

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2125
Number of Logic Elements/Cells	17000
Total RAM Bits	282624
Number of I/O	146
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfxp2-17e-5qn208c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeXP2 Family Data Sheet Architecture

August 2014

Data Sheet DS1009

Architecture Overview

Each LatticeXP2 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM[™] Embedded Block RAM (EBR) and a row of sys-DSP[™] Digital Signal Processing blocks as shown in Figure 2-1.

On the left and right sides of the Programmable Functional Unit (PFU) array, there are Non-volatile Memory Blocks. In configuration mode the nonvolatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG[™] peripheral port. On power up, the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this technology, expensive external configuration memory is not required, and designs are secured from unauthorized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in microseconds, providing an "instant-on" capability that allows easy interfacing in many applications. LatticeXP2 devices can also transfer data from the sysMEM EBR blocks to the Non-volatile Memory Blocks at user request.

There are two kinds of logic blocks, the PFU and the PFU without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-dimensional array. Only one type of block is used per row.

LatticeXP2 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large dedicated 18Kbit memory blocks. Each sysMEM block can be configured in a variety of depths and widths of RAM or ROM. In addition, LatticeXP2 devices contain up to two rows of DSP Blocks. Each DSP block has multipliers and adder/accumulators, which are the building blocks for complex signal processing capabilities.

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO buffers. The sysIO buffers of the LatticeXP2 devices are arranged into eight banks, allowing the implementation of a wide variety of I/O standards. PIO pairs on the left and right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engineered support to aid in the implementation of high speed source synchronous standards such as 7:1 LVDS interfaces, found in many display applications, and memory interfaces including DDR and DDR2.

The LatticeXP2 registers in PFU and sysI/O can be configured to be SET or RESET. After power up and device is configured, the device enters into user mode with these registers SET/RESET according to the configuration setting, allowing device entering to a known state for predictable system function.

Other blocks provided include PLLs and configuration functions. The LatticeXP2 architecture provides up to four General Purpose PLLs (GPLL) per device. The GPLL blocks are located in the corners of the device.

The configuration block that supports features such as configuration bit-stream de-encryption, transparent updates and dual boot support is located between banks two and three. Every device in the LatticeXP2 family supports a sysCONFIG port, muxed with bank seven I/Os, which supports serial device configuration. A JTAG port is provided between banks two and three.

This family also provides an on-chip oscillator. LatticeXP2 devices use 1.2V as their core voltage.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Primary Clock Routing

The clock routing structure in LatticeXP2 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The primary clocks of each quadrant are generated from muxes located in the center of the device. All the clock sources are connected to these muxes. Figure 2-9 shows the clock routing for one quadrant. Each quadrant mux is identical. If desired, any clock can be routed globally.

Dynamic Clock Select (DCS)

The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent input clock sources without any glitches or runt pulses. This is achieved irrespective of when the select signal is toggled. There are two DCS blocks per quadrant; in total, eight DCS blocks per device. The inputs to the DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 (see Figure 2-9).

Figure 2-10 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed to other modes. For more information on the DCS, please see TN1126, <u>LatticeXP2 sysCLOCK PLL Design and</u> <u>Usage Guide</u>.

Figure 2-10. DCS Waveforms

Secondary Clock/Control Routing

Secondary clocks in the LatticeXP2 devices are region-based resources. The benefit of region-based resources is the relatively low injection delay and skew within the region, as compared to primary clocks. EBR rows, DSP rows and a special vertical routing channel bound the secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP block in the DSP row or the center of the DSP row. Figure 2-11 shows this special vertical routing channel and the eight secondary clock regions for the LatticeXP2-40.

Figure 2-12. Secondary Clock Selection

Slice Clock Selection

Figure 2-13 shows the clock selections and Figure 2-14 shows the control selections for Slice0 through Slice2. All the primary clocks and the four secondary clocks are routed to this clock selection mux. Other signals, via routing, can be used as clock inputs to the slices. Slice controls are generated from the secondary clocks or other signals connected via routing.

If none of the signals are selected for both clock and control, then the default value of the mux output is 1. Slice 3 does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-13. Slice0 through Slice2 Clock Selection

Figure 2-14. Slice0 through Slice2 Control Selection

Edge Clock Routing

LatticeXP2 devices have eight high-speed edge clocks that are intended for use with the PIOs in the implementation of high-speed interfaces. Each device has two edge clocks per edge. Figure 2-15 shows the selection muxes for these clocks.

Figure 2-15. Edge Clock Mux Connections

sysMEM Memory

LatticeXP2 devices contains a number of sysMEM Embedded Block RAM (EBR). The EBR consists of 18 Kbit RAM with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in a variety of depths and widths as shown in Table 2-5. FIFOs can be implemented in sysMEM EBR blocks by using support logic with PFUs. The EBR block supports an optional parity bit for each data byte to facilitate parity checking. EBR blocks provide byte-enable support for configurations with18-bit and 36-bit data widths.

Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36
True Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18
Pseudo Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1, and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

FlashBAK EBR Content Storage

All the EBR memory in the LatticeXP2 is shadowed by Flash memory. Optionally, initialization values for the memory blocks can be defined using the Lattice Diamond design tools. The initialization values are loaded into the Flash memory during device programming and into the SRAM at power up or whenever the device is reconfigured. This feature is ideal for the storage of a variety of information such as look-up tables and microprocessor code. It is also possible to write the current contents of the EBR memory back to Flash memory. This capability is useful for the storage of data such as error codes and calibration information. For additional information on the FlashBAK capability see TN1137, LatticeXP2 Memory Usage Guide.

MAC sysDSP Element

In this case, the two operands, A and B, are multiplied and the result is added with the previous accumulated value. This accumulated value is available at the output. The user can enable the input and pipeline registers but the output register is always enabled. The output register is used to store the accumulated value. The Accumulators in the DSP blocks in LatticeXP2 family can be initialized dynamically. A registered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-21 shows the MAC sysDSP element.

Figure 2-21. MAC sysDSP

MULTADDSUB sysDSP Element

In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. The user can enable the input, output and pipeline registers. Figure 2-22 shows the MULTADDSUB sysDSP element.

Figure 2-22. MULTADDSUB

Table 2-11. PIO Signal List

Name	Туре	Description
CE	Control from the core	Clock enables for input and output block flip-flops
CLK	Control from the core	System clocks for input and output blocks
ECLK1, ECLK2	Control from the core	Fast edge clocks
LSR	Control from the core	Local Set/Reset
GSRN	Control from routing	Global Set/Reset (active low)
INCK ²	Input to the core	Input to Primary Clock Network or PLL reference inputs
DQS	Input to PIO	DQS signal from logic (routing) to PIO
INDD	Input to the core	Unregistered data input to core
INFF	Input to the core	Registered input on positive edge of the clock (CLK0)
IPOS0, IPOS1	Input to the core	Double data rate registered inputs to the core
QPOS0 ¹ , QPOS1 ¹	Input to the core	Gearbox pipelined inputs to the core
QNEG0 ¹ , QNEG1 ¹	Input to the core	Gearbox pipelined inputs to the core
OPOS0, ONEG0, OPOS2, ONEG2	Output data from the core	Output signals from the core for SDR and DDR operation
OPOS1 ONEG1	Tristate control from the core	Signals to Tristate Register block for DDR operation
DEL[3:0]	Control from the core	Dynamic input delay control bits
TD	Tristate control from the core	Tristate signal from the core used in SDR operation
DDRCLKPOL	Control from clock polarity bus	Controls the polarity of the clock (CLK0) that feed the DDR input block
DQSXFER	Control from core	Controls signal to the Output block

1. Signals available on left/right/bottom only.

2. Selected I/O.

PIO

The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic block. These blocks contain registers for operating in a variety of modes along with necessary clock and selection logic.

Input Register Block

The input register blocks for PIOs contain delay elements and registers that can be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous interfaces, before they are passed to the device core. Figure 2-26 shows the diagram of the input register block.

Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired, the input signal can bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and, in selected blocks, the input to the DQS delay block. If an input delay is desired, designers can select either a fixed delay or a dynamic delay DEL[3:0]. The delay, if selected, reduces input register hold time requirements when using a global clock.

The input block allows three modes of operation. In the Single Data Rate (SDR) mode, the data is registered, by one of the registers in the SDR Sync register block, with the system clock. In DDR mode two registers are used to sample the data on the positive and negative edges of the DQS signal which creates two data streams, D0 and D2. D0 and D2 are synchronized with the system clock before entering the core. Further information on this topic can be found in the DDR Memory Support section of this data sheet.

By combining input blocks of the complementary PIOs and sharing registers from output blocks, a gearbox function can be implemented, that takes a double data rate signal applied to PIOA and converts it as four data streams, IPOS0A, IPOS1A, IPOS0B and IPOS1B. Figure 2-26 shows the diagram using this gearbox function. For more information on this topic, please see TN1138, LatticeXP2 High Speed I/O Interface.

The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to system clock domain. For further discussion on this topic, see the DDR Memory section of this data sheet.

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the sysIO buffers. The blocks on the PIOs on the left, right and bottom contain registers for SDR operation that are combined with an additional latch for DDR operation. Figure 2-27 shows the diagram of the Output Register Block for PIOs.

In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a Dtype or latch. In DDR mode, ONEG0 and OPOS0 are fed into registers on the positive edge of the clock. At the next clock cycle the registered OPOS0 is latched. A multiplexer running off the same clock cycle selects the correct register to feed the output (D0).

By combining output blocks of the complementary PIOs and sharing some registers from input blocks, a gearbox function can be implemented, to take four data streams ONEG0A, ONEG1A, ONEG1B and ONEG1B. Figure 2-27

Table 2-13. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Nom.)				
Single-ended Interfaces						
LVTTL	4mA, 8mA, 12mA, 16mA, 20mA	3.3				
LVCMOS33	4mA, 8mA, 12mA 16mA, 20mA	3.3				
LVCMOS25	4mA, 8mA, 12mA, 16mA, 20mA	2.5				
LVCMOS18	4mA, 8mA, 12mA, 16mA	1.8				
LVCMOS15	4mA, 8mA	1.5				
LVCMOS12	2mA, 6mA	1.2				
LVCMOS33, Open Drain	4mA, 8mA, 12mA 16mA, 20mA	—				
LVCMOS25, Open Drain	4mA, 8mA, 12mA 16mA, 20mA					
LVCMOS18, Open Drain	4mA, 8mA, 12mA 16mA					
LVCMOS15, Open Drain	4mA, 8mA	_				
LVCMOS12, Open Drain	2mA, 6mA	_				
PCI33	N/A	3.3				
HSTL18 Class I, II	N/A	1.8				
HSTL15 Class I	N/A	1.5				
SSTL33 Class I, II	N/A	3.3				
SSTL25 Class I, II	N/A	2.5				
SSTL18 Class I, II	N/A	1.8				
Differential Interfaces						
Differential SSTL33, Class I, II	N/A	3.3				
Differential SSTL25, Class I, II	N/A	2.5				
Differential SSTL18, Class I, II	N/A	1.8				
Differential HSTL18, Class I, II	N/A	1.8				
Differential HSTL15, Class I	N/A	1.5				
LVDS ^{1, 2}	N/A	2.5				
MLVDS ¹	N/A	2.5				
BLVDS ¹	N/A	2.5				
LVPECL ¹	N/A	3.3				
RSDS ¹	N/A	2.5				
LVCMOS33D ¹	4mA, 8mA, 12mA, 16mA, 20mA	3.3				

1. Emulated with external resistors.

2. On the left and right edges, LVDS outputs are supported with a dedicated differential output driver on 50% of the I/Os. This solution does not require external resistors at the driver.

Hot Socketing

LatticeXP2 devices have been carefully designed to ensure predictable behavior during power-up and powerdown. Power supplies can be sequenced in any order. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the LatticeXP2 ideal for many multiple power supply and hot-swap applications.

IEEE 1149.1-Compliant Boundary Scan Testability

All LatticeXP2 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test Access Port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in

LatticeXP2 Family Data Sheet DC and Switching Characteristics

September 2014

Data Sheet DS1009

Absolute Maximum Ratings^{1, 2, 3}

Supply Voltage V _{CC}
Supply Voltage V _{CCAUX}
Supply Voltage V _{CCJ}
Supply Voltage V _{CCPLL} ⁴ 0.5 to 3.75V
Output Supply Voltage V _{CCIO} 0.5 to 3.75V
Input or I/O Tristate Voltage Applied ⁵ 0.5 to 3.75V
Storage Temperature (Ambient)65 to 150°C
Junction Temperature Under Bias (Tj)+125°C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice <u>Thermal Management</u> document is required.

3. All voltages referenced to GND.

4. V_{CCPLL} only available on csBGA, PQFP and TQFP packages.

5. Overshoot and undershoot of -2V to (V_{IHMAX} + 2) volts is permitted for a duration of <20 ns.

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Core Supply Voltage	1.14	1.26	V
V _{CCAUX} ^{4, 5}	Auxiliary Supply Voltage	3.135	3.465	V
V _{CCPLL} ¹	PLL Supply Voltage	3.135	3.465	V
V _{CCIO} ^{2, 3, 4}	I/O Driver Supply Voltage	1.14	3.465	V
V _{CCJ} ²	Supply Voltage for IEEE 1149.1 Test Access Port	1.14	3.465	V
t _{JCOM}	Junction Temperature, Commercial Operation	0	85	°C
t _{JIND}	Junction Temperature, Industrial Operation	-40	100	°C

1. V_{CCPLL} only available on csBGA, PQFP and TQFP packages.

If V_{CCIO} or V_{CCJ} is set to 1.2 V, they must be connected to the same power supply as V_{CC}. If V_{CCIO} or V_{CCJ} is set to 3.3V, they must be connected to the same power supply as V_{CCAUX}.

3. See recommended voltages by I/O standard in subsequent table.

4. To ensure proper I/O behavior, V_{CCIO} must be turned off at the same time or earlier than V_{CCAUX} .

5. In fpBGA and ftBGA packages, the PLLs are connected to, and powered from, the auxiliary power supply.

On-Chip Flash Memory Specifications

Symbol	Parameter	Max.	Units
N _{PROGCYC}	Flash Programming Cycles per t _{RETENTION} ¹	10,000	Cycles
	Flash Functional Programming Cycles	100,000	Cycles

1. The minimum data retention, t_{RETENTION}, is 20 years.

^{© 2014} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

sysIO Recommended Operating Conditions

		V _{CCIO}		V _{BEF} (V)			
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.	
LVCMOS33 ²	3.135	3.3	3.465	—			
LVCMOS25 ²	2.375	2.5	2.625	—			
LVCMOS18	1.71	1.8	1.89	—	—	—	
LVCMOS15	1.425	1.5	1.575	—			
LVCMOS12 ²	1.14	1.2	1.26	—			
LVTTL33 ²	3.135	3.3	3.465	—	—	—	
PCI33	3.135	3.3	3.465	—		—	
SSTL18_I ² , SSTL18_II ²	1.71	1.8	1.89	0.833	0.9	0.969	
SSTL25_I ² , SSTL25_II ²	2.375	2.5	2.625	1.15	1.25	1.35	
SSTL33_I ² , SSTL33_II ²	3.135	3.3	3.465	1.3	1.5	1.7	
HSTL15_l ²	1.425	1.5	1.575	0.68	0.75	0.9	
HSTL18_I ² , HSTL18_II ²	1.71	1.8	1.89	0.816	0.9	1.08	
LVDS25 ²	2.375	2.5	2.625	—			
MLVDS251	2.375	2.5	2.625	—			
LVPECL33 ^{1, 2}	3.135	3.3	3.465	—			
BLVDS25 ^{1, 2}	2.375	2.5	2.625	—			
RSDS ^{1, 2}	2.375	2.5	2.625	—			
SSTL18D_I ² , SSTL18D_II ²	1.71	1.8	1.89	—	—	—	
SSTL25D_ I ² , SSTL25D_II ²	2.375	2.5	2.625	—	—	—	
SSTL33D_ I ² , SSTL33D_ II ²	3.135	3.3	3.465	—	—	—	
HSTL15D_ I ²	1.425	1.5	1.575	—	—	—	
HSTL18D_ I ² , HSTL18D_ II ²	1.71	1.8	1.89	_	—	—	

Over Recommended Operating Conditions

1. Inputs on chip. Outputs are implemented with the addition of external resistors. 2. Input on this standard does not depend on the value of V_{CCIO} .

sysIO Single-Ended DC Electrical Characteristics

Input/Output		V _{IL}	V _{IH}		V _{OL}	V _{OH}		
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	Max. (V)	Min. (V)	l _{OL} 1 (mA)	l _{OH} ¹ (mA)
LVCMOS33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVTTL33	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS25	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	20, 16, 12, 8, 4	-20, -16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS18	-0.3	0.35 V _{CCIO}	0.65 V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-16, -12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
	0.2	0.25 \/	0.65 \	2.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4
	-0.5	0.35 VCCIO	0.03 V CCIO	3.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
	-0.3	0.35 V	0.65 V	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
	-0.5	0.35 V _{CC}	0.05 V _{CC}	3.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
PCI33	-0.3	0.3 V _{CCIO}	0.5 V _{CCIO}	3.6	0.1 V _{CCIO}	0.9 V _{CCIO}	1.5	-0.5
SSTL33_I	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.7	V _{CCIO} - 1.1	8	-8
SSTL33_II	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.5	V _{CCIO} - 0.9	16	-16
SSTI 25 I	-0.3	Vpcc - 0 18	Vp== ± 0.18	3.6	0.54	Vacua - 0.62	7.6	-7.6
001220_1	-0.0	VREF - 0.10	VREF + 0.10	0.0	0.04	ACCIO - 0.05	12	-12
SSTI 25 II	-0.3	V0 18	V+0 18	36	0.35	Vac: a 0.43	15.2	-15.2
001225_11	-0.0	VREF - 0.10	VREF + 0.10	0.0	0.00	ACCIO - 0.42	20	-20
SSTL18_I	-0.3	V _{REF} - 0.125	V _{REF} + 0.125	3.6	0.4	V _{CCIO} - 0.4	6.7	-6.7
	-0.3	V 0 125	V+0 125	36	0.28	Vac 0.28	8	-8
001210_1	-0.5	* REF - 0.120	VREF + 0.125 3.0	0.0	0.20	VCCIO - 0.20	11	-11
HSTI 15 I	-0.3	Vpcc - 0 1		3.6	0.4		4	-4
	0.0	VREF - 0.1	v _{REF} + 0.1	3.0	0.4	VCCIO - 0.4	8	-8
HSTI 18 I	-0.3	Vp== - 0 1		3.6	0.4		8	-8
	0.0	KEF - 0.1		0.0	U.7		12	-12
HSTL18_II	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCIO} - 0.4	16	-16

Over Recommended Operating Conditions

 The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA, where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

BLVDS

The LatticeXP2 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Table 3-2. BLVDS DC Conditions¹

		Typical		
Parameter	Description	Ζο = 45 Ω	Ζο = 90 Ω	Units
V _{CCIO}	Output Driver Supply (+/- 5%)	2.50	2.50	V
Z _{OUT}	Driver Impedance	10.00	10.00	Ω
R _S	Driver Series Resistor (+/- 1%)	90.00	90.00	Ω
R _{TL}	Driver Parallel Resistor (+/- 1%)	45.00	90.00	Ω
R _{TR}	Receiver Termination (+/- 1%)	45.00	90.00	Ω
V _{OH}	Output High Voltage (After R _{TL})	1.38	1.48	V
V _{OL}	Output Low Voltage (After R _{TL})	1.12	1.02	V
V _{OD}	Output Differential Voltage (After R _{TL})	0.25	0.46	V
V _{CM}	Output Common Mode Voltage	1.25	1.25	V
I _{DC}	DC Output Current	11.24	10.20	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

RSDS

The LatticeXP2 devices support differential RSDS standard. This standard is emulated using complementary LVC-MOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

Table 3-4. RSDS DC Conditions¹

Parameter	Description	Typical	Units
V _{CCIO}	Output Driver Supply (+/-5%)	2.50	V
Z _{OUT}	Driver Impedance	20	Ω
R _S	Driver Series Resistor (+/-1%)	294	Ω
R _P	Driver Parallel Resistor (+/-1%)	121	Ω
R _T	Receiver Termination (+/-1%)	100	Ω
V _{OH}	Output High Voltage (After R _P)	1.35	V
V _{OL}	Output Low Voltage (After R _P)	1.15	V
V _{OD}	Output Differential Voltage (After R _P)	0.20	V
V _{CM}	Output Common Mode Voltage	1.25	V
Z _{BACK}	Back Impedance	101.5	Ω
I _{DC}	DC Output Current	3.66	mA

Over Recommended Operating Conditions

1. For input buffer, see LVDS table.

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-7 Timing	Units
Basic Functions		
16-bit Decoder	4.4	ns
32-bit Decoder	5.2	ns
64-bit Decoder	5.6	ns
4:1 MUX	3.7	ns
8:1 MUX	3.9	ns
16:1 MUX	4.3	ns
32:1 MUX	4.5	ns

Register-to-Register Performance

Function	-7 Timing	Units
Basic Functions		
16-bit Decoder	521	MHz
32-bit Decoder	537	MHz
64-bit Decoder	484	MHz
4:1 MUX	744	MHz
8:1 MUX	678	MHz
16:1 MUX	616	MHz
32:1 MUX	529	MHz
8-bit Adder	570	MHz
16-bit Adder	507	MHz
64-bit Adder	293	MHz
16-bit Counter	541	MHz
32-bit Counter	440	MHz
64-bit Counter	321	MHz
64-bit Accumulator	261	MHz
Embedded Memory Functions	•	
512x36 Single Port RAM, EBR Output Registers	315	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers)	315	MHz
1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers)	231	MHz
Distributed Memory Functions	•	
16x4 Pseudo-Dual Port RAM (One PFU)	760	MHz
32x2 Pseudo-Dual Port RAM	455	MHz
64x1 Pseudo-Dual Port RAM	351	MHz
DSP Functions		
18x18 Multiplier (All Registers)	342	MHz
9x9 Multiplier (All Registers)	342	MHz
36x36 Multiply (All Registers)	330	MHz
18x18 Multiply/Accumulate (Input and Output Registers)	218	MHz
18x18 Multiply-Add/Sub-Sum (All Registers)	292	MHz

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

LatticeXP2 Family Data Sheet Ordering Information

February 2012

Data Sheet DS1009

Part Number Description

Ordering Information

The LatticeXP2 devices are marked with a single temperature grade, either Commercial or Industrial, as shown below.

© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-17E-5QN208I	1.2V	-5	Lead-Free PQFP	208	IND	17
LFXP2-17E-6QN208I	1.2V	-6	Lead-Free PQFP	208	IND	17
LFXP2-17E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	17
LFXP2-17E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	17
LFXP2-17E-5FN484I	1.2V	-5	Lead-Free fpBGA	484	IND	17
LFXP2-17E-6FN484I	1.2V	-6	Lead-Free fpBGA	484	IND	17

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-30E-5FTN256I	1.2V	-5	Lead-Free ftBGA	256	IND	30
LFXP2-30E-6FTN256I	1.2V	-6	Lead-Free ftBGA	256	IND	30
LFXP2-30E-5FN484I	1.2V	-5	Lead-Free fpBGA	484	IND	30
LFXP2-30E-6FN484I	1.2V	-6	Lead-Free fpBGA	484	IND	30
LFXP2-30E-5FN672I	1.2V	-5	Lead-Free fpBGA	672	IND	30
LFXP2-30E-6FN672I	1.2V	-6	Lead-Free fpBGA	672	IND	30

Part Number	Voltage	Grade	Package	Pins	Temp.	LUTs (k)
LFXP2-40E-5FN484I	1.2V	-5	Lead-Free fpBGA	484	IND	40
LFXP2-40E-6FN484I	1.2V	-6	Lead-Free fpBGA	484	IND	40
LFXP2-40E-5FN672I	1.2V	-5	Lead-Free fpBGA	672	IND	40
LFXP2-40E-6FN672I	1.2V	-6	Lead-Free fpBGA	672	IND	40

LatticeXP2 Family Data Sheet Revision History

September 2014

Data Sheet DS1009

Revision History

Date	Version	Section	Change Summary
May 2007	01.1	_	Initial release.
September 2007	01.2	DC and Switching Characteristics	Added JTAG Port Timing Waveforms diagram.
			Updated sysCLOCK PLL Timing table.
		Pinout Information	Added Thermal Management text section.
February 2008	01.3	Architecture	Added LVCMOS33D to Supported Output Standards table.
			Clarified: "This Flash can be programmed through either the JTAG or Slave SPI ports of the device. The SRAM configuration space can also be infinitely reconfigured through the JTAG and Master SPI ports."
			Added External Slave SPI Port to Serial TAG Memory section. Updated Serial TAG Memory diagram.
		DC and Switching Characteristics	Updated Flash Programming Specifications table.
			Added "8W" specification to Hot Socketing Specifications table.
			Updated Timing Tables
			Clarifications for IIH in DC Electrical Characteristics table.
			Added LVCMOS33D section
			Updated DOA and DOA (Regs) to EBR Timing diagrams.
			Removed Master Clock Frequency and Duty Cycle sections from the LatticeXP2 sysCONFIG Port Timing Specifications table. These are listed on the On-chip Oscillator and Configuration Master Clock Characteristics table.
			Changed CSSPIN to CSSPISN in description of $t_{SCS}, t_{SCSS},$ and t_{SCSH} parameters. Removed t_{SOE} parameter.
			Clarified On-chip Oscillator documentation
			Added Switching Test Conditions
		Pinout Information	Added "True LVDS Pairs Bonding Out per Bank," "DDR Banks Bonding Out per I/O Bank," and "PCI capable I/Os Bonding Out per Bank" to Pin Information Summary in place of previous blank table "PCI and DDR Capabilities of the Device-Package Combinations"
			Removed pinout listing. This information is available on the LatticeXP2 product web pages
		Ordering Information	Added XP2-17 "8W" and all other family OPNs.
April 2008	April 2008 01.4 DC and Switching	Updated Absolute Maximum Ratings footnotes.	
Characteristi	Characteristics	Updated Recommended Operating Conditions Table footnotes.	
			Updated Supply Current (Standby) Table
			Updated Initialization Supply Current Table
			Updated Programming and Erase Flash Supply Current Table
			Updated Register to Register Performance Table
			Updated LatticeXP2 External Switching Characteristics Table
			Updated LatticeXP2 Internal Switching Characteristics Table
			Updated sysCLOCK PLL Timing Table

© 2014 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.