II ²	1.71	1.8	1.89	—	—	—
SSTL25D_ I ² , SSTL25D_II ²	2.375	2.5	2.625	—	—	—
SSTL33D_ I ² , SSTL33D_ II ²	3.135	3.3	3.465	—	—	—
HSTL15D_ I ²	1.425	1.5	1.575	—	—	—
HSTL18D_ I ² , HSTL18D_ II ²	1.71	1.8	1.89	_	—	—

Over Recommended Operating Conditions

1. Inputs on chip. Outputs are implemented with the addition of external resistors. 2. Input on this standard does not depend on the value of V_{CCIO} .

LVPECL

The LatticeXP2 devices support the differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL

Table 3-3. LVPECL DC Conditions¹

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/-5%)	3.30	V
Z _{OUT}	Driver Impedance	10	Ω
R _S	Driver Series Resistor (+/-1%)	93	Ω
R _P	Driver Parallel Resistor (+/-1%)	196	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage (After R _P)	2.05	V
V _{OL}	Output Low Voltage (After R _P)	1.25	V
V _{OD}	Output Differential Voltage (After R _P)	0.80	V
V _{CM}	Output Common Mode Voltage	1.65	V
Z _{BACK}	Back Impedance	100.5	Ω
I _{DC}	DC Output Current	12.11	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-7 Timing	Units
Basic Functions		
16-bit Decoder	4.4	ns
32-bit Decoder	5.2	ns
64-bit Decoder	5.6	ns
4:1 MUX	3.7	ns
8:1 MUX	3.9	ns
16:1 MUX	4.3	ns
32:1 MUX	4.5	ns

Register-to-Register Performance

Function	-7 Timing	Units
Basic Functions		
16-bit Decoder	521	MHz
32-bit Decoder	537	MHz
64-bit Decoder	484	MHz
4:1 MUX	744	MHz
8:1 MUX	678	MHz
16:1 MUX	616	MHz
32:1 MUX	529	MHz
8-bit Adder	570	MHz
16-bit Adder	507	MHz
64-bit Adder	293	MHz
16-bit Counter	541	MHz
32-bit Counter	440	MHz
64-bit Counter	321	MHz
64-bit Accumulator	261	MHz
Embedded Memory Functions		
512x36 Single Port RAM, EBR Output Registers	315	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers)	315	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers)	231	MHz
Distributed Memory Functions		
16x4 Pseudo-Dual Port RAM (One PFU)	760	MHz
32x2 Pseudo-Dual Port RAM	455	MHz
64x1 Pseudo-Dual Port RAM	351	MHz
DSP Functions		
18x18 Multiplier (All Registers)	342	MHz
9x9 Multiplier (All Registers)	342	MHz
36x36 Multiply (All Registers)	330	MHz
18x18 Multiply/Accumulate (Input and Output Registers)	218	MHz
18x18 Multiply-Add/Sub-Sum (All Registers)	292	MHz

LatticeXP2 External Switching Characteristics

			-7		-6		-5			
Parameter	Parameter Description		Min.	Max.	Min.	Max.	Min.	Max.	Units	
General I/O Pin Parameters (using Primary Clock without PLL) ¹										
		XP2-5		3.80	_	4.20	_	4.60	ns	
		XP2-8		3.80		4.20		4.60	ns	
t _{CO}	Clock to Output - PIO Output	XP2-17		3.80	_	4.20	_	4.60	ns	
		XP2-30		4.00	_	4.40	_	4.90	ns	
		XP2-40		4.00	_	4.40		4.90	ns	
		XP2-5	0.00		0.00	—	0.00		ns	
		XP2-8	0.00	_	0.00	—	0.00	_	ns	
t _{SU}	Register	XP2-17	0.00	_	0.00	—	0.00	_	ns	
		XP2-30	0.00	_	0.00	—	0.00	_	ns	
		XP2-40	0.00		0.00	—	0.00		ns	
		XP2-5	1.40	_	1.70	—	1.90	_	ns	
		XP2-8	1.40	_	1.70	—	1.90	_	ns	
t _H	Clock to Data Hold - PIO Input Register	XP2-17	1.40	_	1.70	—	1.90	_	ns	
		XP2-30	1.40		1.70	—	1.90		ns	
		XP2-40	1.40	_	1.70	—	1.90	_	ns	
	Clock to Data Setup - PIO Input Register with Data Input Delay	XP2-5	1.40	_	1.70	—	1.90	_	ns	
		XP2-8	1.40	_	1.70	—	1.90	_	ns	
t _{SU_DEL}		XP2-17	1.40	_	1.70	—	1.90	_	ns	
		XP2-30	1.40		1.70	_	1.90		ns	
		XP2-40	1.40		1.70	_	1.90		ns	
		XP2-5	0.00	_	0.00	—	0.00	_	ns	
	Clock to Data Hold - PIO Input Register with Input Data Delay	XP2-8	0.00		0.00	—	0.00		ns	
t _{H_DEL}		XP2-17	0.00		0.00	_	0.00		ns	
		XP2-30	0.00		0.00	_	0.00		ns	
		XP2-40	0.00		0.00	—	0.00		ns	
f _{MAX_IO}	Clock Frequency of I/O and PFU Register	XP2	_	420	_	357	_	311	MHz	
General I/O Pir	n Parameters (using Edge Clock	without PLL	.) ¹							
		XP2-5		3.20	_	3.60	_	3.90	ns	
t _{COE}		XP2-8		3.20	_	3.60		3.90	ns	
	Clock to Output - PIO Output Register	XP2-17		3.20		3.60		3.90	ns	
		XP2-30		3.20	_	3.60		3.90	ns	
		XP2-40		3.20	_	3.60		3.90	ns	
		XP2-5	0.00	_	0.00	—	0.00	_	ns	
		XP2-8	0.00		0.00		0.00		ns	
t _{SUE}	Clock to Data Setup - PIO Input	XP2-17	0.00	—	0.00	—	0.00	—	ns	
		XP2-30	0.00	—	0.00	—	0.00	—	ns	
		XP2-40	0.00		0.00		0.00		ns	

Over Recommended Operating Conditions

LatticeXP2 Family Timing Adders^{1, 2, 3, 4}

Buffer Type	Description	-7	-6	-5	Units				
Input Adjusters									
LVDS25	LVDS	-0.26	-0.11	0.04	ns				
BLVDS25	BLVDS	-0.26	-0.11	0.04	ns				
MLVDS	LVDS	-0.26	-0.11	0.04	ns				
RSDS	RSDS	-0.26	-0.11	0.04	ns				
LVPECL33	LVPECL	-0.26	-0.11	0.04	ns				
HSTL18_I	HSTL_18 class I	-0.23	-0.08	0.07	ns				
HSTL18_II	HSTL_18 class II	-0.23	-0.08	0.07	ns				
HSTL18D_I	Differential HSTL 18 class I	-0.28	-0.13	0.02	ns				
HSTL18D_II	Differential HSTL 18 class II	-0.28	-0.13	0.02	ns				
HSTL15_I	HSTL_15 class I	-0.23	-0.09	0.06	ns				
HSTL15D_I	Differential HSTL 15 class I	-0.28	-0.13	0.01	ns				
SSTL33_I	SSTL_3 class I	-0.20	-0.04	0.12	ns				
SSTL33_II	SSTL_3 class II	-0.20	-0.04	0.12	ns				
SSTL33D_I	Differential SSTL_3 class I	-0.27	-0.11	0.04	ns				
SSTL33D_II	Differential SSTL_3 class II	-0.27	-0.11	0.04	ns				
SSTL25_I	SSTL_2 class I	-0.21	-0.06	0.10	ns				
SSTL25_II	SSTL_2 class II	-0.21	-0.06	0.10	ns				
SSTL25D_I	Differential SSTL_2 class I	-0.27	-0.12	0.03	ns				
SSTL25D_II	Differential SSTL_2 class II	-0.27	-0.12	0.03	ns				
SSTL18_I	SSTL_18 class I	-0.23	-0.08	0.07	ns				
SSTL18_II	SSTL_18 class II	-0.23	-0.08	0.07	ns				
SSTL18D_I	Differential SSTL_18 class I	-0.28	-0.13	0.02	ns				
SSTL18D_II	Differential SSTL_18 class II	-0.28	-0.13	0.02	ns				
LVTTL33	LVTTL	-0.09	0.05	0.18	ns				
LVCMOS33	LVCMOS 3.3	-0.09	0.05	0.18	ns				
LVCMOS25	LVCMOS 2.5	0.00	0.00	0.00	ns				
LVCMOS18	LVCMOS 1.8	-0.23	-0.07	0.09	ns				
LVCMOS15	LVCMOS 1.5	-0.20	-0.02	0.16	ns				
LVCMOS12	LVCMOS 1.2	-0.35	-0.20	-0.04	ns				
PCI33	3.3V PCI	-0.09	0.05	0.18	ns				
Output Adjusters									
LVDS25E	LVDS 2.5 E ⁵	-0.25	0.02	0.30	ns				
LVDS25	LVDS 2.5	-0.25	0.02	0.30	ns				
BLVDS25	BLVDS 2.5	-0.28	0.00	0.28	ns				
MLVDS	MLVDS 2.5 ⁵	-0.28	0.00	0.28	ns				
RSDS	RSDS 2.5⁵	-0.25	0.02	0.30	ns				
LVPECL33	LVPECL 3.3 ⁵	-0.37	-0.10	0.18	ns				
HSTL18_I	HSTL_18 class I 8mA drive	-0.17	0.13	0.43	ns				
HSTL18_II	HSTL_18 class II	-0.29	0.00	0.29	ns				
HSTL18D_I	Differential HSTL 18 class I 8mA drive	-0.17	0.13	0.43	ns				
HSTL18D_II	Differential HSTL 18 class II	-0.29	0.00	0.29	ns				

Over Recommended Operating Conditions

LatticeXP2 Family Timing Adders^{1, 2, 3, 4} (Continued)

Buffer Type	Description	-7	-6	-5	Units
HSTL15_I	HSTL_15 class I 4mA drive	0.32	0.69	1.06	ns
HSTL15D_I	Differential HSTL 15 class I 4mA drive	0.32	0.69	1.06	ns
SSTL33_I	SSTL_3 class I	-0.25	0.05	0.35	ns
SSTL33_II	SSTL_3 class II	-0.31	-0.02	0.27	ns
SSTL33D_I	Differential SSTL_3 class I	-0.25	0.05	0.35	ns
SSTL33D_II	Differential SSTL_3 class II	-0.31	-0.02	0.27	ns
SSTL25_I	SSTL_2 class I 8mA drive	-0.25	0.02	0.30	ns
SSTL25_II	SSTL_2 class II 16mA drive	-0.28	0.00	0.28	ns
SSTL25D_I	Differential SSTL_2 class I 8mA drive	-0.25	0.02	0.30	ns
SSTL25D_II	Differential SSTL_2 class II 16mA drive	-0.28	0.00	0.28	ns
SSTL18_I	SSTL_1.8 class I	-0.17	0.13	0.43	ns
SSTL18_II	SSTL_1.8 class II 8mA drive	-0.18	0.12	0.42	ns
SSTL18D_I	Differential SSTL_1.8 class I	-0.17	0.13	0.43	ns
SSTL18D_II	Differential SSTL_1.8 class II 8mA drive	-0.18	0.12	0.42	ns
LVTTL33_4mA	LVTTL 4mA drive	-0.37	-0.05	0.26	ns
LVTTL33_8mA	LVTTL 8mA drive	-0.45	-0.18	0.10	ns
LVTTL33_12mA	LVTTL 12mA drive	-0.52	-0.24	0.04	ns
LVTTL33_16mA	LVTTL 16mA drive	-0.43	-0.14	0.14	ns
LVTTL33_20mA	LVTTL 20mA drive	-0.46	-0.18	0.09	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive, fast slew rate	-0.37	-0.05	0.26	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive, fast slew rate	-0.45	-0.18	0.10	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive, fast slew rate	-0.52	-0.24	0.04	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive, fast slew rate	-0.43	-0.14	0.14	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive, fast slew rate	-0.46	-0.18	0.09	ns
LVCMOS25_4mA	LVCMOS 2.5 4mA drive, fast slew rate	-0.42	-0.15	0.13	ns
LVCMOS25_8mA	LVCMOS 2.5 8mA drive, fast slew rate	-0.48	-0.21	0.05	ns
LVCMOS25_12mA	LVCMOS 2.5 12mA drive, fast slew rate	0.00	0.00	0.00	ns
LVCMOS25_16mA	LVCMOS 2.5 16mA drive, fast slew rate	-0.45	-0.18	0.08	ns
LVCMOS25_20mA	LVCMOS 2.5 20mA drive, fast slew rate	-0.49	-0.22	0.04	ns
LVCMOS18_4mA	LVCMOS 1.8 4mA drive, fast slew rate	-0.46	-0.18	0.10	ns
LVCMOS18_8mA	LVCMOS 1.8 8mA drive, fast slew rate	-0.52	-0.25	0.02	ns
LVCMOS18_12mA	LVCMOS 1.8 12mA drive, fast slew rate	-0.56	-0.30	-0.03	ns
LVCMOS18_16mA	LVCMOS 1.8 16mA drive, fast slew rate	-0.50	-0.24	0.03	ns
LVCMOS15_4mA	LVCMOS 1.5 4mA drive, fast slew rate	-0.45	-0.17	0.11	ns
LVCMOS15_8mA	LVCMOS 1.5 8mA drive, fast slew rate	-0.53	-0.26	0.00	ns
LVCMOS12_2mA	LVCMOS 1.2 2mA drive, fast slew rate	-0.46	-0.19	0.08	ns
LVCMOS12_6mA	LVCMOS 1.2 6mA drive, fast slew rate	-0.55	-0.29	-0.02	ns
LVCMOS33_4mA	LVCMOS 3.3 4mA drive, slow slew rate	0.98	1.41	1.84	ns
LVCMOS33_8mA	LVCMOS 3.3 8mA drive, slow slew rate	0.74	1.16	1.58	ns
LVCMOS33_12mA	LVCMOS 3.3 12mA drive, slow slew rate	0.56	0.97	1.38	ns
LVCMOS33_16mA	LVCMOS 3.3 16mA drive, slow slew rate	0.77	1.19	1.61	ns
LVCMOS33_20mA	LVCMOS 3.3 20mA drive, slow slew rate	0.57	0.98	1.40	ns

Over Recommended Operating Conditions

Signal Descriptions (Cont.)

Signal Name	I/O	Description
TDO	0	Output pin. Test Data Out pin used to shift data out of a device using 1149.1.
VCCJ		Power supply pin for JTAG Test Access Port.
Configuration Pads (Used during sysC	ONFIG)	
CFG[1:0]	Ι	Mode pins used to specify configuration mode values latched on rising edge of INITN. During configuration, an internal pull-up is enabled.
INITN ¹	I/O	Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled.
PROGRAMN	I	Initiates configuration sequence when asserted low. This pin always has an active pull-up.
DONE	I/O	Open Drain pin. Indicates that the configuration sequence is complete, and the startup sequence is in progress.
CCLK	I/O	Configuration Clock for configuring an FPGA in sysCONFIG mode.
SISPI ²	I/O	Input data pin in slave SPI mode and Output data pin in Master SPI mode.
SOSPI ²	I/O	Output data pin in slave SPI mode and Input data pin in Master SPI mode.
CSSPIN ²	0	Chip select for external SPI Flash memory in Master SPI mode. This pin has a weak internal pull-up.
CSSPISN	I	Chip select in Slave SPI mode. This pin has a weak internal pull-up.
TOE	I	Test Output Enable tristates all I/O pins when driven low. This pin has a weak internal pull-up, but when not used an external pull-up to $\rm V_{\rm CC}$ is recommended.

1. If not actively driven, the internal pull-up may not be sufficient. An external pull-up resistor of 4.7k to $10k\Omega$ is recommended.

2. When using the device in Master SPI mode, it must be mutually exclusive from JTAG operations (i.e. TCK tied to GND) or the JTAG TCK must be free-running when used in a system JTAG test environment. If Master SPI mode is used in conjunction with a JTAG download cable, the device power cycle is required after the cable is unplugged.

Pin Information Summary (Cont.)

		XP2-5				XP2-8			XP2-17			XP2-30			XP2-40		
Pin Type		132 csBGA	144 TQFP	208 PQFP	256 ftBGA	132 csBGA	144 TQFP	208 PQFP	256 ftBGA	208 PQFP	256 ftBGA	484 fpBGA	256 ftBGA	484 fpBGA	672 fpBGA	484 fpBGA	672 fpBGA
PCI capable I/Os Bonding Out per Bank	Bank0	18	20	20	26	18	20	20	28	20	28	52	28	52	70	52	70
	Bank1	4	6	18	18	4	6	18	22	18	22	36	22	36	54	36	70
	Bank2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank4	8	8	18	18	8	8	18	26	18	26	36	26	38	54	38	70
	Bank5	14	18	20	24	14	18	20	24	20	24	52	24	53	70	53	70
	Bank6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bank7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1. Minimum requirement to implement a fully functional 8-bit wide DDR bus. Available DDR interface consists of at least 12 I/Os (1 DQS + 1 DQSB + 8 DQs + 1 DM + Bank VREF1).

Logic Signal Connections

Package pinout information can be found under "Data Sheets" on the LatticeXP2 product page of the Lattice website a www.latticesemi.com/products/fpga/xp2 and in the Lattice Diamond design software.

Thermal Management

Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. Designers must complete a thermal analysis of their specific design to ensure that the device and package do not exceed the junction temperature limits. Refer to the Lattice <u>Thermal Management</u> document to find the device/ package specific thermal values.

For Further Information

- TN1139, Power Estimation and Management for LatticeXP2 Devices
- Power Calculator tool is included with the Lattice Diamond design tool or as a standalone download from www.latticesemi.com/products/designsoftware

Date	Version	Section	Change Summary
April 2008	01.4	DC and Switching	Updated Flash Download Time (From On-Chip Flash to SRAM) Table
(cont.)	(cont.)	Characteristics (cont.)	Updated Flash Program Time Table
			Updated Flash Erase Time Table
			Updated FlashBAK (from EBR to Flash) Table
			Updated Hot Socketing Specifications Table footnotes
		Pinout Information	Updated Signal Descriptions Table
June 2008	01.5	Architecture	Removed Read-Before-Write sysMEM EBR mode.
			Clarification of the operation of the secondary clock regions.
		DC and Switching Characteristics	Removed Read-Before-Write sysMEM EBR mode.
		Pinout Information	Updated DDR Banks Bonding Out per I/O Bank section of Pin Informa- tion Summary Table.
August 2008	01.6	—	Data sheet status changed from preliminary to final.
		Architecture	Clarification of the operation of the secondary clock regions.
		DC and Switching Characteristics	Removed "8W" specification from Hot Socketing Specifications table.
			Removed "8W" footnote from DC Electrical Characteristics table.
			Updated Register-to-Register Performance table.
		Ordering Information	Removed "8W" option from Part Number Description.
			Removed XP2-17 "8W" OPNs.
April 2011	01.7	DC and Switching Characteristics	Recommended Operating Conditions table, added footnote 5.
			On-Chip Flash Memory Specifications table, added footnote 1.
			BLVDS DC Conditions, corrected column title to be Z0 = 90 ohms.
			sysCONFIG Port Timing Specifications table, added footnote 1 for t _{DINIT} .
January 2012	01.8	Multiple	Added support for Lattice Diamond design software.
		Architecture	Corrected information regarding SED support.
		DC and Switching Characteristics	Added reference to ESD Performance Qualification Summary informa- tion.
May 2013	01.9	All	Updated document with new corporate logo.
		Architecture	Architecture Overview – Added information on the state of the register on power up and after configuration.
			Added information regarding SED support.
		DC and Switching Characteristics	Removed Input Clock Rise/Fall Time 1ns max from the sysCLOCK PLL Timing table.
		Ordering Information	Updated topside mark in Ordering Information diagram.
March 2014	02.0	Architecture	Updated Typical sysIO I/O Behavior During Power-up section. Added information on POR signal deactivation.
August 2014	02.1	Architecture	Updated Typical sysIO I/O Behavior During Power-up section. Described user I/Os during power up and before FPGA core logic is active.
September 2014	2.2	DC and Switching Characteristics	Updated Switching Test Conditions section. Re-linked missing figure.